Skip to main content

Tethering proteins in membrane traffic

  • Chapter
  • First Online:
Regulatory Mechanisms of Intracellular Membrane Transport

Part of the book series: Topics in Current Genetics ((TCG,volume 10))

Abstract

In eukaryotic cells, protein secretion and the transport of materials between membrane-bounded organelles require efficient and accurate delivery of carrier vesicles to their correct destination. Recent studies have revealed a large number of evolutionarily conserved proteins that may function in tethering vesicles to their target membrane in preparation for subsequent docking and fusion. Here, we review the proteins and protein complexes implicated in membrane tethering at various traffic stages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Aalto MK, Ronne H, Keranen S (1993) Yeast syntaxins Sso1p and Sso2p belong to a family of related membrane proteins that function in vesicular transport. EMBO J 12:4095-4104

    CAS  PubMed  Google Scholar 

  • 2. Adamo JE, Rossi G, Brennwald P (1999) The Rho GTPase Rho3 has a direct role in exocytosis that is distinct from its role in actin polarity. Mol Biol Cell 10:4121-4133

    CAS  PubMed  Google Scholar 

  • 3. Allan BB, Moyer BD, Balch WE (2000) Rab1 recruitment of p115 into a cis-SNARE complex: programming budding COPII vesicles for fusion. Science 289:444-448

    CAS  PubMed  Google Scholar 

  • 4. Aniento F, Gu F, Parton RG, Gruenberg J (1996) An endosomal beta COP is involved in the pH-dependent formation of transport vesicles destined for late endosomes. J Cell Biol 133:29-41

    Article  CAS  PubMed  Google Scholar 

  • 5. Bacon RA, Salminen A, Ruohola H, Novick P, Ferro-Novick S (1989) The GTP-binding protein Ypt1 is required for transport in vitro: the Golgi apparatus is defective in ypt1 mutants. J Cell Biol 109:1015-1022

    Article  CAS  PubMed  Google Scholar 

  • 6. Barlowe C, Orci L, Yeung T, Hosobuchi M, Hamamoto S, Salama N, Rexach MF, Ravazzola M, Amherdt M, Schekman R (1994) COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77:895-907

    Article  CAS  PubMed  Google Scholar 

  • 7. Barr FA, Puype M, Vandekerckhove J, Warren G (1997) GRASP65, a protein involved in the stacking of Golgi cisternae. Cell 91:253-262

    CAS  PubMed  Google Scholar 

  • 8. Barroso M, Nelson DS, Sztul E (1995) Transcytosis-associated protein (TAP)/p115 is a general fusion factor required for binding of vesicles to acceptor membranes. Proc Natl Acad Sci USA 92:527-531

    Google Scholar 

  • 9. Barrowman J, Sacher M, Ferro-Novick S (2000) TRAPP stable associates with the Golgi and is required for vesicle docking. EMBO J 19:862–869

    Article  CAS  PubMed  Google Scholar 

  • 10. Becherer KA, Rieder SE, Emr SD, Jones EW (1996) Novel syntaxin homologue, Pep12p, required for the sorting of lumenal hydrolases to the lysosome-like vacuole in yeast. Mol Biol Cell 7:579-594

    CAS  PubMed  Google Scholar 

  • 11. Brennwald P, Novick P (1993) Interactions of three domains distinguishing the Ras-related GTP-binding proteins Ypt1 and Sec4. Nature 362:560-563

    Article  CAS  PubMed  Google Scholar 

  • 12. Brennwald P, Kearns B, Champion K, Keranen S, Bankaitis V, Novick P (1994) Sec9 is a SNAP-25-like component of a yeast SNARE complex that may be the effector of Sec4 function in exocytosis. Cell 79:245-258

    CAS  PubMed  Google Scholar 

  • 13. Bowser R, Novick P (1991) Sec15 protein, an essential component of the exocytotic apparatus, is associated with the plasma membrane and with a soluble 19.5S particle. J Cell Biol 6:1117-1131

    Google Scholar 

  • 14. Burd CG, Peterson M, Cowles CR, Emr SD (1997) A novel Sec18p/NSF-dependent complex required for Golgi-to-endosome transport in yeast. Mol Biol Cell 8:1089-1104

    CAS  PubMed  Google Scholar 

  • 15. Cao X, Ballew N, Barlowe C (1998) Initial docking of ER-derived vesicles requires Uso1p and Ypt1p but is independent of SNARE proteins. EMBO J 17:2156-2165

    CAS  PubMed  Google Scholar 

  • 16. Conibear E, Stevens TH (2000) Vps52p, Vps53p, and Vps54p form a novel multisubunit complex required for protein sorting at the yeast late Golgi. Mol Biol Cell 11:305-323

    CAS  PubMed  Google Scholar 

  • 17. Christoforidis S, McBride HM, Burgoyne RD, Zerial M (1999a) The Rab5 effector EEA1 is a core component of endosome docking. Nature 397:621-625

    Article  CAS  PubMed  Google Scholar 

  • 18. Christoforidis S, Miaczynska M, Ashman K, Wilm M, Zhao L, Yip SC, Waterfield MD, Backer JM, Zerial M (1999b) Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nat Cell Biol 1:249-252

    Google Scholar 

  • 19. Conibear E, Cleck JN, Stevens TH (2003) Vps51p mediates the association of the GARP (Vps52/52/54) complex with the late Golgi t-SNARE Tlg1p. Mol Biol Cell 14:1610-1623

    Article  CAS  PubMed  Google Scholar 

  • 20. Cosulich SC, Horiuchi H, Zerial M, Clarke PR, Woodman PG (1997) Cleavage of rabaptin-5 blocks endosome fusion during apoptosis. EMBO J 16:6182-6191

    CAS  PubMed  Google Scholar 

  • 21. Daro E, Sheff D, Gomez M, Kreis T, Mellman I (1997) Inhibition of endosome function in CHO cells bearing a temperature-sensitive defect in the coatomer (COPI) component epsilon-COP. J Cell Biol 139:1747-1759

    Article  CAS  PubMed  Google Scholar 

  • 22. Darsow T, Rieder SE, Emr SD (1997) A multispecificity syntaxin homologue, Vam3p, essential for autophagic and biosynthetic protein transport to the vacuole. J Cell Biol 138:517-529

    CAS  PubMed  Google Scholar 

  • 23. de Renzis S, Sonnichsen B, Zerial M (2002) Divalent Rab effectors regulate the sub-compartmental organization and sorting of early endosomes. Nat Cell Biol 4:124-133

    Google Scholar 

  • 24. Dumas JJ, Merithew E, Sudharshan E, Rajamani D, Hayes S, Lawe D, Corvera S, Lambright DG (2001) Multivalent endosome targeting by homodimeric EEA1. Mol Cell 8:947-958

    Article  CAS  PubMed  Google Scholar 

  • 25. Dunn B, Stearns T, Botstein D (1993) Specificity domains distinguish the Ras-related GTPases Ypt1 and Sec4. Nature 362:563-565

    Article  CAS  PubMed  Google Scholar 

  • 26. Echard A, Jollivet F, Martinez O, Lacapere JJ, Rousselet A, Janoueix-Lerosey I, Goud B (1998) Interaction of a Golgi-associated kinesin-like protein with Rab6. Science 279:580-585

    Article  CAS  PubMed  Google Scholar 

  • 27. Eitzen G, Thorngren N, Wickner W (2001) Rho1p and Cdc42p act after Ypt7p to regulate vacuole docking. EMBO J 20:5650-5656

    Article  CAS  PubMed  Google Scholar 

  • 28. Eitzen G, Wang L, Thorngren N, Wickner W (2002) Remodeling of organelle-bound actin is required for yeast vacuole fusion. J Cell Biol 158(4):669-679

    Article  CAS  PubMed  Google Scholar 

  • 29. Fasshauer D, Antonin W, Margittai M, Pabst S, Jahn R (1999) Mixed and non-cognate SNARE complexes. Characterization of assembly and biophysical properties. J Biol Chem 274:15440-15446

    Google Scholar 

  • 30. Fischer von Mollard G, Stevens TH (1999) The Saccharomyces cerevisiae v-SNARE Vti1p is required for multiple membrane transport pathways to the vacuole. Mol Biol Cell 10:1719-1732

    PubMed  Google Scholar 

  • 31. Fukuda R, McNew JA, Weber T, Parlati F, Engel T, Nickel W, Rothman JE, Sollner TH (2000) Functional architecture of an intracellular membrane t-SNARE. Nature 407:198-202

    Article  CAS  PubMed  Google Scholar 

  • 32. Gasman S, Kalaidzidis Y, Zerial M (2003) RhoD regulates endosome dynamics through Diaphanous-related Formin and Src tyrosine kinase. Nat Cell Biol 5:195-204

    Google Scholar 

  • 33. Gillingham AK, Munro S (2003) Long coiled-coil proteins and membrane traffic. Biochim Biophys Acta 1641:71-85 Review

    Article  CAS  PubMed  Google Scholar 

  • 34. Grote E, Carr CM, Novick PJ (2000) Ordering the final events in yeast exocytosis. J Cell Biol 151:439-452

    CAS  PubMed  Google Scholar 

  • 35. Gotte M, von Mollard GF (1998) A new beat for the SNARE drum. Trends Cell Biol 8:215-218 Review

    CAS  PubMed  Google Scholar 

  • 36. Govindan B, Bowser R, Novick P (1995) The role of Myo2, a yeast class V myosin, in vesicular transport. J Cell Biol 128:1055-1068

    Article  CAS  PubMed  Google Scholar 

  • 37. Guo W, Sacher M, Barrowman J, Ferro-Novick S, Novick P (2000) Protein complexes in transport vesicle targeting. Trends Cell Biol 10:251-255 Review

    Article  CAS  PubMed  Google Scholar 

  • 38. Guo W, Roth D, Walch-Solimena C, Novick P (1999) The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. EMBO J 18:1071-1080

    Article  CAS  PubMed  Google Scholar 

  • 39. Guo W, Grant A, Novick P (1999) Exo84p is an exocyst protein essential for secretion. J Biol Chem 274:23558-23564

    Google Scholar 

  • 40. Guo W, Tamanoi F, Novick P (2001) Spatial regulation of the exocyst complex by Rho1 GTPase. Nat Cell Biol 3:353-360

    Google Scholar 

  • 41. Guo W, Novick P (2004) The exocyst meets the translocon: a regulatory circuit for secretion and protein synthesis? Trend Cell Biol 14:61-63

    Article  CAS  Google Scholar 

  • 42. Holthuis JC, Nichols BJ, Dhruvakumar S, Pelham HR (1998) Two syntaxin homologues in the TGN/endosomal system of yeast. EMBO J 17:113-126

    Article  CAS  PubMed  Google Scholar 

  • 43. Horiuchi H, Lippe R, McBride HM, Rubino M, Woodman P, Stenmark H, Rybin V, Wilm M, Ashman K, Mann M, Zerial M (1997) A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5 links nucleotide exchange to effector recruitment and function. Cell 90:1149-1159

    Article  CAS  PubMed  Google Scholar 

  • 44. Hsu SC, TerBush D, Abraham M, Guo W (2004) The exocyst complex in polarized exocytosis. Int Rev Cytol 233:243-265

    CAS  PubMed  Google Scholar 

  • 45. Hu C, Ahmed M, Melia TJ, Sollner TH, Mayer T, Rothman JE (2003) Fusion of cells by flipped SNAREs. Science 300:1745-1749

    Article  CAS  PubMed  Google Scholar 

  • 46. Jahn R, Lang T, Sudhof TC (2003) Membrane fusion. Cell 112:519-533 Review

    Article  CAS  PubMed  Google Scholar 

  • 47. Jedd G, Richardson C, Litt R, Segev N (1995) The Ypt1 GTPase is essential for the first two steps of the yeast secretory pathway. J Cell Biol 131:583-590

    Article  CAS  PubMed  Google Scholar 

  • 48. Jones S, Newman C, Liu F, Segev N (2000) The TRAPP complex is a nucleotide exchanger for Ypt1 and Ypt31/32. Mol Biol Cell 11:4403-4411

    CAS  PubMed  Google Scholar 

  • 49. Karpova TS, Reck-Peterson SL, Elkind NB, Mooseker MS, Novick PJ, Cooper JA (2000) Role of actin and Myo2p in polarized secretion and growth of Saccharomyces cerevisiae. Mol Biol Cell 11:1727-1737

    CAS  PubMed  Google Scholar 

  • 50. Lawe DC, Chawla A, Merithew E, Dumas J, Carrington W, Fogarty K, Lifshitz L, Tuft R, Lambright D, Corvera S (2002) Sequential roles for phosphatidylinositol 3-phosphate and Rab5 in tethering and fusion of early endosomes via their interaction with EEA1. J Biol Chem 277:8611-8617

    Google Scholar 

  • 51. Lazar T, Gotte M, Gallwitz D (1997) Vesicular transport: how many Ypt/Rab-GTPases make a eukaryotic cell? Trends Biochem Sci 22:468-472 Review

    Article  CAS  PubMed  Google Scholar 

  • 52. Levine TP, Rabouille C, Kieckbusch RH, Warren G (1996) Binding of the vesicle docking protein p115 to Golgi membranes is inhibited under mitotic conditions. J Biol Chem 271:17304-17311

    Google Scholar 

  • 53. Lewis MF, Nichols BJ, Prescianotto-Baschong C, Riezman H, Pelham HR (2000) Specific retrieval of the exocytic SNARE Snc1p from early yeast endosomes. Mol Biol Cell 11:23-38

    CAS  PubMed  Google Scholar 

  • 54. Linstedt AD, HP Hauri (1993) Giantin, a novel conserved Golgi membrane protein containing a cytoplasmic domain of at least 350 kDa. Mol Biol Cell 4:679-693

    CAS  PubMed  Google Scholar 

  • 55. Linstedt AD, Jesch SA, Mehta A, Lee TH, Garcia-Mata R, Nelson DS, Sztul E (2000) Binding relationships of membrane tethering components. The giantin N terminus and the GM130 N terminus compete for binding to the p115 C terminus. J Biol Chem 14:10196-10201

    Google Scholar 

  • 56. Lupashin VV, Pokrovskaya ID, McNew JA, Waters MG (1997) Characterization of a novel yeast SNARE protein implicated in Golgi retrograde traffic. Mol Biol Cell 8:2659-2676

    CAS  PubMed  Google Scholar 

  • 57. Lipschutz JH, Lingappa VR, Mostov KE (2003) The exocyst affects protein synthesis by acting on the translocation machinery of the endoplasmic reticulum. J Biol Chem 278:20954-20960

    Google Scholar 

  • 58. Lipschutz JH, Mostov KE (2002) Exocytosis: the many masters of the exocyst. Curr Biol 12:R212-R214 Review

    Article  CAS  PubMed  Google Scholar 

  • 59. Lipschutz JH, Guo W, O’Brien LE, Nguyen YH, Novick P, Mostov KE (2000) Exocyst is involved in cystogenesis and tubulogenesis and acts by modulating synthesis and delivery of basolateral plasma membrane and secretory proteins. Mol Biol Cell 11:4259-4275

    CAS  PubMed  Google Scholar 

  • 60. Lowe M (2000) Membrane transport: Tethers and TRAPPs. Curr Biol 10:R407-R409

    CAS  PubMed  Google Scholar 

  • 61. Lowe M, Rabouille C, Nakamura N, Watson R, Jackman M, Jamsa E, Rahman D, Pappin DJ, Warren G (1998) Cdc2 kinase directly phosphorylates the cis-Golgi matrix protein GM130 and is required for Golgi fragmentation in mitosis. Cell 94:783-793

    Article  CAS  PubMed  Google Scholar 

  • 62. McBride HM, Rybin V, Murphy C, Giner A, Teasdale R, Zerial M (1999) Oligomeric complexes link Rab5 effectors with NSF and drive membrane fusion via interactions between EEA1 and syntaxin 13. Cell 98:377-386

    Article  CAS  PubMed  Google Scholar 

  • 63. McNew JA, Parlati F, Fukuda R, Johnston RJ, Paz K, Paumet F, Sollner TH, Rothman JE (2000) Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 407:153-159

    CAS  PubMed  Google Scholar 

  • 64. Misteli T, Warren G (1994) COP-coated vesicles are involved in the mitotic fragmentation of Golgi stacks in a cell-free system. J Cell Biol 125:269-282Morsommne P, Riezman H (2002) The Rab GTPase Ypt1p and tethering factors couple protein sorting at the ER to vesicle targeting to the Golgi apparatus. Dev Cell 2:307-317Moyer BD, Allan BB, Balch WE (2001) Rab1 interaction with a GM130 effector complex regulates COPII vesicle cis–Golgi tethering. Traffic 2:268-276

    Google Scholar 

  • 65. Mu FT, Callaghan JM, Steele-Mortimer O, Stenmark H, Parton RG, Campbell PL, McCluskey J, Yeo JP, Tock EP, Toh BH (1995) EEA1, an early endosome-associated protein. EEA1 is a conserved alpha-helical peripheral membrane protein flanked by cysteine ”fingers” and contains a calmodulin-binding IQ motif. J Biol Chem 270:13503-13511

    Article  CAS  PubMed  Google Scholar 

  • 66. Muller O, Johnson DI, Mayer A (2001) Cdc42p functions at the docking stage of yeast vacuole membrane fusion. EMBO J 20:5657-5665

    CAS  PubMed  Google Scholar 

  • 67. Munson M, Chen X, Cocina AE, Schultz SM, Hughson FM (2000) Interactions within the yeast t-SNARE Sso1p that control SNARE complex assembly. Nat Struct Biol 7:894-902

    Google Scholar 

  • 68. Nakajima H, Hirata A, Ogawa Y, Yonehara T, Yoda K, Yamasaki MA (1991) Cytoskeleton-related gene, uso1, is required for intracellular protein transport in Saccharomyces cerevisiae. J Cell Biol 113:245-260

    Article  CAS  PubMed  Google Scholar 

  • 69. Nakamura N, C Rabouille, R Watson, Nilsson T, Hui P, Slusarewicz N, Kreis TE, Warren G (1995) Characterization of a cis-Golgi matrix protein, GM130. J Cell Biol 131:1715-1726

    Article  CAS  PubMed  Google Scholar 

  • 70. Nakamura N, Lowe M, Levine TP, Rabouille C, Warren G (1997) The vesicle docking protein p115 binds GM130, a cis-Golgi matrix protein, in a mitotically regulated manner. Cell 89:445-455

    Article  CAS  PubMed  Google Scholar 

  • 71. Nelson DS, Alvarez C, Gao YS, Garcia-Mata R, Fialkowski E, Sztul E (1998) The membrane transport factor TAP/p115 cycles between the Golgi and earlier secretory compartments and contains distinct domains required for its localization and function. J Cell Biol 143:319-331

    Article  CAS  PubMed  Google Scholar 

  • 72. Nicholson KL, Munson M, Miller RB, Filip TJ, Fairman R, Hughson FM (1998) Regulation of SNARE complex assembly by an N-terminal domain of the t-SNARE Sso1p. Nat Struct Biol 5:793-802

    Google Scholar 

  • 73. Nielsen E, Christoforidis S, Uttenweiler-Joseph S, Miaczynska M, Dewitte F, Wilm M, Hoflack B, Zerial M (2000) Rabenosyn-5, a novel Rab5 effector, is complexed with hVPS45 and recruited to endosomes through a FYVE finger domain. J Cell Biol 151:601-612

    Article  CAS  PubMed  Google Scholar 

  • 74. Novick P, Guo W (2002) Ras family therapy: Rab, Rho and Ral talk to the exocyst. Trends Cell Biol 12:247-249

    Article  CAS  PubMed  Google Scholar 

  • 75. Novick P, Zerial M (1997) The diversity of Rab proteins in vesicle transport. (1997) Curr Opin Cell Biol 9:496-504 Review

    Article  CAS  PubMed  Google Scholar 

  • 76. Orci L, Perrelet A, Rothman JE (1998) Vesicles on strings: morphological evidence for processive transport within the Golgi stack. Proc Natl Acad Sci USA 95:2279-2283

    Google Scholar 

  • 77. Pelham HR (2001) SNAREs and the specificity of membrane fusion. Trends Cell Biol 11:99-101 Review

    Article  CAS  PubMed  Google Scholar 

  • 78. Parlati F, Weber T, McNew JA, Westermann B, Sollner TH, Rothman JE (1999) Rapid and efficient fusion of phospholipids vesicles by the alpha-helical core of a SNARE complex in the absence of an N-terminal regulatory domain. Proc Natl Acad Sci USA 96:12565-12570

    Google Scholar 

  • 79. Peterson MR, Burd CG, Emr SD (1999) Vac1p coordinates Rab and phosphatidylinositol 3-kinase signaling in Vps45p-dependent vesicle docking/fusion at the endosome. Curr Biol 9:159-162

    Article  CAS  PubMed  Google Scholar 

  • 80. Peterson MR, Emr SD (2001) The class C Vps complex functions at multiple stages of the vacuolar transport pathway. Traffic 2:476-486

    Article  CAS  PubMed  Google Scholar 

  • 81. Pfeffer SR (1999) Transport-vesicle targeting: tethers before SNAREs. Nat Cell Biol 1:E17-E22 Review

    Google Scholar 

  • 82. Pfeffer S (2003) Membrane domains in the secretory and endocytic pathways. Cell 112:507-517 Review

    Article  CAS  PubMed  Google Scholar 

  • 83. Price A, Seals D, Wickner W, Ungermann C (2000) The docking stage of yeast vacuole fusion requires the transfer of proteins from a cis-SNARE complex to a Rab/Ypt protein. J Cell Biol 148:1231-1238

    Article  CAS  PubMed  Google Scholar 

  • 84. Price A, Wickner W, Ungermann C (2000) Proteins needed for vesicle budding from the Golgi complex are also required for the docking step of homotypic vacuole fusion. J Cell Biol 148:1223-1229

    Article  CAS  PubMed  Google Scholar 

  • 85. Prigent M, Dubois T, Raposo G, Derrien V, Tenza D, Rosse C, Camonis J, Chavrier P (2003) ARF6 controls post-endocytic recycling through its downstream exocyst complex effector. J Cell Biol 163:1111-1121

    Article  CAS  PubMed  Google Scholar 

  • 86. Pruyne DW, Schott DH, Bretscher A (1998) Tropomyosin-containing actin cables direct the Myo2p-dependent polarized delivery of secretory vesicles in budding yeast. J Cell Biol 143:1931-1945

    Article  CAS  PubMed  Google Scholar 

  • 87. Ram RJ, Li B, Kaiser CA (2002) Identification of Sec36p, Sec37p, and Sec38p: components of yeast complex that contains Sec34p and Sec35p. Mol Biol Cell 13:1484-1500

    Article  CAS  PubMed  Google Scholar 

  • 88. Raymond CK, Howald-Stevenson I, Vater CA, Stevens TH (1992) Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Mol Biol Cell 3:1389-1402

    CAS  PubMed  Google Scholar 

  • 89. Rieder SE, Emr SD (1997) A novel RING finger protein complex essential for a late step in protein transport to the yeast vacuole. Mol Biol Cell 8:2307-2327

    CAS  PubMed  Google Scholar 

  • 90. Robinson NG, Guo L, Imai J, Toh-E A, Matsui Y, Tamanoi F (1999) Rho3 of Saccharomyces cerevisiae, which regulates the actin cytoskeleton and exocytosis, is a GTPase, which interacts with Myo2 and Exo70. Mol Cell Biol 19:3580-3587

    CAS  PubMed  Google Scholar 

  • 91. Rothman JE (1994) Mechanisms of intracellular protein transport. Nature 372:55-63 Review

    Article  CAS  PubMed  Google Scholar 

  • 92. Rubino M, Miaczynska M, Lippe R, Zerial M (2000) Selective membrane recruitment of EEA1 suggests a role in directional transport of clathrin-coated vesicles to early endosomes. J Biol Chem 275:3745-3748

    Google Scholar 

  • 93. Rossi G, Kolstad K, Stone S, Palluault F, Ferro-Novick S (1995) BET3 encodes a novel hydrophilic protein that acts in conjunction with yeast SNAREs. Mol Biol Cell 6:1769–1780

    CAS  PubMed  Google Scholar 

  • 94. Sacher M, Jiang Y, Barrowman J, Scarpa A, Burston J, Zhang L, Schieltz D, Yates JR 3rd, Abeliovich H, Ferro-Novick S (1998) TRAPP, a highly conserved novel complex on the cis-Golgi that mediates vesicle docking and fusion. EMBO J 17:2494–2503

    Article  CAS  PubMed  Google Scholar 

  • 95. Sacher M, Barrowman J, Schieltz D, Yates JR 3rd, Ferro-Novick S (2000) Identification, of five new subunits of TRAPP. Eur J Cell Biol 79:71–80

    CAS  PubMed  Google Scholar 

  • 96. Sacher M, Barrowman J, Wang W, Horecka J, Zhang Y, Pypaert M, Ferro-Novick S (2001) TRAPP I implicated in the specificity of tethering in ER-to-Golgi transport. Mol Cell 7:433-442

    Article  CAS  PubMed  Google Scholar 

  • 97. Sapperstein SK, Walter DM, Grosvenor AR, Heuser JE, Waters MG (1995) p115 is a general vesicular transport factor related to the yeast endoplasmic reticulum to Golgi transport factor Uso1p. Proc Natl Acad Sci USA 92:522-526

    Google Scholar 

  • 98. Sapperstein SK, Lupashin VV, Schmitt HD, Waters MG (1996) Assembly of the ER to Golgi SNARE complex requires Uso1p. J Cell Biol 132:755-567

    Article  CAS  PubMed  Google Scholar 

  • 99. Sato TK, Rehling P, Peterson MR, Emr SD (2000) Class C Vps protein complex regulates vacuolar SNARE pairing and is required for vesicle docking/fusion. Mol Cell 6:661-671

    Article  CAS  PubMed  Google Scholar 

  • 100. Schimmoller F, Simon I, Pfeffer SR (1998) Rab GTPases, directors of vesicle docking. J Biol Chem 273:22161-22164 Review

    Google Scholar 

  • 101. Schott D, Ho J, Pruyne D, Bretscher A (1999) The COOH-terminal domain of Myo2p, a yeast myosin V, has a direct role in secretory vesicle targeting. J Cell Biol 147:791-808

    Article  CAS  PubMed  Google Scholar 

  • 102. Seals DF, Eitzen G, Margolis N, Wickner WT, Price A (2000) A Ypt/Rab effector complex containing the Sec1 homolog Vps33p is required for homotypic vacuole fusion. Proc Natl Acad Sci USA 97:9402-9407

    Google Scholar 

  • 103. Sevrioukov EA, He JP, Moghrabi N, Sunio A, Kramer H (1999) A role for the deep orange and carnation eye color genes in lysosomal delivery in Drosophila. Mol Cell 4:479-486

    Article  CAS  PubMed  Google Scholar 

  • 104. Shorter J, Beard MB, Seemann J, Dirac-Svejstrup AB, Warren G (2002) Sequential tethering of Golgins and catalysis of SNAREpin assembly by the vesicle-tethering protein p115. Cell Biol 1:45-62

    Article  Google Scholar 

  • 105. Simonsen A, Lippe R, Christoforidis S, Gaullier JM, Brech A, Callaghan J, Toh BH, Murphy C, Zerial M, Stenmark H (1998) EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature 394:494-498

    Article  CAS  PubMed  Google Scholar 

  • 106. Simonsen A, Gaullier JM, D’Arrigo A, Stenmark H (1999) The Rab5 effector EEA1 interacts directly with syntaxin-6. J Biol Chem 274:28857-28860

    Google Scholar 

  • 107. Siniossoglou S, Peak-Chew SY, Pelham HR (2000) Ric1p and Rgp1p form a complex that catalyzes nucleotide exchange on Ypt6p. EMBO J 19:4886-4894

    Article  Google Scholar 

  • 108. Siniossoglou S, Pelham HR (2001) An effector of Ypt6p binds the SNARE Tlg1p and mediates selective fusion of vesicles with late Golgi membranes. EMBO J 20:5991-5998

    Article  CAS  PubMed  Google Scholar 

  • 109. Sonnichsen B, De Renzis S, Nielsen E, Rietdorf J, Zerial M (2000) Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5, and Rab11. J Cell Biol 149:901-914

    Article  CAS  PubMed  Google Scholar 

  • 110. Sonnichsen B, Lowe M, Levine T, Jamsa E, Dirac-Svejstrup B, Warren G (1998) A role for giantin in docking COPI vesicles to Golgi membranes. J Cell Biol 140:1013-1021

    Article  CAS  PubMed  Google Scholar 

  • 111. Spang A, Schekman R (1998) Reconstitution of retrograde transport from the Golgi to the ER in vitro. J Cell Biol 143:589-599

    Article  CAS  PubMed  Google Scholar 

  • 112. Stenmark H, Aasland R, Toh BH, D’Arrigo A (1996) Endosomal localization of the autoantigen EEA1 is mediated by a zinc-binding FYVE finger. J Biol Chem 271:24048-24054

    Article  CAS  PubMed  Google Scholar 

  • 113. Suvorova ES, Kurten RC, Lupashin VV (2001) Identification of a human orthologue of Sec34p as a component of the cis-Golgi vesicle tethering machinery. J Biol Chem 276:22810-22818

    Article  CAS  PubMed  Google Scholar 

  • 114. Suvorova ES, Duden R, Lupashin VV (2002) The Sec34/Sec35p complex, a Ypt1p effector required for retrograde intra-Golgi trafficking, interacts with Golgi SNAREs and COPI vesicle coat proteins. J Cell Biol 157:631-643

    Article  CAS  PubMed  Google Scholar 

  • 115. Tall GG, Hama H, DeWald DB, Horazdovsky BF (1999) The phosphatidylinositol 3-phosphate binding protein Vac1p interacts with a Rab GTPase and a Sec1p homologue to facilitate vesicle-mediated vacuolar protein sorting. Mol Biol Cell 10:1873-1889

    CAS  PubMed  Google Scholar 

  • 116. Ting AE, Hazuka CD, Hsu SC, Kirk MD, Bean AJ, Scheller RH (1995) rSec6 and rSec8, mammalian homologs of yeast proteins essential for secretion. Proc Natl Acad Sci USA 21:9613-9617

    Google Scholar 

  • 117. Toikkanen JH, Miller KJ, Soderlund H, Jantti J, Keranen S (2003) The beta subunit of the Sec61p endoplasmic reticulum translocon interacts with the exocyst complex in Saccharomyces cerevisiae. J Biol Chem 278:20946-20953

    Article  CAS  PubMed  Google Scholar 

  • 118. Tsui MM, Banfield DK (2000) Yeast Golgi SNARE interactions are promiscuous. J Cell Sci 113(Pt 1):145-152

    CAS  PubMed  Google Scholar 

  • 119. Tsukada M, Will E, Gallwitz D (1999) Structural and functional analysis of a novel coiled-coil protein involved in Ypt6 GTPase-regulated protein transport in yeast. Mol Biol Cell 10:63-75

    CAS  PubMed  Google Scholar 

  • 120. Ungar D, Oka T, Brittle EE, Vasile E, Lupashin VV, Chatterton JE, Heuser JE, Krieger M, Waters MG (2002) Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function. J Cell Biol 157:405-415

    Article  CAS  PubMed  Google Scholar 

  • 121. Ungar D, Hughson FM (2003) SNARE protein structure and function. Annu Rev Cell Dev Biol 19:493-517

    Article  CAS  PubMed  Google Scholar 

  • 122. Ungermann C, Sato K, Wickner W (1998) Defining the functions of trans-SNARE pairs. Nature 396:543-548

    Article  CAS  PubMed  Google Scholar 

  • 123. Ungermann C, Price A, Wickner W (2000) A new role for a SNARE protein as a regulator of the Ypt7/Rab-dependent stage of docking. Proc Natl Acad Sci USA 97:8889-8891

    Google Scholar 

  • 124. VanRheenen SM, Cao X, Sapperstein SK, Chiang EC, Lupashin VV, Barlowe C, Waters MG (1999) Sec34p, a protein required for vesicle tethering to the yeast Golgi apparatus, is in a complex with Sec35p. J Cell Biol 147:729-742

    Article  CAS  PubMed  Google Scholar 

  • 125. VanRheenen SM, Cao X, Lupashin VV, Barlowe C, Waters MG (1998) Sec35p, a novel peripheral membrane protein, is required for ER to Golgi vesicle docking. J Cell Biol 141:1107-1119

    Article  CAS  PubMed  Google Scholar 

  • 126. Vida TA, Huyer G, Emr SD (1993) Yeast vacuolar proenzymes are sorted in the late Golgi complex and transported to the vacuole via a prevacuolar endosome-like compartment. J Cell Biol 121:1245-1256

    Article  CAS  PubMed  Google Scholar 

  • 127. Walch-Solimena C, Collins RN, Novick PJ (1997) Sec2p mediates nucleotide exchange on Sec4p and is involved in polarized delivery of post-Golgi vesicles. J Cell Biol 137:1495-1509

    Article  CAS  PubMed  Google Scholar 

  • 128. Waters MG, Clary DO, Rothman JE (1992) A novel 115kD peripheral membrance protein is required for interciternal transport in the Golgi stack. J Cell Biol 118:1015-1026

    Article  CAS  PubMed  Google Scholar 

  • 129. Waters MG, Pfeffer SR (1999) Membrane tethering in intracellular transport. Curr Opin Cell Biol. 11:453-459 Review

    Google Scholar 

  • 130. Waters MG, Hughson FM (2000) Membrane tethering and fusion in the secretory and endocytic pathways. Traffic 1:588-597 Review

    Article  CAS  PubMed  Google Scholar 

  • 131. Wang W, Sacher M, Ferro-Novick S (2000) TRAPP stimulates guanine nucleotide exchange on Ypt1p. J Cell Biol 151:289-296

    Article  CAS  PubMed  Google Scholar 

  • 132. Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Sollner TH, Rothman JE (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92:759-772

    Article  Google Scholar 

  • 133. Whyte JR, Munro S (2001) The Sec34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic. Dev Cell 1:527-537

    Article  CAS  PubMed  Google Scholar 

  • 134. Whyte JR, Munro S (2002) Vesicle tethering complexes in membrane traffic. J Cell Sci 115(Pt 13):2627-2637 Review

    CAS  PubMed  Google Scholar 

  • 135. Wiederkehr A, Du Y, Pypaert M, Ferro-Novick S, Novick P (2003) Sec3p is needed for the spatial regulation of secretion and for the inheritance of the cortical endoplasmic reticulum. Mol Biol Cell 14:4770-4782

    Article  CAS  PubMed  Google Scholar 

  • 136. Wilson JM, de Hoop M, Zorzi N, Toh BH, Dotti CG, Parton RG (2000) EEA1, a tethering protein of the early sorting endosome, shows a polarized distribution in hippocampal neurons, epithelial cells, and fibroblasts. Mol Biol Cell 11:2657-2671

    CAS  PubMed  Google Scholar 

  • 137. Wuestehube LJ, Duden R, Eun A, Hamamoto S, Korn P, Ram R, Schekman R (1996) New mutants of Saccharomyces cerevisiae affected in the transport of proteins from the endoplasmic reticulum to the Golgi complex. Genetics 142:393-406

    CAS  PubMed  Google Scholar 

  • 138. Wurmser AE, Sato TK, Emr SD (2000) New component of the vacuolar class C-Vps complex couples nucleotide exchange on the Ypt7 GTPase to SNARE-dependent docking and fusion. J Cell Biol 151:551-562

    Article  CAS  PubMed  Google Scholar 

  • 139. Yamakawa H, Seog DH, Yoda K, Yamasaki M, Wakabayashi T (1996) Uso1 protein is a dimer with 2 globular heads and a long coiled-coil tail. J Struct Biol 116:356-365

    Article  CAS  PubMed  Google Scholar 

  • 140. Yang B, Gonzalez L Jr, Prekeris R, Steegmaier M, Advani RJ, Scheller RH (1999) SNARE interactions are not selective. Implications for membrane fusion specificity. J Biol Chem 274:5649-5653

    Article  CAS  PubMed  Google Scholar 

  • 141. Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2:107-117

    Article  CAS  PubMed  Google Scholar 

  • 142. Zhang X, Bi E, Novick P, Du L, Kozminski KG, Lipschutz JH, Guo W (2001) Cdc42 interacts with the exocyst and regulates polarized secretion. J Biol Chem 276:46745-46750

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Sirkka Keränen Jussi Jäntti

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Chu, S., Guo, W. Tethering proteins in membrane traffic. In: Keränen, S., Jäntti, J. (eds) Regulatory Mechanisms of Intracellular Membrane Transport. Topics in Current Genetics, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b98495

Download citation

  • DOI: https://doi.org/10.1007/b98495

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22302-3

  • Online ISBN: 978-3-540-44476-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics