Skip to main content

Part of the book series: Structure and Bonding ((STRUCTURE,volume 112))

Abstract

The applications of hybrid DFT/molecular mechanics (DFT/MM) methods to the study of reactions catalyzed by transition metal complexes are reviewed. Special attention is given to the processes that have been studied in more detail, such as olefin polymerization, rhodium hydrogenation of alkenes, osmium dihydroxylation of alkenes and hydroformylation by rhodium catalysts. DFT/MM methods are shown, by comparison with experiment and with full quantum mechanics calculations, to allow a reasonably accurate computational study of experimentally relevant problems which otherwise would be out of reach for theoretical chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cornils B, Herrman WA (2002) (eds) Applied homogeneous catalysis with organometallic compounds, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  2. Jacobsen EN, Pfaltz A, Yamamoto H (1999) (eds) Comprehensive asymmetric catalysis. Springer, Berlin Heidelberg New York

    Google Scholar 

  3. Koch W, Holthausen MC (2000) A chemist’s guide to density functional theory. Wiley-VCH, Weinheim

    Google Scholar 

  4. Comba P (1999) Coord Chem Rev 182:343

    Google Scholar 

  5. Maseras F, Lledós A (2002) (eds) Computational modeling of homogeneous catalysis. Kluwer, Dordrecht

    Google Scholar 

  6. Torrent M, Solà M, Frenking G (2000) Chem Rev 100:439

    Google Scholar 

  7. Ziegler T (2002) J Chem Soc Dalton Trans 642

    Google Scholar 

  8. Warshel A, Levitt, M (1976) J Mol Biol 103:227

    Google Scholar 

  9. Monard G, Merz K (1999) Acc Chem Res 32:904

    Google Scholar 

  10. Truhlar DG, Gao J, Alhambra C, Garcia-Viloca M, Corchado J, Sánchez ML, Villà J (2002) Acc Chem Res 35:341

    Google Scholar 

  11. Maseras F, Morokuma K (1995) J Comput Chem 16:1170

    Google Scholar 

  12. Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K (1996) J Phys Chem 114:10024

    Google Scholar 

  13. Dapprich S, Komáromi I, Byun KS, Morokuma K, Frisch MJ (1999) J Mol Struct–THEOCHEM 461–462:1

    Google Scholar 

  14. Sauer J, Sierka M (2000) J Comput Chem 21:1470

    Google Scholar 

  15. Maseras F (2000) Chem Commun 1821

    Google Scholar 

  16. Barea G, Maseras F, Jean Y, Lledós A (1996) Inorg Chem 35:6401

    Google Scholar 

  17. Jaffart J, Etienne M, Maseras F, McGrady JE, Eisenstein O (2001) J Am Chem Soc 123:6000

    Google Scholar 

  18. Lam BMT, Halfen JA, Young VG, Hagadorn JR, Holland PL, Lledós A, Cucurull-Sánchez L, Novoa, JJ, Alvarez S, Tolman WB (2000) Inorg Chem 39:4059

    Google Scholar 

  19. Gusev DG, Lough AJ (2002) Organometallics 21:5091

    Google Scholar 

  20. Maseras F (1999) Top Organomet Chem 4:165

    Google Scholar 

  21. Maseras F (2001) In: Cundari TR (ed) Computational organometallic chemistry. Marcel Dekker, New York

    Google Scholar 

  22. Balcells D, Drudis-Solé G, Besora M, Dölker N, Ujaque G, Maseras F, Lledós A (2003) Faraday Discuss 124:429

    Google Scholar 

  23. Kaminsky W, Arndt-Rosenau M (2002) In: Cornils B, Herrmann WA (eds) Applied homogeneous catalysis with organometallic compounds, 2nd edn. Wiley-VCH, Weinheim, p 213

    Google Scholar 

  24. Ziegler K, Holzkamp E, Breil H, Martin H (1955) Angew Chem 67:541

    Google Scholar 

  25. Natta G (1956) Angew Chem 68:393

    Google Scholar 

  26. Andresen A, Cordes HG, Herwig J, Kaminsky W, Merck A, Mottweiler R, Pein J, Sinn H, Vollmer HJ (1976) Angew Chem Int Ed Engl 15:630

    Google Scholar 

  27. Sinn H, Kaminsky W (1980) Adv Organomet Chem 18:99

    Google Scholar 

  28. Resconi L, Cavallo L, Fait A, Piamontesi F (2000) Chem Rev 100:1253

    Google Scholar 

  29. Ittel SD, Johnson LK, Brookhart M (2000) Chem Rev 100:1169

    Google Scholar 

  30. Gibson VC, Spitzmesser SK (2003) Chem Rev 103:283

    Google Scholar 

  31. Cossee P (1964) J Catal 3:80

    Google Scholar 

  32. Rappe AK, Skiff WM, Casewit CJ (2000) Chem Rev 100:1435

    Google Scholar 

  33. Cavallo L (2002) In: Maseras F, Lledós A (eds) Computational modeling of homogeneous catalysis. Kluwer, Dordrecht, p 23

    Google Scholar 

  34. Michalak A, Ziegler T (2002) In: Maseras F, Lledós A (eds) Computational modeling of homogeneous catalysis. Kluwer, Dordrecht, p 57

    Google Scholar 

  35. Lauher JW, Hoffmann R (1976) J Am Chem Soc 98:1729

    Google Scholar 

  36. Deng L, Woo TK, Cavallo L, Margl PM, Ziegler T (1997) J Am Chem Soc 119:6177

    Google Scholar 

  37. Froese RDJ, Musaev DG, Morokuma K (1998) J Am Chem Soc 120:1581

    Google Scholar 

  38. Musaev DG, Froese RDJ, Morokuma K (1998) Organometallics 17:1850

    Google Scholar 

  39. Johnson LK, Killian CM, Brookhart M (1995) J Am Chem Soc 117:6414

    Google Scholar 

  40. Woo TK, Margl PM, Blöchl PE, Ziegler T (1997) J Phys Chem B 101:7877

    Google Scholar 

  41. Woo TK, Blöchl PE, Ziegler T (2000) J Phys Chem A 104:121

    Google Scholar 

  42. Deng L, Margl P, Ziegler T (1999) J Am Chem Soc 121:6479

    Google Scholar 

  43. Margl P, Deng L, Ziegler T (1999) Organometallics 18:5701

    Google Scholar 

  44. Khoroshun DV, Musaev DG, Vreven T, Morokuma K (2001) Organometallics 20:2007

    Google Scholar 

  45. Ramos J, Cruz V, Muńoz-Escalona A, Martínez-Salazar J (2002) Polymer 43:3635

    Google Scholar 

  46. Deng L, Ziegler T, Woo TK, Margl P, Fang L (1998) Organometallics 17:3240

    Google Scholar 

  47. Chan MSW, Deng L, Ziegler T (2000) Organometallics 19:2741

    Google Scholar 

  48. Vyboishchikov SF, Musaev, DG, Froese RDJ, Morokuma K (2001) Organometallics 20:309

    Google Scholar 

  49. Lanza G, Fragala IL, Marks TJ (1998) J Am Chem Soc 120:8257

    Google Scholar 

  50. Xu Z, Vanka K, Firman T, Michalak A, Zurek E, Zhu C, Ziegler T (2002) 21:2444

    Google Scholar 

  51. Cavallo L, Guerra G, Vacatello M, Corradini P (1991) Macromolecules 24:1784

    Google Scholar 

  52. Guerra G, Cavallo L, Moscardi G, Vacatello M, Corradini P (1994) J Am Chem Soc 116:2988

    Google Scholar 

  53. Hart JR, Rappe AK (1993) J Am Chem Soc 115:6159

    Google Scholar 

  54. Kawamura-Kuribayashi H, Koga N, Morokuma K (1992) J Am Chem Soc 114:8687

    Google Scholar 

  55. Moscardi G, Resconi L, Cavallo L (2001) Organometallics 20:1918

    Google Scholar 

  56. Guerra G, Longo P, Corradini P, Cavallo L (1999) J Am Chem Soc 121:8651

    Google Scholar 

  57. Longo P, Grisi F, Guerra G, Cavallo L (2000) Macromolecules 33:4647

    Google Scholar 

  58. Longo P, Pragliola S, Milano G, Guerra G (2003) J Am Chem Soc 125:4799

    Google Scholar 

  59. Busico V, Castelli VVA, Aprea P, Cipullo R, Segre A, Talarico G, Vacatello M (2003) J Am Chem Soc 125:5451

    Google Scholar 

  60. Milano G, Cavallo L, Guerra G (2002) J Am Chem Soc 124:13368

    Google Scholar 

  61. Talarico G, Busico V, Cavallo L (2003) J Am Chem Soc 125:7172

    Google Scholar 

  62. Osborn JA, Jardine FH, Young JF, Wilkinson G (1966) J Chem Soc A 1711

    Google Scholar 

  63. Knowles WS, Sabacky MJ (1968) J Chem Soc Chem Commun 1445

    Google Scholar 

  64. Horner L, Siegel H, Büthe H (1968) Angew Chem Int Ed Engl 7:942

    Google Scholar 

  65. Dang TP, Kagan HB (1972) J Am Chem Soc 94:6429

    Google Scholar 

  66. Miyashita A, Yasuda A, Takaya H, Toriumi K, Ito T, Souchi T, Noyori R (1980) J Am Chem Soc 102:7932

    Google Scholar 

  67. Burk MJ (1991) J Am Chem Soc 113:8518

    Google Scholar 

  68. Knowles WS (1983) Acc Chem Res 16:106

    Google Scholar 

  69. Chan ASC, Halpern J (1980) J Am Chem Soc 102:838

    Google Scholar 

  70. Brown JM, Parker D (1982) Organometallics 1:950

    Google Scholar 

  71. Armstrong SK, Brown JM, Burk MJ (1993) Tetrahedron Lett 34:879

    Google Scholar 

  72. Gridnev ID, Yasutake M, Higashi N, Imamoto T (2001) J Am Chem Soc 123:5268

    Google Scholar 

  73. Landis CR, Hilfenhaus P, Feldgus S (1999) J Am Chem Soc 121:8741

    Google Scholar 

  74. Feldgus S, Landis C (2002) In: Maseras F, Lledós A (eds) Computational modeling of homogeneous catalysis. Kluwer, Dordrecht, p 107

    Google Scholar 

  75. Landis CR, Hilfenhaus P, Feldgus S (1999) J Am Chem Soc 121:8741

    Google Scholar 

  76. Esteruelas MA, Oro LA (1998) Chem Rev 98:577

    Google Scholar 

  77. Daniel D, Koga N, Han J, Fu XY, Morokuma K (1988) J Am Chem Soc 110:3773

    Google Scholar 

  78. Gridnev ID, Higashi N, Asakura K, Imamoto T (2001) Adv Synth Catal 343:118

    Google Scholar 

  79. Feldgus S, Landis CR (2000) J Am Chem Soc 122:12714

    Google Scholar 

  80. Landis CR, Feldgus S (2000) Angew Chem Int Ed Engl 39:2863

    Google Scholar 

  81. Feldgus S, Landis CR (2001) Organometallics 20:2374

    Google Scholar 

  82. Sharpless KB (2002) Angew Chem Int Ed Engl 41:2024

    Google Scholar 

  83. Kolb HC, VanNieuwenhze MS, Sharpless KB (1994) Chem Rev 94:2483

    Google Scholar 

  84. (a) Corey EJ, Noe, MC, Sarshar, S (1993) J Am Chem Soc 115:3828; (b) Corey EJ, Noe MC (1996) J Am Chem Soc 118:11038

    Google Scholar 

  85. (a) Göble T, Sharpless KB (1993) Angew Chem Int Ed Engl 32:1329; (b) Norrby PO, Becker H, Sharpless KB (1996) J Am Chem Soc 118:35

    Google Scholar 

  86. (a) Dapprich S, Ujaque G, Maseras F, Lledós A, Musaev DG, Morokuma K (1996) J Am Chem Soc 118:11660; (b) Pidun U, Boehme C, Frenking G (1996) Angew Chem Int Ed 35:2817; (c) Torrent M, Deng L, Duran M, Solà M, Ziegler T (1997) Organometallics 16:13; (d) Del Monte AJ, Haller J, Houk KN, Sharpless KB, Singleton DA, Strassner T, Thomas AA (1997) J Am Chem Soc 119:9907

    Google Scholar 

  87. Deubel DV, Frenking G (2003) Acc Chem Res 36:645

    Google Scholar 

  88. Deubel DV, Schlecht S, Frenking G (2001) J Am Chem Soc 123:10085

    Google Scholar 

  89. Gable KP, Zhuravlev FA (2002) J Am Chem Soc 124:3970

    Google Scholar 

  90. Ujaque G, Maseras F, Lledós A (2003) Eur J Org Chem 5:833

    Google Scholar 

  91. Norrby P-O, Rasmussen T, Haller J, Strassner T, Houk KN (1999) J Am Chem Soc 121:10186

    Google Scholar 

  92. (a) Norrby P-O, Liljefors T (1998) J Comput Chem 19:1146 (b) Norrby P-O (1999) In: Truhlar DG, Morokuma K (eds) Transition state modeling for catalysis, ACS Symposium Series, No 721. ACS, Washington DC, p 163

    Google Scholar 

  93. (a) Moitessier NN, Maigret B, Chretien F, Chapleur Y (2000) Eur J Org Chem 995; (b) Moitessier N, Henry C, Len C, Chapleur Y (2002) J Org Chem 67:7275

    Google Scholar 

  94. (a) Ujaque G, Maseras F, Lledós A (1996) Theor Chim Acta 94:67; (b) Ujaque G Maseras F, Lledós A (1997) J Org Chem 62:7892

    Google Scholar 

  95. Ujaque G, Maseras F, Lledós A (1999) J Am Chem Soc 121:1317

    Google Scholar 

  96. Kolb HC, Andersson PG, Sharpless KB (1994) J Am Chem Soc 116:1278

    Google Scholar 

  97. Drudis-Solé G, Ujaque G, Maseras F, Lledós A (2004) Chem Eur J (submitted)

    Google Scholar 

  98. Corey EJ, Noe MC (1993) J Am Chem Soc 115:12579

    Google Scholar 

  99. Leach AF (2001) Molecular modelling, principles and applications, 2nd edn. Pearson, Harlow, UK

    Google Scholar 

  100. Nishio M, Hirota M, Umezawa Y (1999) The C-H/π interaction: evidence, nature and consequences. Wiley-VCH, New York

    Google Scholar 

  101. Pratt LR, Pohorille A (2002) Chem Rev 102:2671

    Google Scholar 

  102. van Leeuwen PWNM, Claver C (2000) (eds) Rhodium catalyzed hydroformylation. Kluwer, Dordrecht

    Google Scholar 

  103. Herrmann WA, Cornils B (1997) Angew Chem Int Edit 36:1047

    Google Scholar 

  104. Evans D, Osborn JA, Wilkinson G (1968) J Chem Soc (A) 3133

    Google Scholar 

  105. (a) Grima JP, Choplin F, Kaufman G, (1977) J Organomet Chem 129:221; (b) Antolovic D, Davidson ER (1987) J Am Chem Soc 109:5828; (c) Veillard A, Daniel C, Rohmer M-M (1990) J Phys Chem 94:5556

    Google Scholar 

  106. Versluis L, Ziegler T, Fan L (1990) Inorg Chem 29:4530

    Google Scholar 

  107. Pidun U, Frnking G (1998) Chem Eur J 4:522

    Google Scholar 

  108. Matsubara T, Koga N, Ding Y, Musaev DG, Morokuma K (1997) Organometallics 16:1065

    Google Scholar 

  109. Decker SA, Cundari TR (2001) Organometallics 20:2827

    Google Scholar 

  110. Rocha WR, de Almeida WB (2000) Int J Quantum Chem 78:42

    Google Scholar 

  111. Castonguay LA, Rappe AK, Casewit CJ (1991) J Am Chem Soc 113:7177

    Google Scholar 

  112. (a) Gleich D, Schmid R, Herrmann, WA (1998) Organometallics 17:2141; (b) Gleich D, Schmid R, Herrmann, WA (1998) Organometallics 17:4828

    Google Scholar 

  113. Casey CP, Petrovich LM (1995) J Am Chem Soc 117:6007

    Google Scholar 

  114. Gleich D, Herrmann WA (1999) Organometallics 18:4354

    Google Scholar 

  115. Carbó JJ, Maseras F, Bo C, van Leeuwen PWNM (2001) J Am Chem Soc 123:7630

    Google Scholar 

  116. Carbó JJ, Maseras F, Bo C (2002) In: Maseras F, Lledós A (eds) Computational modeling of homogeneous catalysis. Kluwer, Dordrecht, p 161

    Google Scholar 

  117. Decker SA, Cundari TR (2001) J Organomet Chem 635:132

    Google Scholar 

  118. Decker SA, Cundari TR (2002) New J Chem 26:129

    Google Scholar 

  119. Landis RC, Uddin J (2002) J Chem Soc Dalton Trans 729

    Google Scholar 

  120. (a) Goldfuss B, Steigelmann M, Khan SI, Houk KN (2000) J Org Chem 65:77; (b) Goldfuss B, Steigelmann M, Rominger F (2000) Eur J Org Chem 1785

    Google Scholar 

  121. Vázquez J, Pericàs MA, Maseras F, Lledós A (2000) J Org Chem 65:7303

    Google Scholar 

  122. Cavallo L, Solà M (2001) J Am Chem Soc 123:12294

    Google Scholar 

  123. Daura-Oller E, Poblet JM, Bo C (2003) Dalton T 92

    Google Scholar 

  124. Jacobsen H, Cavallo L (2001) Chem Eur J 7:800

    Google Scholar 

  125. Tobisch S, Ziegler T (2002) J Am Chem Soc 124:13290

    Google Scholar 

  126. Adlhart C, Chen P (2002) Angew Chem Int Edit 41:4484

    Google Scholar 

  127. Magistrato A, Togni A, Rothlisberger U, Woo TK (2002) In: Maseras F, Lledós A (eds) Computational modeling of homogeneous catalysis. Kluwer, Dordrecht, p 213

    Google Scholar 

  128. Vázquez J, Goldfuss B, Helmchen G (2002) J Organomet Chem 641:67

    Google Scholar 

  129. Magistrato A, Pregosin PS, Albinati A, Rothlisberger U (2001) Organometallics 20:4178

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feliu Maseras .

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag

About this chapter

Cite this chapter

Ujaque, G., Maseras, F. (2004). Applications of Hybrid DFT/Molecular Mechanics to Homogeneous Catalysis. In: Principles and Applications of Density Functional Theory in Inorganic Chemistry I. Structure and Bonding, vol 112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b97938

Download citation

  • DOI: https://doi.org/10.1007/b97938

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21860-9

  • Online ISBN: 978-3-540-40924-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics