Skip to main content

Part of the book series: Structure and Bonding ((STRUCTURE,volume 113))

Abstract

Selected examples of density functional theory applied to modelling the active site structures and mechanisms of metalloenzymes are discussed. Factors influencing the design of suitable structural models and the theoretical strategies for computing their structures, energies and properties are presented before describing the calculations on a number of redox-active enzymes containing one or more of Cu, Co, Ni, Fe and Mo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Ado-CH2·:

Deoxyadenosyl radical

BDE:

Bond dissociation energy

CCP:

Cytochrome c peroxidase

DFT:

Density functional theory

ET:

Electron transfer

EXAFS:

Extended X-ray absorption fine structure

FeMoco:

Iron molybdenum cofactor

GO:

Galactose oxidase

HAT:

Hydrogen atom transfer

HF:

Hartree-Fock

IMOMM:

Integrated molecular orbital/molecule mechanics

LDA:

Local density approximation

LSD:

Local spin density

MM:

Molecular mechanics

MMO:

Methane monooxygenase

MO:

Molecular orbital

MSXα:

Multiple scattering Xα

N2ase:

Nitrogenase

QM/MM:

Quantum mechanics/molecular mechanics

RNR:

Ribonucleotide reductase

TM:

Transition metal

TS:

Transition state

WOC:

Water oxidising complex

XnO:

Xanthine oxidase

References

  1. Bray MR, Deeth RJ, Paget VJ (1996) Prog React Kinetics 21:169

    Google Scholar 

  2. Ziegler T (1995) Can J Chem 73:743

    Google Scholar 

  3. Johnson K (1973) Adv Quant Chem 7:143

    Google Scholar 

  4. Slater JC (1974) The self-consistent field for molecules and solids. McGraw-Hill, USA

    Google Scholar 

  5. Schwartz K (1972) Phys Rev B 5:2466

    Google Scholar 

  6. Delley B, Ellis DE (1982) J Chem Phys 76:1949

    Google Scholar 

  7. Fan LY, Ziegler T (1991) J Chem Phys 95:7401

    Google Scholar 

  8. Penfield KW, Gewirth AA, Solomon EI (1985) J Am Chem Soc 107:4519

    Google Scholar 

  9. Deeth RJ, Figgis BN, Ogden MI (1988) Chem Phys 121:115

    Google Scholar 

  10. Deeth RJ (1990) J Chem Soc Dalton Trans 355

    Google Scholar 

  11. Deeth RJ (1991) J Chem Soc Dalton Trans 1467

    Google Scholar 

  12. Deeth RJ (1991) J Chem Soc Dalton Trans 1895

    Google Scholar 

  13. Armstrong EM, Collison D, Deeth RJ, Garner CD (1995) J Chem Soc Dalton Trans 191

    Google Scholar 

  14. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200

    Google Scholar 

  15. Lovell T, Himo F, Han WG, Noodleman L (2003) Coord Chem Rev 238:211

    Google Scholar 

  16. Himo F, Siegbahn PEM (2003) Chem Rev 103:2421

    Google Scholar 

  17. Blomberg MRA, Siegbahn PEM (2001) J Phys Chem B 105:9375

    Google Scholar 

  18. Siegbahn PEM, Blomberg MRA (2000) Chem Rev 100:421

    Google Scholar 

  19. Siegbahn PEM, Blomberg MRA (1999) Annu Rev Phys Chem 50:221

    Google Scholar 

  20. Siegbahn PEM (2003) Faraday Discuss 124:289

    Google Scholar 

  21. Friesner RA, Dunietz BD (2001) Accounts Chem Res 34:351

    Google Scholar 

  22. Velde GT, Bickelhaupt FM, Baerends EJ, Guerra CF, Van Gisbergen SJA, Snijders JG, Ziegler T (2001) J Comput. Chem 22:931

    Google Scholar 

  23. Baerends EJ, Gritsenko OV (1997) J Phys Chem A 101:5383

    Google Scholar 

  24. Kohn W, Becke AD, Parr RG (1996) J Phys Chem 100:12974

    Google Scholar 

  25. Ceperley D, Alder BJ (1980) Phys Rev Lett 45:4264

    Google Scholar 

  26. Gunnarsson O, Lundqvist BI (1976) Phys Rev B 13:4274

    Google Scholar 

  27. von Barth U, Hedin L (1972) Phys Rev B 4:1629

    Google Scholar 

  28. Veillard A (1991) Chem Rev 91:743

    Google Scholar 

  29. Becke AD (1988) Phys Rev A 38:3098

    Google Scholar 

  30. Becke AD (1993) J Chem Phys 98:1372

    Google Scholar 

  31. Becke AD (1993) J Chem Phys 98:5648

    Google Scholar 

  32. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785

    Google Scholar 

  33. Wirstam M, Blomberg MRA, Siegbahn PEM (1999) J Am Chem Soc 121:10178

    Google Scholar 

  34. Vallee BL, Williams RJP (1968) Proc Natl Acad Sci USA 59:498

    Google Scholar 

  35. Gray HB, Malmstrom BG, Williams RJP (2000) J Biol Inorg Chem 5:551

    Google Scholar 

  36. Solomon EI, Brunold TC, Davis MI, Kemsley JN, Lee SK, Lehnert N, Neese F, Skulan AJ, Yang YS, Zhou J (2000) Chem Rev 100:235

    Google Scholar 

  37. Romao MJ, Archer M, Moura I, Moura JJG, Legall J, Engh R, Schneider M, Hof P, Huber R (1995) Science 270:1170

    Google Scholar 

  38. Bray MR, Deeth RJ (1996) Inorg Chem 35:5720

    Google Scholar 

  39. Kim J, Woo D, Rees DC (1993) Biochemistry 32:7104

    Google Scholar 

  40. Einsle O, Tezcan FA, Andrade SLA, Schmid B, Yoshida M, Howard JB, Rees DC (2002) Science 297:1696

    Google Scholar 

  41. Siegbahn PEM (2001) J Comput Chem 22:1634

    Google Scholar 

  42. Siegbahn PEM, Blomberg MRA, Pavlov M (1998) Chem Phys Lett 292:421

    Google Scholar 

  43. Voges D, Karshikoff A (1998) J Chem Phys 108:2219

    Google Scholar 

  44. Ghosh A (2003) Curr Opin Chem Biol 7:110

    Google Scholar 

  45. Vanlenthe E, Snijders JG, Baerends EJ (1996) J Chem Phys 105:6505

    Google Scholar 

  46. Karlin KD, Tyeklar Z (1993) Bioinorganic chemistry of copper. Chapman & Hall, New York

    Google Scholar 

  47. Malmstrom BG (1964) In: King TE, Mason HS, Morrison M (eds) Oxidases and related redox systems. Wiley, New York, p 207

    Google Scholar 

  48. Ryde U, Olsson MHM, Pierloot K, Roos BO (1996) J Mol Biol 261:586

    Google Scholar 

  49. Gewirth AA, Solomon EI (1988) J Am Chem Soc 110:3811

    Google Scholar 

  50. LaCroix LB, Shadle SE, Wang YN, Averill BA, Hedman B, Hodgson KO, Solomon EI (1996) J Am Chem Soc 118:7755

    Google Scholar 

  51. Ryde U, Olsson MHM (2001) Int J Quantum Chem 81:335

    Google Scholar 

  52. Szilagyi RK, Metz M, Solomon EI (2002) J Phys Chem A 106:2994

    Google Scholar 

  53. Deeth RJ (2001) J Chem Soc Dalton Trans 664

    Google Scholar 

  54. Patchkovskii S, Autschbach J, Ziegler T (2001) J Chem Phys 115:26

    Google Scholar 

  55. Patchkovskii S, Ziegler T (2002) J Chem Phys 116:7806

    Google Scholar 

  56. Olsson MHM, Hong GY, Warshel A (2003) J Am Chem Soc 125:5025

    Google Scholar 

  57. Mitic N, Saleh L, Schenk G, Bollinger JM, Solomon EI (2003) J Am Chem Soc 125:11200

    Google Scholar 

  58. Kozlowski PM (2001) Curr Opin Chem Biol 5:736

    Google Scholar 

  59. Maseras F, Morokuma K (1995) J Comput Chem 16:1170

    Google Scholar 

  60. Deeth RJ (1999) J Am Chem Soc 121:6074

    Google Scholar 

  61. Harris DL, Loew GH (1998) J Am Chem Soc 120:8941

    Google Scholar 

  62. Kuramochi H, Noodleman L, Case DA (1997) J Am Chem Soc 119:11442

    Google Scholar 

  63. Antony J, Grodzicki M, Trautwein AX (1997) J Phys Chem A 101:2692

    Google Scholar 

  64. Elango N, Radhakrishnan R, Froland WA, Wallar BJ, Earhart CA, Lipscomb JD, Ohlendorf DH (1997) Protein Sci 6:556

    Google Scholar 

  65. Rosenzweig AC, Nordlund P, Takahara PM, Frederick CA, Lippard SJ (1995) Chem Biol 2:409

    Google Scholar 

  66. Dunietz BD, Beachy MD, Cao YX, Whittington DA, Lippard SJ, Friesner RA (2000) J Am Chem Soc 122:2828

    Google Scholar 

  67. Brandstetter H, Whittington DA, Lippard SJ, Frederick CA (1999) Chem Biol 6:441

    Google Scholar 

  68. Rosenzweig AC, Nordlund P, Takahara PM, Frederick CA, Lippard SJ (1995) Chem Biol 2:632

    Google Scholar 

  69. Siegbahn PEM (2001) J Biol Inorg Chem 6:27

    Google Scholar 

  70. Siegbahn PEM, Crabtree RH (2000) Metal-oxo and metal-peroxo species in catalytic oxidations. Struct Bonding (Berlin) 97:125

    Google Scholar 

  71. Lovell T, Han WG, Liu TQ, Noodleman L (2002) J Am Chem Soc 124:5890

    Google Scholar 

  72. Neese F (2003) Curr Opin Chem Biol 7:125

    Google Scholar 

  73. Durrant MC (2002) Biochemistry 41:13934

    Google Scholar 

  74. Dance I (1997) Chem Commun: 165

    Google Scholar 

  75. Dance I (1998) Chem Commun: 523

    Google Scholar 

  76. Siegbahn PEM, Westerberg J, Svensson M, Crabtree RH (1998) J Phys Chem B 102:1615

    Google Scholar 

  77. Stavrev KK, Zerner MC (1998) Int J Quantum Chem 70:1159

    Google Scholar 

  78. Rod TH, Hammer B, Norskov JK (1999) Phys Rev Lett 82:4054

    Google Scholar 

  79. Rod TH, Norskov JK (2000) J Am Chem Soc 122:12751

    Google Scholar 

  80. Szilagyi RK, Musaev DG, Morokuma K (2000) Theochem J Mol Struct 506:131

    Google Scholar 

  81. Durrant MC (2001) Inorg Chem Commun 4:60

    Google Scholar 

  82. Dance IG (1994) Aust J Chem 47:979

    Google Scholar 

  83. Hinnemann B, Norskov JK (2003) J Am Chem Soc 125:1466

    Google Scholar 

  84. Lovell T, Liu TQ, Case DA, Noodleman L (2003) J Am Chem Soc 125:8377

    Google Scholar 

  85. Dance I (2003) Chem Commun 324

    Google Scholar 

  86. Lee HI, Benton PMC, Laryukhin M, Igarashi RY, Dean DR, Seefeldt LC, Hoffman BM (2003) J Am Chem Soc 125:5604

    Google Scholar 

  87. Noodleman L, Peng CY, Case DA, Mouesca JM (1995) Coord Chem Rev 144:199

    Google Scholar 

  88. Stranger R, McGrady JE, Lovell T (1998) Inorg Chem 37:6795

    Google Scholar 

  89. McGrady JE, Stranger R, Lovell T (1998) Inorg Chem 37:3802

    Google Scholar 

  90. Torres RA, Lovell T, Noodleman L, Case DA (2003) J Am Chem Soc 125:1923

    Google Scholar 

  91. Voityuk AA, Albert K, Romao MJ, Huber R, Rosch N (1998) Inorg Chem 37:176

    Google Scholar 

  92. Bray MR (1997) PhD Thesis, University of Warwick

    Google Scholar 

  93. Bray MR, Deeth RJ (1997) J Chem Soc Dalton Trans 4005

    Google Scholar 

  94. Bray MR, Deeth RJ (1997) J Chem Soc Dalton Trans 1267

    Google Scholar 

  95. Voityuk AA, Albert K, Kostlmeier S, Nasluzov VA, Neyman KM, Hof P, Huber R, Romao MJ, Rosch N (1997) J Am Chem Soc 119:3159

    Google Scholar 

  96. Thapper A, Deeth RJ, Nordlander E (2002) Inorg Chem 41:6695

    Google Scholar 

  97. Izumi Y, Glaser T, Rose K, McMaster J, Basu P, Enemark JH, Hedman B, Hodgson KO, Solomon EI (1999) J Am Chem Soc 121:10035

    Google Scholar 

  98. Evans DJ, Pickett CJ (2003) Chem Soc Rev 32:268

    Google Scholar 

  99. Bruschi M, Fantucci P, De Gioia L (2003) Inorg Chem 42:4773

    Google Scholar 

  100. Stein M, Lubitz W (2002) Curr Opin Chem Biol 6:243

    Google Scholar 

  101. Stadler C, Lacey AL, Montet Y, Volbeda A, Fontecilla-Camps JC, Conesa JC, Fernandez VM (2002) Inorg Chem 41:4424

    Google Scholar 

  102. Stadler C, de Lacey AL, Hernandez B, Fernandez VM, Conesa JC (2002) Inorg Chem 41:4417

    Google Scholar 

  103. Liu ZP, Hu P (2002) J Am Chem Soc 124:5175

    Google Scholar 

  104. Fan HJ, Hall MB (2002) Abstr Pap Am Chem Soc 223:408

    Google Scholar 

  105. Fan HJ, Hall MB (2002) J Am Chem Soc 124:394

    Google Scholar 

  106. Stein M, Lubitz W (2001) Phys Chem Chem Phys 3:2668

    Google Scholar 

  107. Stein M, van Lenthe E, Baerends EJ, Lubitz W (2001) J Am Chem Soc 123:5839

    Google Scholar 

  108. Siegbahn PEM, Blomberg MRA, Pavlov MWN, Crabtree RH (2001) J Biol Inorg Chem 6:460

    Google Scholar 

  109. Niu S, Hall NB (2001) Inorg Chem 40:6201

    Google Scholar 

  110. Li SH, Hall MB (2001) Inorg Chem 40:18

    Google Scholar 

  111. Amara P, Volbeda A, Fontecilla-Camps JC, Field MJ (1999) J Am Chem Soc 121:4468

    Google Scholar 

  112. Neese F, Solomon EI (1998) Inorg Chem 37:6568

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Deeth .

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag

About this chapter

Cite this chapter

Deeth, R.J. (2004). Recent Developments in Computational Bioinorganic Chemistry. In: Principles and Applications of Density Functional Theory in Inorganic Chemistry II. Structure and Bonding, vol 113. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b97941

Download citation

  • DOI: https://doi.org/10.1007/b97941

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21861-6

  • Online ISBN: 978-3-540-40966-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics