Skip to main content

Phosphoinositides and membrane traffic in health and disease

  • Chapter
  • First Online:
Regulatory Mechanisms of Intracellular Membrane Transport

Part of the book series: Topics in Current Genetics ((TCG,volume 10))

Abstract

The phosphorylated derivatives of phosphatidylinositol (PtdIns) are collectively known as the polyphosphoinositides (PIs) and they were originally identified as precursors of second messengers. In particular, PtdIns 4,5-bisphosphate (PtdIns45P2), initially the most studied of the PIs, was shown to be the substrate of a PI-specific phospholipase C (PI-PLC), which upon agonist stimulation generates the water-soluble inositol 1,4,5-trisphosphate and the membrane-bound diacylglycerol. Over the last decade or so, it has become increasingly clear that the PIs fulfil a wider variety of functions, including the control of cytoskeleton assembly and membrane traffic. This occurs via reversible phosphorylation of the inositol ring, which generates a series of products that can bind to cytosolic or membrane proteins with variable affinities and specificities. Indeed, the number of domains or modules that are known to specifically bind the various PIs, such as FYVE fingers, and PH, PX and ENTH domains, have increased dramatically over just the past few years. By interacting with these protein domains, membrane PIs can control actin cytoskeleton remodelling, vesicle coat assembly, and signalling-complex formation. Here, we give an overview of the functions of the PI-metabolizing enzymes in the secretory pathway, and of the human pathologies that are associated with mutations in these enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Aikawa Y, Martin TF (2003) ARF6 regulates a plasma membrane pool of phosphatidylinositol(4,5)bisphosphate required for regulated exocytosis. J Cell Biol 162:647-659

    CAS  PubMed  Google Scholar 

  • 2. Anderson RA, Boronenkov IV, Doughman SD, Kunz J, Loijens JC (1999) Phosphatidylinositol phosphate kinases, a multifaceted family of signaling enzymes. J Biol Chem 274:9907-9910

    Google Scholar 

  • 3. Arico S, Petiot A, Bauvy C, Dubbelhuis PF, Meijer AJ, Codogno P, Ogier-Denis E (2001) The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem 276:35243-35246

    Google Scholar 

  • 4. Audhya A, Foti M, Emr SD (2000) Distinct roles for the yeast phosphatidylinositol 4-kinases, Stt4p and Pik1p, in secretion, cell growth, and organelle membrane dynamics. Mol Biol Cell 11:2673-2689

    CAS  PubMed  Google Scholar 

  • 5. Bache KG, Brech A, Mehlum A, Stenmark H (2003) Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes. J Cell Biol 162:435-442

    Article  CAS  PubMed  Google Scholar 

  • 6. Balla T, Downing GJ, Jaffe H, Kim S, Zolyomi A, Catt KJ (1997) Isolation and molecular cloning of wortmannin-sensitive bovine type III phosphatidylinositol 4-kinases. J Biol Chem 272:18358-18366

    Google Scholar 

  • 7. Balla A, Tuymetova G, Barshishat M, Geiszt M, Balla T (2002) Characterization of type II phosphatidylinositol 4-kinase isoforms reveals association of the enzymes with endosomal vesicular compartments. J Biol Chem 277:20041-20050

    Google Scholar 

  • 8. Barylko B, Gerber SH, Binns DD, Grichine N, Khvotchev M, Sudhof TC Albanesi JP (2001) A novel family of phosphatidylinositol 4-kinases conserved from yeast to humans. J Biol Chem 276:7705-7708

    Google Scholar 

  • 9. Bascom RA, Srinivasan S, Nussbaum RL (1999) Identification and characterization of golgin-84, a novel Golgi integral membrane protein with a cytoplasmic coiled-coil domain. J Biol Chem 274:2953-2962

    Google Scholar 

  • 10. Berger P, Bonneick S, Willi S, Wymann M, Suter U (2002) Loss of phosphatase activity in myotubularin-related protein 2 is associated with Charcot-Marie-Tooth disease type 4B1. Hum Mol Genet 11:1569-1579

    Article  CAS  PubMed  Google Scholar 

  • 11. Blondeau F, Laporte J, Bodin S, Superti-Furga G, Payrastre B, Mandel JL (2000) Myotubularin, a phosphatase deficient in myotubular myopathy, acts on phosphatidylinositol 3-kinase and phosphatidylinositol 3-phosphate pathway. Hum Mol Genet 9:2223-2229

    CAS  PubMed  Google Scholar 

  • 12. Brown WJ, DeWald DB, Emr SD, Plutner H, Balch WE (1995) Role for phosphatidylinositol 3-kinase in the sorting and transport of newly synthesized lysosomal enzymes in mammalian cells. J Cell Biol 130:781-796

    Article  CAS  PubMed  Google Scholar 

  • 13. Bruns JR, Ellis MA, Jeromin A, Weisz OA (2002) Multiple roles for phosphatidylinositol 4-kinase in biosynthetic transport in polarized Madin-Darby canine kidney cells. J Biol Chem 277:2012-2018

    Google Scholar 

  • 14. Buj-Bello A, Laugel V, Messaddeq N, Zahreddine H, Laporte J, Pellissier JF, Mandel JL (2002) The lipid phosphatase myotubularin is essential for skeletal muscle maintenance but not for myogenesis in mice. Proc Natl Acad Sci USA 99:15060-15065

    Google Scholar 

  • 15. Castellino AM, Parker GJ, Boronenkov IV, Anderson RA, Chao MV (1997) A novel interaction between the juxtamembrane region of the p55 tumor necrosis factor receptor and phosphatidylinositol-4-phosphate 5-kinase. J Biol Chem 272:5861-5870

    Google Scholar 

  • 16. Christoforidis S, Zerial M (2001) Purification of EEA1 from bovine brain cytosol using Rab5 affinity chromatography and activity assays. Methods Enzymol 329:120-132

    CAS  PubMed  Google Scholar 

  • 17. Cockcroft S, De Matteis MA (2001) Inositol lipids as spatial regulators of membrane traffic. J Membr Biol 180:187-194

    Article  CAS  PubMed  Google Scholar 

  • 18. Cutler NS, Heitman J, Cardenas ME (1997) STT4 is an essential phosphatidylinositol 4-kinase that is a target of wortmannin in Saccharomyces cerevisiae. J Biol Chem 272:27671-27677

    Google Scholar 

  • 19. Dang H, Li Z, Skolnik EY, Fares H (2004) Disease-related myotubularins function in endocytic traffic in Caenorhabditis elegans. Mol Biol Cell 15:189-96

    Article  CAS  PubMed  Google Scholar 

  • 20. Davidson HW (1995) Wortmannin causes mistargeting of procathepsin D. evidence for the involvement of a phosphatidylinositol 3-kinase in vesicular transport to lysosomes. J Cell Biol 130:797-805

    CAS  PubMed  Google Scholar 

  • 21. De Matteis MA, Morrow JS (1998) The role of ankyrin and spectrin in membrane transport and domain formation. Curr Opin Cell Biol 10:542-549

    Article  PubMed  Google Scholar 

  • 22. De Matteis M, Godi A, Corda D (2002) Phosphoinositides and the golgi complex. Curr Opin Cell Biol 14:434-447

    PubMed  Google Scholar 

  • 23. Domin J, Gaidarov I, Smith ME, Keen JH, Waterfield MD (2000) The class II phosphoinositide 3-kinase PI3K-C2alpha is concentrated in the trans-Golgi network and present in clathrin-coated vesicles. J Biol Chem 275:11943-11950

    Google Scholar 

  • 24. Dressman MA, Olivos-Glander IM, Nussbaum RL, Suchy SF (2000) Ocrl1, a PtdIns(4,5)P(2) 5-phosphatase, is localized to the trans-Golgi network of fibroblasts and epithelial cells. J Histochem Cytochem 48:179-190

    CAS  PubMed  Google Scholar 

  • 25. Flanagan CA, Schnieders EA, Emerick AW, Kunisawa R, Admon A, Thorner J (1993) Phosphatidylinositol 4-kinase: gene structure and requirement for yeast cell viability. Science 262:1444-1448

    CAS  PubMed  Google Scholar 

  • 26. Fruman DA, Meyers RE, Cantley LC (1998) Phosphoinositide kinases. Annu Rev Biochem 67:481-507

    Article  CAS  PubMed  Google Scholar 

  • 27. Gaidarov I, Smith ME, Domin J, Keen JH (2001) The class II phosphoinositide 3-kinase C2alpha is activated by clathrin and regulates clathrin-mediated membrane trafficking. Mol Cell 7:443-449

    Article  CAS  PubMed  Google Scholar 

  • 28. Gehrmann T, Heilmeyer LM Jr (1998) Phosphatidylinositol 4-kinases. Eur J Biochem 253:357-370

    Google Scholar 

  • 29. Gillooly DJ, Morrow IC, Lindsay M, Gould R, Bryant NJ, Gaullier, JM, Parton RG, Stenmark H (2000) Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J 19:4577-4588

    Article  CAS  PubMed  Google Scholar 

  • 30. Godi A, Pertile P, Meyers R, Marra P, Di Tullio G, Iurisci C, Luini A, Corda D, De Matteis MA (1999) ARF mediates recruitment of PtdIns-4-OH kinase-beta and stimulates synthesis of PtdIns(4,5)P2 on the Golgi complex. Nat Cell Biol 1:280-287

    Google Scholar 

  • 31. Godi A, Santone I, Pertile P, Marra P, Di Tullio G, Luini A, Corda D, De Matteis MA (1999) ADP-ribosylation factor regulates spectrin skeleton assembly on the Golgi complex by stimulating phosphatidylinositol 4,5-bisphosphate synthesis. Biochem Soc Trans 27:638-642

    CAS  PubMed  Google Scholar 

  • 32. Guipponi M, Tapparel C, Jousson O, Scamuffa N, Mas C, Rossier C, Hutter P, Meda P, Lyle R, Reymond A, Antonarakis SE (2001) The murine orthologue of the Golgi-localized TPTE protein provides clues to the evolutionary history of the human TPTE gene family. Hum Genet 109:569-575

    Article  CAS  PubMed  Google Scholar 

  • 33. Guo J, Wenk MR, Pellegrini L, Onofri F, Benfenati F, De Camilli P (2003) Phosphatidylinositol 4-kinase type IIalpha is responsible for the phosphatidylinositol 4-kinase activity associated with synaptic vesicles. Proc Natl Acad Sci USA 100:3995-4000

    Google Scholar 

  • 34. Hama H, Schnieders EA, Thorner J, Takemoto JY, DeWald DB (1999) Direct involvement of phosphatidylinositol 4-phosphate in secretion in the yeast Saccharomyces cerevisiae. J Biol Chem 274:34294-34300

    Google Scholar 

  • 35. Hay JC, Fisette PL, Jenkins GH, Fukami K, Takenawa T, Anderson RA, Martin TF (1995) ATP-dependent inositide phosphorylation required for Ca(2+)-activated secretion. Nature 374:173-177

    CAS  PubMed  Google Scholar 

  • 36. Hayes S, Chawla A, Corvera S (2002) TGF beta receptor internalization into EEA1-enriched early endosomes: role in signaling to Smad2. J Cell Biol 158:1239-1249

    CAS  PubMed  Google Scholar 

  • 37. Hendricks KB, Wang BQ, Schnieders EA, Thorner J (1999) Yeast homologue of neuronal frequenin is a regulator of phosphatidylinositol-4-OH kinase. Nat Cell Biol 1:234-241

    Google Scholar 

  • 38. Honda A, Nogami M, Yokozeki T, Yamazaki M, Nakamura H, Watanabe H, Kawamoto K, Nakayama K, Morris AJ, Frohman MA, Kanaho Y (1999) Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell 99:521-532

    Article  CAS  PubMed  Google Scholar 

  • 39. Hughes WE, Cooke FT, Parker PJ (2000) Sac phosphatase domain proteins. Biochem J 350:337-52

    Article  CAS  PubMed  Google Scholar 

  • 40. Ijuin T, Mochizuki Y, Fukami K, Funaki M, Asano T, Takenawa T (2000) Identification and characterization of a novel inositol polyphosphate 5-phosphatase. J Biol Chem 275:10870-5

    Google Scholar 

  • 41. Ikonomov OC, Sbrissa D, Mlak K, Kanzaki M, Pessin J, Shisheva A (2002) Functional dissection of lipid and protein kinase signals of PIKfyve reveals the role of PtdIns 3,5-P2 production for endomembrane integrity. J Biol Chem 277:9206-9211

    Google Scholar 

  • 42. Ikonomov OC, Sbrissa D, Foti M, Carpentier JL, Shisheva A (2003) PIKfyve controls fluid phase endocytosis but not recycling/degradation of endocytosed receptors or sorting of procathepsin D by regulating multivesicular body morphogenesis. Mol Biol Cell 14:4581-4591

    CAS  PubMed  Google Scholar 

  • 43. Janne PA, Suchy SF, Bernard D, MacDonald M, Crawley J, Grinberg A, Wynshaw-Boris A, Westphal H, Nussbaum RL (1998) Functional overlap between murine Inpp5b and Ocrl1 may explain why deficiency of the murine ortholog for OCRL1 does not cause Lowe syndrome in mice. J Clin Invest 101:2042-2053

    CAS  PubMed  Google Scholar 

  • 44. Jefferson AB, Majerus PW (1995) Properties of type II inositol polyphosphate 5-phosphatase. J Biol Chem 270:9370-9377

    Google Scholar 

  • 45. Jenkins GH, Fisette PL, Anderson RA (1994) Type I phosphatidylinositol 4-phosphate 5-kinase isoforms are specifically stimulated by phosphatidic acid. J Biol Chem 269:11547-11554

    Google Scholar 

  • 46. Jones DH, Morris JB, Morgan CP, Kondo H, Irvine RF, Cockcroft S (2000) Type I phosphatidylinositol 4-phosphate 5-kinase directly interacts with ADP-ribosylation factor 1 and is responsible for phosphatidylinositol 4,5-bisphosphate synthesis in the golgi compartment. J Biol Chem 275:13962-13966

    Google Scholar 

  • 47. Kihara A, Noda T, Ishihara N, Ohsumi Y (2001) Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol 152:519-530

    Article  CAS  PubMed  Google Scholar 

  • 48. Kim SA, Taylor GS, Torgersen KM, Dixon JE (2002) Myotubularin and MTMR2, phosphatidylinositol 3-phosphatases mutated in myotubular myopathy and type 4B Charcot-Marie-Tooth disease. J Biol Chem 277:4526-4531

    Google Scholar 

  • 49. Kim SA, Vacratsis PO, Firestein R, Cleary ML, Dixon JE (2003) Regulation of myotubularin-related (MTMR)2 phosphatidylinositol phosphatase by MTMR5, a catalytically inactive phosphatase. Proc Natl Acad Sci USA 100:4492-4497

    Google Scholar 

  • 50. Kisseleva MV, Wilson MP, Majerus PW (2000) The isolation and characterization of a cDNA encoding phospholipid-specific inositol polyphosphate 5-phosphatase. J Biol Chem 275:20110-6

    Google Scholar 

  • 51. Kong AM, Speed CJ, O’Malley CJ, Layton MJ, Meehan T, Loveland KL, Cheema S, Ooms LM, Mitchell CA (2000) Cloning and characterization of a 72-kDa inositol-polyphosphate 5-phosphatase localized to the Golgi network. J Biol Chem 275:24052-24064

    Google Scholar 

  • 52. Laporte J, Biancalana V, Tanner SM, Kress W, Schneider V, Wallgren-Pettersson C, Herger F, Buj-Bello A, Blondeau F, Liechti-Gallati S, Mandel JL (2000) MTM1 mutations in X-linked myotubular myopathy. Hum Mutat 15:393-409

    Article  CAS  PubMed  Google Scholar 

  • 53. Laporte J, Blondeau F, Buj-Bello A, Mandel JL (2001) The myotubularin family: from genetic disease to phosphoinositide metabolism. Trends Genet 17:221-228

    Article  CAS  PubMed  Google Scholar 

  • 54. Laporte J, Blondeau F, Gansmuller A, Lutz Y, Vonesch JL, Mandel JL (2002) The PtdIns3P phosphatase myotubularin is a cytoplasmic protein that also localizes to Rac1-inducible plasma membrane ruffles. J Cell Sci 115:3105-3117

    CAS  PubMed  Google Scholar 

  • 55. Lee JO, Yang H, Georgescu MM, Di Cristofano A, Maehama T, Shi Y, Dixon JE, Pandolfi P, Pavletich NP (1999) Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell 99:323-334

    Article  CAS  PubMed  Google Scholar 

  • 56. Lloyd TE, Atkinson R, Wu MN, Zhou Y, Pennetta G, Bellen HJ (2002) Hrs regulates endosome membrane invagination and tyrosine kinase receptor signaling in Drosophila. Cell 108:261-269

    Article  CAS  PubMed  Google Scholar 

  • 57. Loijens JC, Boronenkov IV, Parker GJ, Anderson RA (1996) The phosphatidylinositol 4-phosphate 5-kinase family. Adv Enzyme Regul 36:115-140

    Article  CAS  PubMed  Google Scholar 

  • 58. Maehama T, Taylor GS, Dixon JE (2001) PTEN and myotubularin: novel phosphoinositide phosphatases. Annu Rev Biochem 70:247-279

    Article  CAS  PubMed  Google Scholar 

  • 59. Mayinger P, Bankaitis VA, Meyer DI (1995) Sac1p mediates the adenosine triphosphate transport into yeast endoplasmic reticulum that is required for protein translocation. J Cell Biol 131:1377-1386

    Article  CAS  PubMed  Google Scholar 

  • 60. Merlot S, Meili R, Pagliarini DJ, Maehama T, Dixon JE, Firtel RA (2003) A PTEN-related 5-phosphatidylinositol phosphatase localized in the Golgi. J Biol Chem 278:39866-39873

    Google Scholar 

  • 61. Meyers R, Cantley LC (1997) Cloning and characterization of a wortmannin-sensitive human phosphatidylinositol 4-kinase. J Biol Chem 272:4384-4390

    Google Scholar 

  • 62. Minagawa T, Ijuin T, Mochizuki Y, Takenawa T (2001) Identification and characterization of a sac domain-containing phosphoinositide 5-phosphatase. J Biol Chem 276:22011-22015

    Google Scholar 

  • 63. Miura S, Takeshita T, Asao H, Kimura Y, Murata K, Sasaki Y, Hanai JI, Beppu H, Tsukazaki T, Wrana JL, Miyazono K, Sugamura K (2000) Hgs (Hrs), a FYVE domain protein, is involved in Smad signaling through cooperation with SARA. Mol Cell Biol 20:9346-9355

    Article  CAS  PubMed  Google Scholar 

  • 64. Mochizuki Y, Takenawa T (1999) Novel inositol polyphosphate 5-phosphatase localizes at membrane ruffles. J Biol Chem 274:36790-36795

    Google Scholar 

  • 65. Mora S, Durham PL, Smith JR, Russo AF, Jeromin A, Pessin JE (2002) NCS-1 inhibits insulin-stimulated GLUT4 translocation in 3T3L1 adipocytes through a phosphatidylinositol 4-kinase-dependent pathway. J Biol Chem 277:27494-27500

    Google Scholar 

  • 66. Moritz A, De Graan PN, Gispen WH, Wirtz KW (1992) Phosphatidic acid is a specific activator of phosphatidylinositol-4-phosphate kinase. J Biol Chem 267:7207-7210

    Google Scholar 

  • 67. Naga Prasad SV, Laporte SA, Chamberlain D, Caron MG, Barak L, Rockman HA (2002) Phosphoinositide 3-kinase regulates beta2-adrenergic receptor endocytosis by AP-2 recruitment to the receptor/beta-arrestin complex. J Cell Biol 158:563-575

    Article  PubMed  Google Scholar 

  • 68. Nandurkar HH, Layton M, Laporte J, Selan C, Corcoran L, Caldwell KK, Mochizuki Y, Majerus PW, Mitchell CA (2003) Identification of myotubularin as the lipid phosphatase catalytic subunit associated with the 3-phosphatase adapter protein, 3-PAP. Proc Natl Acad Sci USA 100:8660-8665

    Google Scholar 

  • 69. Nielsen E, Christoforidis S, Uttenweiler-Joseph S, Miaczynska M, Dewitte F, Wilm M, Hoflack B, Zerial M (2000) Rabenosyn-5, a novel Rab5 effector, is complexed with hVPS45 and recruited to endosomes through a FYVE finger domain. J Cell Biol 151:601-612

    Article  CAS  PubMed  Google Scholar 

  • 70. Odorizzi G, Babst M, Emr SD (1998) Fab1p PtdIns(3)P 5-kinase function essential for protein sorting in the multivesicular body. Cell 95:847-858

    Article  CAS  PubMed  Google Scholar 

  • 71. Ono F, Nakagawa T, Saito S, Owada Y, Sakagami H, Goto K, Suzuki M, Matsuno S, Kondo H (1998) A novel class II phosphoinositide 3-kinase predominantly expressed in the liver and its enhanced expression during liver regeneration. J Biol Chem 273:7731-7736

    Google Scholar 

  • 72. Pike LJ (1992) Phosphatidylinositol 4-kinases and the role of polyphosphoinositides in cellular regulation. Endocr Rev 13:692-706

    Article  CAS  PubMed  Google Scholar 

  • 73. Rajebhosale M, Greenwood S, Vidugiriene J, Jeromin A, Hilfiker S (2003) Phosphatidylinositol 4-OH kinase is a downstream target of neuronal calcium sensor-1 in enhancing exocytosis in neuroendocrine cells. J Biol Chem 278:6075-6084

    Google Scholar 

  • 74. Rameh LE, Tolias KF, Duckworth BC, Cantley LC (1997) A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate. Nature 390:192-196

    Article  CAS  PubMed  Google Scholar 

  • 75. Rohde HM, Cheong FY, Konrad G, Paiha K, Mayinger P, Boehmelt G (2003) The human phosphatidylinositol phosphatase SAC1 interacts with the coatomer I complex. J Biol Chem 278:52689-52699

    Google Scholar 

  • 76. Rozelle AL, Machesky LM, Yamamoto M, Driessens MH, Insall RH, Roth MG, Luby-Phelps K, Marriott G, Hall A, Yin HL (2000) Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP-Arp2/3. Curr Biol 10:311-320

    Article  CAS  PubMed  Google Scholar 

  • 77. Sarnat HB (1990) Myotubular myopathy: arrest of morphogenesis of myofibres associated with persistence of fetal vimentin and desmin. Four cases compared with fetal and neonatal muscle. Can J Neurol Sci 17:109-123

    CAS  PubMed  Google Scholar 

  • 78. Sbrissa D, Ikonomov OC, Shisheva A (1999) PIKfyve, a mammalian ortholog of yeast Fab1p lipid kinase, synthesizes 5-phosphoinositides. Effect of insulin. J Biol Chem 274:21589-21597

    Google Scholar 

  • 79. Sbrissa D, Ikonomov OC, Deeb R, Shisheva A (2002) Phosphatidylinositol 5-phosphate biosynthesis is linked to PIKfyve and is involved in osmotic response pathway in mammalian cells. J Biol Chem 277:47276-47284

    Google Scholar 

  • 80. Siddhanta A, Backer JM, Shields D (2000) Inhibition of phosphatidic acid synthesis alters the structure of the Golgi apparatus and inhibits secretion in endocrine cells. J Biol Chem 275:12023-12031

    Google Scholar 

  • 81. Siddhanta A, Radulescu A, Stankewich MC, Morrow JS, Shields D (2003) Fragmentation of the Golgi apparatus. A role for beta III spectrin and synthesis of phosphatidylinositol 4,5-bisphosphate. J Biol Chem 278:1957-1965

    Google Scholar 

  • 82. Simonsen A, Lippe R, Christoforidis S, Gaullier JM, Brech A, Callaghan J, Toh BH, Murphy C, Zerial M, Stenmark H (1998) EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature 394:494-498

    Article  CAS  PubMed  Google Scholar 

  • 83. Stack JH, DeWald DB, Takegawa K, Emr SD (1995) Vesicle-mediated protein transport: regulatory interactions between the Vps15 protein kinase and the Vps34 PtdIns 3-kinase essential for protein sorting to the vacuole in yeast. J Cell Biol 129:321-334

    Article  CAS  PubMed  Google Scholar 

  • 84. Stamnes M (2002) Regulating the actin cytoskeleton during vesicular transport. Curr Opin Cell Biol 14:428-433

    Article  CAS  PubMed  Google Scholar 

  • 85. Suchy SF, Nussbaum RL (2002) The deficiency of PIP2 5-phosphatase in Lowe syndrome affects actin polymerization. Am J Hum Genet 71:1420-1427

    Article  CAS  PubMed  Google Scholar 

  • 86. Sulis ML, Parsons R (2003) PTEN: from pathology to biology. Trends Cell Biol 13:478-483

    Article  CAS  PubMed  Google Scholar 

  • 87. Sweeney DA, Siddhanta A, Shields D (2002) Fragmentation and re-assembly of the Golgi apparatus in vitro. A requirement for phosphatidic acid and phosphatidylinositol 4,5-bisphosphate synthesis. J Biol Chem 277:3030-3039

    Google Scholar 

  • 88. Takegawa K, DeWald DB, Emr SD (1995) Schizosaccharomyces pombe Vps34p, a phosphatidylinositol-specific PI 3-kinase essential for normal cell growth and vacuole morphology. J Cell Sci 108:3745-3756

    CAS  PubMed  Google Scholar 

  • 89. Tolias KF, Cantley LC, Carpenter CL (1995) Rho family GTPases bind to phosphoinositide kinases. J Biol Chem 270:17656-17659

    Article  CAS  PubMed  Google Scholar 

  • 90. Tolias KF, Rameh LE, Ishihara H, Shibasaki Y, Chen J, Prestwich GD, Cantley LC, Carpenter CL (1998) Type I phosphatidylinositol-4-phosphate 5-kinases synthesize the novel lipids phosphatidylinositol 3,5-bisphosphate and phosphatidylinositol 5-phosphate. J Biol Chem 273:18040-18046

    Article  CAS  PubMed  Google Scholar 

  • 91. Tolias K, Carpenter CL (2000) In vitro interaction of phosphoinositide-4-phosphate 5-kinases with Rac. Methods Enzymol 325:190-200

    CAS  PubMed  Google Scholar 

  • 92. Trotter PJ, Wu WI, Pedretti J, Yates R, Voelker DR (1998) A genetic screen for aminophospholipid transport mutants identifies the phosphatidylinositol 4-kinase, Stt4p, as an essential component in phosphatidylserine metabolism. J Biol Chem 273:13189-13196

    Article  CAS  PubMed  Google Scholar 

  • 93. Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL (1998) SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell 95:779-791

    Article  CAS  PubMed  Google Scholar 

  • 94. Walch-Solimena C, Novick P (1999) The yeast phosphatidylinositol-4-OH kinase pik1 regulates secretion at the Golgi. Nat Cell Biol 1:523-525

    Google Scholar 

  • 95. Walker SM, Downes CP, Leslie NR (2001) TPIP: a novel phosphoinositide 3-phosphatase. Biochem J 360:277-283

    Article  CAS  PubMed  Google Scholar 

  • 96. Wang YJ, Wang J, Sun HQ, Martinez M, Sun YX, Macia E, Kirchhausen T, Albanesi JP, Roth MG, Yin HL (2003) Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi. Cell 114:299-310

    Article  CAS  PubMed  Google Scholar 

  • 97. Wei YJ, Sun HQ, Yamamoto M, Wlodarski P, Kunii K, Martinez M, Barylko B, Albanesi JP, Yin HL (2002) Type II phosphatidylinositol 4-kinase beta is a cytosolic and peripheral membrane protein that is recruited to the plasma membrane and activated by Rac-GTP. J Biol Chem 277:46586-46593

    Article  CAS  PubMed  Google Scholar 

  • 98. Weisz OA, Gibson GA, Leung SM, Roder J, Jeromin A (2000) Overexpression of frequenin, a modulator of phosphatidylinositol 4-kinase, inhibits biosynthetic delivery of an apical protein in polarized madin-darby canine kidney cells. J Biol Chem 275:24341-24347

    Article  CAS  PubMed  Google Scholar 

  • 99. Whitters EA, Cleves AE, McGee TP, Skinner HB, Bankaitis VA (1993) SAC1p is an integral membrane protein that influences the cellular requirement for phospholipid transfer protein function and inositol in yeast. J Cell Biol 122:79-94

    Article  CAS  PubMed  Google Scholar 

  • 100. Wishart MJ, Taylor GS, Slama JT, Dixon JE (2001) PTEN and myotubularin phosphoinositide phosphatases: bringing bioinformatics to the lab bench. Curr Opin Cell Biol 13:172-181

    Article  CAS  PubMed  Google Scholar 

  • 101. Wishart MJ, Dixon JE (2002) PTEN and myotubularin phosphatases: from 3-phosphoinositide dephosphorylation to disease. Trends Cell Biol 12:579-585

    Article  CAS  PubMed  Google Scholar 

  • 102. Wong K, Cantley LC (1994) Cloning and characterization of a human phosphatidylinositol 4-kinase. J Biol Chem 269:28878-28884

    CAS  PubMed  Google Scholar 

  • 103. Wong K, Meyers dd R, Cantley LC (1997) Subcellular locations of phosphatidylinositol 4-kinase isoforms. J Biol Chem 272:13236-13241

    Article  CAS  PubMed  Google Scholar 

  • 104. Woscholski R, Parker PJ (1997) Inositol lipid 5-phosphatases–traffic signals and signal traffic. Trends Biochem Sci 22:427-31

    Article  CAS  PubMed  Google Scholar 

  • 105. Yoshida S, Ohya Y, Goebl M, Nakano A, Anraku Y (1994) A novel gene, STT4, encodes a phosphatidylinositol 4-kinase in the PKC1 protein kinase pathway of Saccharomyces cerevisiae. J Biol Chem 269, 1166-1172

    Google Scholar 

  • 106. Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2:107-117

    Article  CAS  PubMed  Google Scholar 

  • 107. Zhang X, Hartz PA, Philip E, Racusen LC, Majerus PW (1998) Cell lines from kidney proximal tubules of a patient with Lowe syndrome lack OCRL inositol polyphosphate 5-phosphatase and accumulate phosphatidylinositol 4,5-bisphosphate. J Biol Chem 273:1574-1582

    Article  CAS  PubMed  Google Scholar 

  • 108. Zhao X, Varnai P, Tuymetova G, Balla A, Toth ZE, Oker-Blom C, Roder J, Jeromin A, Balla T (2001) Interaction of neuronal calcium sensor-1 (NCS-1) with phosphatidylinositol 4-kinase beta stimulates lipid kinase activity and affects membrane trafficking in COS-7 cells. J Biol Chem 276:40183-40189

    CAS  PubMed  Google Scholar 

  • 109. Zhou XP, Waite KA, Pilarski R, Hampel H, Fernandez MJ, Bos C, Dasouki M, Feldman GL, Greenberg LA, Ivanovich J, Matloff E, Patterson A, Pierpont ME, Russo D, Nassif NT, Eng C (2003) Germline PTEN promoter mutations and deletions in Cowden/Bannayan-Riley-Ruvalcaba syndrome result in aberrant PTEN protein and dysregulation of the phosphoinositol-3-kinase/Akt pathway. Am J Hum Genet 73:404-411

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Godi .

Editor information

Sirkka Keränen Jussi Jäntti

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Godi, A., Di Campli, A., De Matteis, M.A. Phosphoinositides and membrane traffic in health and disease. In: Keränen, S., Jäntti, J. (eds) Regulatory Mechanisms of Intracellular Membrane Transport. Topics in Current Genetics, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b98497

Download citation

  • DOI: https://doi.org/10.1007/b98497

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22302-3

  • Online ISBN: 978-3-540-44476-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics