Skip to main content

Theoretical Study of the Exchange Coupling in Large Polynuclear Transition Metal Complexes Using DFT Methods

  • Chapter
Principles and Applications of Density Functional Theory in Inorganic Chemistry II

Part of the book series: Structure and Bonding ((STRUCTURE,volume 113))

Abstract

Polynuclear transition metal complexes containing paramagnetic cations have caught the attention of many chemists, since they are one of the main fields of study in molecular magnetism and they play important roles in the reactivity of active sites of systems of biological interest. Theoretical methods based on density functional theory due to the possibility of handling large systems are especially indicated for studying the electronic structure of this kind of molecules. At the same time, such methods provide good accuracy to allow the calculation of the small energy differences involved in the exchange interactions. It is worth noting that theoretical methods are especially important in the study of the exchange interactions in complexes with a large number of paramagnetic centers because they can provide a more detailed analysis of the interactions than experimental data can. This fact is due to the limitations in obtaining exchange coupling constants from experimental measurements for large size systems of this kind. The knowledge of the exchange interactions that controls the ground state of the system is crucial to the understanding of magnetic properties such as the single-molecule magnet character or the reactivity of an active site in a biological system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kahn O (1993) Molecular Magnetism. VCH, New York

    Google Scholar 

  2. Ruiz E, Alvarez S, Rodríguez-Fortea A, Alemany P, Pouillon Y, Massobrio C (2001) In: Miller JS, Drillon M (eds) Magnetism: molecules to materials II. Wiley-VCH, Weinheim, p 227

    Google Scholar 

  3. Ciofini I, Daul CA, Bencini A (2002) Rec Adv Comput Chem 1:106

    Google Scholar 

  4. Daul CA, Ciofini I, Bencini A (2002) In: Sen KD (ed) Reviews of modern quantum chemistry, vol 2. World Scientific, Singapore, p 1247

    Google Scholar 

  5. Ceulemans A, Chibotaru LF, Heylen GA, Pierloot K, Vanquickenborne LG (2000) Chem Rev 100:787

    Google Scholar 

  6. Ciofini I, Daul C (2003) Coord Chem Rev 238:187

    Google Scholar 

  7. Miller JS, Drillon M (eds) (2001) Magnetism: molecules to materials I. Models and experiments. Wiley-VCH, Weinheim

    Google Scholar 

  8. Miller JS, Drillon M (eds) (2001) Magnetism: molecules to materials II. Molecule-based materials. Wiley-VCH, Weinheim

    Google Scholar 

  9. Miller JS, Drillon M (eds) (2002) Magnetism: molecules to materials III. Nanosized magnetic materials. Wiley-VCH, Weinheim

    Google Scholar 

  10. Miller JS, Drillon M (eds) (2003) Magnetism: molecules to materials IV. Molecule-based materials (2). Wiley-VCH, Weinheim

    Google Scholar 

  11. Clement R, Decurtins S, Gruselle M, Train C (2003) Monatsh Chem 134:117

    Google Scholar 

  12. Marvaud V, Herrera JM, Barilero T, Tuyeras F, Garde R, Scuiller A, Decroix C, Cantuel M, Desplanches C (2003) Monatsh Chem 134:149

    Google Scholar 

  13. Gatteschi D, Sessoli R (2003) Angew Chem, Int Ed 42:268

    Google Scholar 

  14. Sessoli R, Gatteschi D, Caneschi A, Novak HA (1993) Nature (London) 365:141

    Google Scholar 

  15. Barra AL, Gatteschi D, Sessoli R (2000) Chem Eur J 6:1608

    Google Scholar 

  16. Cornia A, Gatteschi D, Sessoli R (2001) Coord Chem Rev 219/221:573

    Google Scholar 

  17. Pederson MR, Khanna SN (1999) Phys Rev B 60:9566

    Google Scholar 

  18. Benelli C, Cano J, Journeaux Y, Sessoli R, Solan GA, Winpenny REP (2001) Inorg Chem 40:188

    Google Scholar 

  19. Gatteschi D (2000) J Phys Chem B 104:9780

    Google Scholar 

  20. Ruiz E, Cano J, Alvarez S, Caneschi A, Gatteschi D (2003) J Am Chem Soc 125:6791

    Google Scholar 

  21. Aizman A, Case DA (1982) J Am Chem Soc 104:3269

    Google Scholar 

  22. Noodleman L (1981) J Chem Phys 74:5737

    Google Scholar 

  23. Noodleman L, Post D, Baerends EJ (1982) Chem Phys 64:159

    Google Scholar 

  24. Noodleman L, Case DA (1992) Adv Inorg Chem 38:423

    Google Scholar 

  25. Noodleman L, Peng CY, Case DA, Mouesca JM (1995) Coord Chem Rev 144:199

    Google Scholar 

  26. Noodleman L, Li J, Zhao X-G, Richardson WH (1997) In: Springborg M (ed) Density-functional methods in chemistry and materials science. Wiley, Chichester, p 149

    Google Scholar 

  27. Polo V, Graefenstein J, Kraka E, Cremer D (2003) Theor Chem Acc 109:22

    Google Scholar 

  28. Polo V, Grafenstein J, Kraka E, Cremer D (2002) Chem Phys Lett 352:469

    Google Scholar 

  29. Polo V, Kraka E, Cremer D (2002) Mol Phys 100:1771

    Google Scholar 

  30. Polo V, Kraka E, Cremer D (2002) Theor Chem Acc 107:291

    Google Scholar 

  31. Cremer D (2001) Mol Phys 99:1899

    Google Scholar 

  32. Ruiz E, Cano J, Alvarez S, Alemany P (1999) J Comp Chem 20:1391

    Google Scholar 

  33. Ruiz E, Polo V, Cano J, Alvarez S (2004) (to be published)

    Google Scholar 

  34. Ruiz E, Rodriguez-Fortea A, Cano J, Alvarez S, Alemany P (2003) J Comp Chem 24:982

    Google Scholar 

  35. Kortus J, Hellberg CS, Pederson MR (2001) Phys Rev Lett 86:3400

    Google Scholar 

  36. Clark AE, Davidson ER (2001) J Chem Phys 115:7382

    Google Scholar 

  37. Clark AE, Davidson ER (2002) J Phys Chem A 106:6890

    Google Scholar 

  38. Davidson ER, Clark AE (2002) Mol Phys 100:373

    Google Scholar 

  39. O’Brien TA, Davidson ER (2003) Int J Quant Chem 92:294

    Google Scholar 

  40. Koch W, Holthausen MC (2000) A chemist’s guide to density functional theory. Wiley-VCH Verlag, Weinheim

    Google Scholar 

  41. Becke AD (1993) J Chem Phys 98:5648

    Google Scholar 

  42. Moreira IPR, Illas F, Calzado CJ, Sanz JF, Malrieu JP, Ben Amor N, Maynau D (1999) Phys Rev B 59:R6593

    Google Scholar 

  43. Caballol R, Castell O, Illas F, Moreira IPR, Malrieu JP (1997) J Phys Chem A 101:7860

    Google Scholar 

  44. Jensen F (1999) Introduction to computational chemistry. Wiley, Chichester

    Google Scholar 

  45. Cano J, Alemany P, Alvarez S, Verdaguer M, Ruiz E (1998) Chem Eur J 4:476

    Google Scholar 

  46. Ribas J, Diaz C, Solans X, Font-Bardia M (1997) J Chem Soc Dalton Trans 35

    Google Scholar 

  47. Birkelbach F, Florke U, Haupt H-J, Butzlaff C, Trautwein AX, Wieghardt K, Chaudhuri P (1998) Inorg Chem 37:2000

    Google Scholar 

  48. Ruiz E, Alemany P, Alvarez S, Cano J (1997) Inorg Chem 36:3683

    Google Scholar 

  49. Ruiz E, Alemany P, Alvarez S, Cano J (1997) J Am Chem Soc 119:1297

    Google Scholar 

  50. Rodríguez-Fortea A, Ruiz E, Alemany P, Alvarez S (2003) Monatsh Chem 134:307

    Google Scholar 

  51. Bertini I, Ciurli S, Luchinat C (1995) Struct Bonding 83:1

    Google Scholar 

  52. Beinert H, Kennedy MC, Stout CD (1996) Chem Rev 96:2335

    Google Scholar 

  53. Noodleman L, Norman JG Jr, Osborne JH, Aizman A, Case DA (1985) J Am Chem Soc 107:3418

    Google Scholar 

  54. Noodleman L, Case DA, Aizman A (1988) J Am Chem Soc 110:1001

    Google Scholar 

  55. Noodleman L, Case DA, Sontum SF (1989) J Chim Phys Phys Chim Biol 86:743

    Google Scholar 

  56. Noodleman L, Case DA, Baerends EJ (1991) In: Labanowski JK, Andzelm JW (eds) Density-functional methods in chemistry and materials science. Springer, Berlin Heidelberg New York, p 109

    Google Scholar 

  57. Noodleman L (1991) Inorg Chem 30:256

    Google Scholar 

  58. Noodleman L, Case DA, Mouesca JM, Lamotte B (1996) J Biol Inorg Chem 1:177

    Google Scholar 

  59. Torres RA, Lovell T, Noodleman L, Case DA (2003) J Am Chem Soc 125:1923

    Google Scholar 

  60. Fee JA, Castagnetto JM, Case DA, Noodleman L, Stout CD, Torres RA (2003) J Biol Inorg Chem 8:519

    Google Scholar 

  61. Mouesca J-M, Noodleman L, Case DA (1995) Int J Quant Chem Quant Biol Symp 22:95

    Google Scholar 

  62. Mouesca JM, Noodleman L, Case DA, Lamotte B (1995) Inorg Chem 34:4347

    Google Scholar 

  63. Mouesca J-M, Lamotte B (1998) Coord Chem Rev 178/180:1573

    Google Scholar 

  64. Mouesca J-M, Chen JL, Noodleman L, Bashford D, Case DA (1994) J Am Chem Soc 116:11898

    Google Scholar 

  65. Noodleman L (1988) Inorg Chem 27:3677

    Google Scholar 

  66. Papaefthymiou GC, Laskowski EJ, Frota-Pessoa S, Frankel RB, Holm RH (1982) Inorg Chem 21:1723

    Google Scholar 

  67. McGrady JE (1999) J Chem Soc Dalton Trans 1393

    Google Scholar 

  68. Knottenbelt SZ, McGrady JE (2003) J Am Chem Soc 125:9846

    Google Scholar 

  69. Matusiewicz M, Czerwinski M, Kasperczyk J, Kityk IV (1999) J Chem Phys 111:6446

    Google Scholar 

  70. Matusiewicz M, Czerwinski M, Kasperczyk J (2002) J Clust Chem 12:537

    Google Scholar 

  71. Czerwinski M (1999) Int J Quant Chem 72:39

    Google Scholar 

  72. Lovell T, Li J, Liu T, Case DA, Noodleman L (2001) J Am Chem Soc 123:12392

    Google Scholar 

  73. Lovell T, Torres RA, Han W-G, Liu T, Case DA, Noodleman L (2002) Inorg Chem 41:5744

    Google Scholar 

  74. Lovell T, Himo F, Han W-G, Noodleman L (2003) Coord Chem Rev 238/239:211

    Google Scholar 

  75. Einsle O, Teczan FA, Andrade SLA, Schmid B, Yoshida M, Howard JB, Rees DC (2002) Science 297:1696

    Google Scholar 

  76. Lovell T, Liu T, Case DA, Noodleman L (2003) J Am Chem Soc 125:8377

    Google Scholar 

  77. Lee H-I, Hales BJ, Hoffman BM (1997) J Am Chem Soc 119:11395

    Google Scholar 

  78. Yoo SJ, Angove HC, Papaefthymiou V, Burguess BK, Munck E (2000) J Am Chem Soc 122:4926

    Google Scholar 

  79. Dance I (2003) Chem Comm 324

    Google Scholar 

  80. Hinnemann B, Norskov JK (2003) J Am Chem Soc 125:1466

    Google Scholar 

  81. Ruiz E, Rodríguez-Fortea A, Alemany P, Alvarez S (2001) Polyhedron 20:1323.

    Google Scholar 

  82. Sletten J, Sorensen A, Julve M, Journaux Y (1990) Inorg Chem 29:5054

    Google Scholar 

  83. Tan XS, Fujii Y, Nukada R, Mikuriya M, Nakano Y (1999) J Chem Soc Dalton Trans: 2415

    Google Scholar 

  84. Schmitt EA, Noodleman L, Baerends EJ, Hendrickson DN (1992) J Am Chem Soc 114:6109

    Google Scholar 

  85. Hendrickson DN, Christou G, Schmitt EA, Libby E, Bashkin JS, Wang S, Tsai H-L, Vincent JB, Boyd PDW, Huffman JC, Folting K, Li Q, Streib WE (1992) J Am Chem Soc 114:2455

    Google Scholar 

  86. Nagao H, Nishino M, Shigeta Y, Soda T, Kitagawa Y, Onishi T, Yoshioka Y, Yamaguchi K (2000) Coord Chem Rev 198:265

    Google Scholar 

  87. Nagao H, Yamanaka S, Nishino M, Yoshioka Y, Yamaguchi K (1999) Chem Phys Lett 302:418

    Google Scholar 

  88. Yamaguchi K, Yamanaka S, Nishino M, Takano Y, Kitagawa Y, Nagao H, Yoshioka Y (1999) Theor Chem Acc 102:328

    Google Scholar 

  89. Kortus J, Pederson MR, Baruah T, Bernstein N, Hellberg CS (2003) Polyhedron 22:1871

    Google Scholar 

  90. Perdew J, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Google Scholar 

  91. Müller A, Döring J (1988) Angew Chem Int Ed Engl 27:1721

    Google Scholar 

  92. Barra A-L, Gatteschi D, Pardi L, Müller A, Döring J (1992) J Am Chem Soc 114:8509

    Google Scholar 

  93. Kortus J, Pederson MR, Hellberg CS, Khanna SN (2001) Eur Phys J D 16:177

    Google Scholar 

  94. Chiorescu I, Wernsdorfer W, Müller A, Bögge H, Barbara B (2000) Phys Rev Lett 84:3454

    Google Scholar 

  95. Anisimov VI, Aryasetiawan F, Lichtenstein AI (1997) J Phys Condens Matter 9:767

    Google Scholar 

  96. Boukhvalov DW, Kurmaev EZ, Moewes A, Zatsepin DA, Cherkashenko VM, Nemnonov SN, Finkelstein LD, Yarmoshenko YM, Neumann M, Dobrovitski VV, Katsnelson MI, Lichtenstein AI, Harmon BN, Kögerler P (2003) Phys Rev B 67:134408

    Google Scholar 

  97. Wernsdorfer W, Aliaga-Alcalde N, Hendrickson DN, Christou G (2002) Nature (London) 416:406

    Google Scholar 

  98. Park K, Pederson MR, Richardson SL, Aliaga-Alcalde N, Christou G (2003) Phys Rev B 68:020405/1

    Google Scholar 

  99. Park K, Pederson MR, Bernstein N (2003) Los Alamos National Laboratory, Preprint Archive, Condensed Matter: arXiv:cond-mat/0307145

    Google Scholar 

  100. Cano J, Ruiz E, Alvarez S (2004) (to be published)

    Google Scholar 

  101. Boukhvalov DW, Lichtenstein AI, Dobrovitski VV, Katsnelson MI, Harmon BN, Mazurenko VV, Anisimov VI (2002) Phys Rev B 65:184435

    Google Scholar 

  102. Park K, Pederson MR, Hellberg CS (2003) Los Alamos National Laboratory, Preprint Archive, Condensed Matter: arXiv:cond-mat/0307707

    Google Scholar 

  103. Raghu C, Rudra I, Sen D, Ramasesha S (2001) Phys Rev B 64:064419

    Google Scholar 

  104. Regnault N, Jolicoeur T, Sessoli R, Gatteschi D, Verdaguer M (2002) Phys Rev B 66:054409

    Google Scholar 

  105. Pederson MR, Porezag DV, Kortus J, Khanna SN (2000) J Appl Phys 87:5487

    Google Scholar 

  106. Pederson MR, Kortus J, Khanna SN (2000) Clusters and Nanostructure Interfaces (Proceedings of the International Symposium on Clusters and Nanostructure Interfaces), Richmond, VA, United States, Oct. 25–28, 1999, p 159

    Google Scholar 

  107. Pederson MR, Khanna SN (1999) Chem Phys Lett 307:253

    Google Scholar 

  108. Pederson MR, Khanna SN (1999) Phys Rev B 59: R693

    Google Scholar 

  109. Baruah T, Pederson MR (2002) Chem Phys Lett 360:144

    Google Scholar 

  110. Kortus J, Baruah T, Bernstein N, Pederson MR (2002) Phys Rev B 66:092403/1

    Google Scholar 

  111. Pederson MR, Kortus J, Khanna SN (2002) J Appl Phys 91:7149

    Google Scholar 

  112. Baruah T, Pederson MR (2003) Int J Quant Chem 93:324

    Google Scholar 

  113. Rentschler E, Gatteschi D, Cornia A, Fabretti AC, Barra AL, Shchegolikhina OI, Zhdanov AA (1996) Inorg Chem 35:4427

    Google Scholar 

  114. Cornia A, Fabretti AC, Gatteschi D, Pályi G, Rentschler E, Shchegolikhina OI, Zhdanov AA (1995) Inorg Chem 5383

    Google Scholar 

  115. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian98 (rev a.11). Gaussian, Pittsburgh, PA

    Google Scholar 

  116. Schaefer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829

    Google Scholar 

  117. Schaefer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571

    Google Scholar 

Download references

Acknowledgements

I would like to express my gratitude to Joan Cano, Antonio Rodríguez-Fortea, Santiago Alvarez, and Pere Alemany for their collaboration and many fruitful discussions in this research field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliseo Ruiz .

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag

About this chapter

Cite this chapter

Ruiz, E. (2004). Theoretical Study of the Exchange Coupling in Large Polynuclear Transition Metal Complexes Using DFT Methods. In: Principles and Applications of Density Functional Theory in Inorganic Chemistry II. Structure and Bonding, vol 113. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b97942

Download citation

  • DOI: https://doi.org/10.1007/b97942

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21861-6

  • Online ISBN: 978-3-540-40966-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics