Skip to main content

Part of the book series: Topics in Current Genetics ((TCG,volume 9))

Abstract

Regulation of the water permeability of the apical plasma membrane in collecting duct principal cells is essential for the regulation of renal water excretion, and thus, the regulation of body water balance. The water permeability is partly regulated by trafficking of aquaporin (AQP2) containing vesicles between an intracellular reservoir and the apical plasma membrane. Insertion of AQP2 molecules in the apical plasma membrane is induced by vasopressin binding to the V2-receptor at the basolateral side of principal cells. This activates G-proteins, which stimulate adenylyl cyclase resulting in increased intracellular cAMP-concentration and activation of Protein Kinase A (PKA). AQP2 contains a PKA consensus site at ser256, and phosphorylation of this serine in three out of four AQP2-molecules in an AQP2 homotetramer is involved in the regulated translocation of AQP2 to the apical plasma membrane. The elements of this cAMP mediated pathway, including the possible role of scaffolding A Kinase Anchoring Proteins (AKAPs), is still a major area of research. However, a number of other pathways, many of which are believed to relate to changes in the cortical actin network of the principal cells, are activated during vasopressin induced AQP2-trafficking. The purpose of this review is to present an overview of the currently known cellular signalling pathways and molecular mechanisms involved in controlling the abundance of AQP2 molecules in the apical plasma membrane according to the physiological needs of the body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Agre P, King LS, Yasui M, Guggino WB, Ottersen OP, Fujiyoshi Y, Engel A, Nielsen S (2002) Aquaporin water channels–from atomic structure to clinical medicine. J Physiol 542:3-16

    Article  PubMed  CAS  Google Scholar 

  • 2. Bajjalieh SM, Scheller RH (1995) The biochemistry of neurotransmitter secretion. J Biol Chem 270:1971-1974

    Article  PubMed  CAS  Google Scholar 

  • 3. Breyer MD, Breyer RM (2001) G protein-coupled prostanoid receptors and the kidney. Annu Rev Physiol 63:579-605

    Article  PubMed  CAS  Google Scholar 

  • 4. Brown D (2003) The ins and outs of aquaporin-2 trafficking. Am J Physiol Renal Physiol 284:F893-F901

    PubMed  CAS  Google Scholar 

  • 5. Brown D, Orci L (1983) Vasopressin stimulates formation of coated pits in rat kidney collecting ducts. Nature 302:253-255

    Article  PubMed  CAS  Google Scholar 

  • 6. Burnatowska-Hledin M, Zhao P, Capps B, Poel A, Parmelee K, Mungall C, Sharangpani A, Listenberger L (2000) VACM-1, a cullin gene family member, regulates cellular signaling. Am J Physiol Cell Physiol 279:C266-C273

    PubMed  CAS  Google Scholar 

  • 7. Burnatowska-Hledin MA, Spielman WS, Smith WL, Shi P, Meyer JM, Dewitt DL (1995) Expression cloning of an AVP-activated, calcium-mobilizing receptor from rabbit kidney medulla. Am J Physiol 268:F1198-F1210

    PubMed  CAS  Google Scholar 

  • 8. Byrd PJ, Stankovic T, McConville CM, Smith AD, Cooper PR, Taylor AM (1997) Identification and analysis of expression of human VACM-1, a cullin gene family member located on chromosome 11q22-23. Genome Res 7:71-75

    Article  PubMed  CAS  Google Scholar 

  • 9. Ceremuga TE, Yao XL, McCabe JT (2001) Vasopressin-activated calcium-mobilizing (VACM-1) receptor mRNA is present in peripheral organs and the central nervous system of the laboratory rat. Endocr Res 27:433-445

    Article  PubMed  CAS  Google Scholar 

  • 10. Ceremuga TE, Yao XL, Xia Y, Mukherjee D, McCabe JT (2003) Osmotic stress increases cullin-5 (cul-5) mRNA in the rat cerebral cortex, hypothalamus and kidney. Neurosci Res 45:305-311

    Article  PubMed  CAS  Google Scholar 

  • 11. Chevalier J, Bourguet J, Hugon JS (1974) Membrane associated particles: distribution in frog urinary bladder epithelium at rest and after oxytocin treatment. Cell Tissue Res 152:129-140

    Article  PubMed  CAS  Google Scholar 

  • 12. Chou CL, de Lanerolle P, Knepper M (2001) Roles of actin, myosins and myosin light chain kinase in aquaporin-2 (AQP-2) trafficking (abstract). J Am Soc Nephrol 12:14A

    Google Scholar 

  • 13. Chou CL, Rapko SI, Knepper MA (1998) Phosphoinositide signaling in rat inner medullary collecting duct. Am J Physiol 274:F564-F572

    PubMed  CAS  Google Scholar 

  • 14. Chou CL, Yip KP, Michea L, Kador K, Ferraris JD, Wade JB, Knepper MA (2000) Regulation of aquaporin-2 trafficking by vasopressin in the renal collecting duct. Roles of ryanodine-sensitive Ca2+ stores and calmodulin. J Biol Chem 275:36839-36846

    Article  PubMed  CAS  Google Scholar 

  • 15. Christensen BM, Marples D, Jensen UB, Frokiaer J, Sheikh-Hamad D, Knepper M, Nielsen S (1998) Acute effects of vasopressin V2-receptor antagonist on kidney AQP2 expression and subcellular distribution. Am J Physiol 275:F285-F297

    PubMed  CAS  Google Scholar 

  • 16. Christensen BM, Zelenina M, Aperia A, Nielsen S (2000) Localization and regulation of PKA-phosphorylated AQP2 in response to V(2)-receptor agonist/antagonist treatment. Am J Physiol Renal Physiol 278:F29-F42

    PubMed  CAS  Google Scholar 

  • 17. Ding GH, Franki N, Condeelis J, Hays RM (1991) Vasopressin depolymerizes F-actin in toad bladder epithelial cells. Am J Physiol 260:C9-C16

    PubMed  CAS  Google Scholar 

  • 18. Dousa TP (1994) Cyclic-3’,5’-nucleotide phosphodiesterases in the cyclic adenosine monophosphate (cAMP)-mediated actions of vasopressin. Semin Nephrol 14:333-340

    PubMed  CAS  Google Scholar 

  • 19. Dousa TP, Sands H, Hechter O (1972) Cyclic AMP-dependent reversible phosphorylation of renal medullary plasma membrane protein. Endocrinology 91:757-763

    Article  PubMed  CAS  Google Scholar 

  • 20. Ecelbarger CA, Chou CL, Lolait SJ, Knepper MA, DiGiovanni SR (1996) Evidence for dual signaling pathways for V2 vasopressin receptor in rat inner medullary collecting duct. Am J Physiol 270:F623-F633

    PubMed  CAS  Google Scholar 

  • 21. Edwards RM, Jackson BA, Dousa TP (1981) ADH-sensitive cAMP system in papillary collecting duct: effect of osmolality and PGE2. Am J Physiol 240:F311-F318

    PubMed  CAS  Google Scholar 

  • 22. Edwards RM, Spielman WS (1994) Adenosine A1 receptor-mediated inhibition of vasopressin action in inner medullary collecting duct. Am J Physiol 266:F791-F796

    PubMed  CAS  Google Scholar 

  • 23. Flamion B, Spring KR (1990) Water permeability of apical and basolateral cell membranes of rat inner medullary collecting duct. Am J Physiol 259:F986-F999

    PubMed  CAS  Google Scholar 

  • 24. Foster LJ, Yeung B, Mohtashami M, Ross K, Trimble WS, Klip A (1998) Binary interactions of the SNARE proteins syntaxin-4, SNAP23, and VAMP-2 and their regulation by phosphorylation. Biochemistry 37:11089-11096

    Article  PubMed  CAS  Google Scholar 

  • 25. Frische S, Chou CL, Knepper M, Nielsen S (2003) Immunohistochemical localization of myosin IIb, Va and Vb in rat kidney collecting duct (abstract). J Am Soc Nephrol 14:309A

    Google Scholar 

  • 26. Fushimi K, Sasaki S, Marumo F (1997) Phosphorylation of serine 256 is required for cAMP-dependent regulatory exocytosis of the aquaporin-2 water channel. J Biol Chem 272:14800-14804

    Article  PubMed  CAS  Google Scholar 

  • 27. Fushimi K, Uchida S, Hara Y, Hirata Y, Marumo F, Sasaki S (1993) Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature 361:549-552

    Article  PubMed  CAS  Google Scholar 

  • 28. Gapstur SM, Homma S, Dousa TP (1988) cAMP-binding proteins in medullary tubules from rat kidney: effect of ADH. Am J Physiol 255:F292-F300

    PubMed  CAS  Google Scholar 

  • 29. Gustafson CE, Katsura T, McKee M, Bouley R, Casanova JE, Brown D (2000) Recycling of AQP2 occurs through a temperature- and bafilomycin-sensitive trans-Golgi-associated compartment. Am J Physiol Renal Physiol 278:F317-F326

    PubMed  CAS  Google Scholar 

  • 30. Hawk CT, Kudo LH, Rouch AJ, Schafer JA (1993) Inhibition by epinephrine of AVP- and cAMP-stimulated Na+ and water transport in Dahl rat CCD. Am J Physiol 265:F449-F460

    PubMed  CAS  Google Scholar 

  • 31. Hayashi M, Sasaki S, Tsuganezawa H, Monkawa T, Kitajima W, Konishi K, Fushimi K, Marumo F, Saruta T (1994) Expression and distribution of aquaporin of collecting duct are regulated by vasopressin V2 receptor in rat kidney. J Clin Invest 94:1778-1783

    Article  PubMed  CAS  Google Scholar 

  • 32. Hays RM, Ding GH, Franki N (1987) Morphological aspects of the action of ADH. Kidney Int Suppl 21:S51-S55

    PubMed  CAS  Google Scholar 

  • 33. Hays RM, Franki N, Simon H, Gao Y (1994) Antidiuretic hormone and exocytosis: lessons from neurosecretion. Am J Physiol 267:C1507-C1524

    PubMed  CAS  Google Scholar 

  • 34. Humbert F, Montesano R, Grosso A, de Sousa RC, Orci L (1977) Particle aggregates in plasma and intracellular membranes of toad bladder (granular cell). Experientia 33:1364-1367

    Article  PubMed  CAS  Google Scholar 

  • 35. Inoue T, Nielsen S, Mandon B, Terris J, Kishore BK, Knepper MA (1998) SNAP-23 in rat kidney: colocalization with aquaporin-2 in collecting duct vesicles. Am J Physiol 275:F752-F760

    PubMed  CAS  Google Scholar 

  • 36. Jo I, Harris HW, Amendt-Raduege AM, Majewski RR, Hammond TG (1995) Rat kidney papilla contains abundant synaptobrevin protein that participates in the fusion of antidiuretic hormone-regulated water channel-containing endosomes in vitro. Proc Natl Acad Sci USA 92:1876-1880

    Article  PubMed  CAS  Google Scholar 

  • 37. Kachadorian WA, Ellis SJ, Muller J (1979) Possible roles for microtubules and microfilaments in ADH action on toad urinary bladder. Am J Physiol 236:F14-F20

    PubMed  CAS  Google Scholar 

  • 38. Kachadorian WA, Levine SD, Wade JB, Di Scala VA, Hays RM (1977) Relationship of aggregated intramembranous particles to water permeability in vasopressin-treated toad urinary bladder. J Clin Invest 59:576-581

    Article  PubMed  CAS  Google Scholar 

  • 39. Kamsteeg EJ, Heijnen I, van Os CH, Deen PM (2000) The subcellular localization of an aquaporin-2 tetramer depends on the stoichiometry of phosphorylated and nonphosphorylated monomers. J Cell Biol 151:919-930

    Article  PubMed  CAS  Google Scholar 

  • 40. Katsura T, Ausiello DA, Brown D (1996) Direct demonstration of aquaporin-2 water channel recycling in stably transfected LLC-PK1 epithelial cells. Am J Physiol 270:F548-F553

    PubMed  CAS  Google Scholar 

  • 41. Katsura T, Gustafson CE, Ausiello DA, Brown D (1997) Protein kinase A phosphorylation is involved in regulated exocytosis of aquaporin-2 in transfected LLC-PK1 cells. Am J Physiol 272:F817-F822

    PubMed  CAS  Google Scholar 

  • 42. Klussmann E, Edemir B, Pepperle B, Tamma G, Henn V, Klauschenz E, Hundsrucker C, Maric K, Rosenthal W (2001a) Ht31: the first protein kinase A anchoring protein to integrate protein kinase A and Rho signaling. FEBS Lett 507:264-268

    Article  PubMed  CAS  Google Scholar 

  • 43. Klussmann E, Maric K, Rosenthal W (2000) The mechanisms of aquaporin control in the renal collecting duct. Rev Physiol Biochem Pharmacol 141:33-95

    Article  PubMed  CAS  Google Scholar 

  • 44. Klussmann E, Tamma G, Lorenz D, Wiesner B, Maric K, Hofmann F, Aktories K, Valenti G, Rosenthal W (2001b) An inhibitory role of Rho in the vasopressin-mediated translocation of aquaporin-2 into cell membranes of renal principal cells. J Biol Chem 276:20451-20457

    Article  PubMed  CAS  Google Scholar 

  • 45. Knepper MA, Nielsen S, Chou CL, DiGiovanni SR (1994) Mechanism of vasopressin action in the renal collecting duct. Semin Nephrol 14:302-321

    PubMed  CAS  Google Scholar 

  • 46. Kurokawa K, Massry SG (1973) Interaction between catecholamines and vasopressin on renal medullary cyclic AMP of rat. Am J Physiol 225:825-829

    PubMed  CAS  Google Scholar 

  • 47. Kuwahara M, Fushimi K, Terada Y, Bai L, Marumo F, Sasaki S (1995) cAMP-dependent phosphorylation stimulates water permeability of aquaporin-collecting duct water channel protein expressed in Xenopus oocytes. J Biol Chem 270:10384-10387

    Article  PubMed  CAS  Google Scholar 

  • 48. Lande MB, Donovan JM, Zeidel ML (1995) The relationship between membrane fluidity and permeabilities to water, solutes, ammonia, and protons. J Gen Physiol 106:67-84

    Article  PubMed  CAS  Google Scholar 

  • 49. Lankford SP, Chou CL, Terada Y, Wall SM, Wade JB, Knepper MA (1991) Regulation of collecting duct water permeability independent of cAMP-mediated AVP response. Am J Physiol 261:F554-F566

    PubMed  CAS  Google Scholar 

  • 50. Li L, Schafer JA (1998) Dopamine inhibits vasopressin-dependent cAMP production in the rat cortical collecting duct. Am J Physiol 275:F62-F67

    PubMed  CAS  Google Scholar 

  • 51. Liebenhoff U, Rosenthal W (1995) Identification of Rab3-, Rab5a- and synaptobrevin II-like proteins in a preparation of rat kidney vesicles containing the vasopressin-regulated water channel. FEBS Lett 365:209-213

    Article  PubMed  CAS  Google Scholar 

  • 52. Lorenz D, Krylov A, Hahm D, Hagen V, Rosenthal W, Pohl P, Maric K (2003) Cyclic AMP is sufficient for triggering the exocytic recruitment of aquaporin-2 in renal epithelial cells. EMBO Rep 4:88-93

    Article  PubMed  CAS  Google Scholar 

  • 53. Lu H, Sun TX, Bouley R, Blackburn K, McLaughlin M, Brown D (2004) Inhibition of endocytosis causes phosphorylation (S256)-independent plasma membrane accumulation of AQP2. Am J Physiol Renal Physiol 286:F233-F243

    Article  PubMed  CAS  Google Scholar 

  • 54. Mandon B, Chou CL, Nielsen S, Knepper MA (1996) Syntaxin-4 is localized to the apical plasma membrane of rat renal collecting duct cells: possible role in aquaporin-2 trafficking. J Clin Invest 98:906-913

    Article  PubMed  CAS  Google Scholar 

  • 55. Marples D, Knepper MA, Christensen EI, Nielsen S (1995) Redistribution of aquaporin-2 water channels induced by vasopressin in rat kidney inner medullary collecting duct. Am J Physiol 269:C655-C664

    PubMed  CAS  Google Scholar 

  • 56. Marples D, Schroer TA, Ahrens N, Taylor A, Knepper MA, Nielsen S (1998) Dynein and dynactin colocalize with AQP2 water channels in intracellular vesicles from kidney collecting duct. Am J Physiol 274:F384-F394

    PubMed  CAS  Google Scholar 

  • 57. Muto S, Tabei K, Asano Y, Imai M (1985) Dopaminergic inhibition of the action of vasopressin on the cortical collecting tubule. Eur J Pharmacol 114:393-397

    Article  PubMed  CAS  Google Scholar 

  • 58. Nadler SP, Zimpelmann JA, Hebert RL (1992a) Endothelin inhibits vasopressin-stimulated water permeability in rat terminal inner medullary collecting duct. J Clin Invest 90:1458-1466

    Article  PubMed  CAS  Google Scholar 

  • 59. Nadler SP, Zimpelmann JA, Hebert RL (1992b) PGE2 inhibits water permeability at a post-cAMP site in rat terminal inner medullary collecting duct. Am J Physiol 262:F229-F235

    PubMed  CAS  Google Scholar 

  • 60. Nejsum LN, Zelenina M, Aperia A, Frokiaer J, Nielsen S (2003) Dopamine and prostaglandin stimulation and protein kinase A inhibition mediates AQP2 endocytosis in cell culture independent of AQP2 ser256 dephosphorylation (abstract). J Am Soc Nephrol 14:310A

    Article  Google Scholar 

  • 61. Nielsen S, Chou CL, Marples D, Christensen EI, Kishore BK, Knepper MA (1995a) Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc Natl Acad Sci USA 92:1013-1017

    Article  PubMed  CAS  Google Scholar 

  • 62. Nielsen S, DiGiovanni SR, Christensen EI, Knepper MA, Harris HW (1993a) Cellular and subcellular immunolocalization of vasopressin-regulated water channel in rat kidney. Proc Natl Acad Sci USA 90:11663-11667

    Article  PubMed  CAS  Google Scholar 

  • 63. Nielsen S, Frokiaer J, Marples D, Kwon TH, Agre P, Knepper MA (2002) Aquaporins in the kidney: from molecules to medicine. Physiol Rev 82:205-244

    PubMed  CAS  Google Scholar 

  • 64. Nielsen S, Marples D, Birn H, Mohtashami M, Dalby NO, Trimble M, Knepper M (1995b) Expression of VAMP-2-like protein in kidney collecting duct intracellular vesicles. Colocalization with Aquaporin-2 water channels. J Clin Invest 96:1834-1844

    Article  PubMed  CAS  Google Scholar 

  • 65. Nielsen S, Muller J, Knepper MA (1993b) Vasopressin- and cAMP-induced changes in ultrastructure of isolated perfused inner medullary collecting ducts. Am J Physiol 265:F225-F238

    PubMed  CAS  Google Scholar 

  • 66. Nishimoto G, Zelenina M, Li D, Yasui M, Aperia A, Nielsen S, Nairn AC (1999) Arginine vasopressin stimulates phosphorylation of aquaporin-2 in rat renal tissue. Am J Physiol 276:F254-F259

    PubMed  CAS  Google Scholar 

  • 67. Oishi R, Nonoguchi H, Tomita K, Marumo F (1991) Endothelin-1 inhibits AVP-stimulated osmotic water permeability in rat inner medullary collecting duct. Am J Physiol 261:F951-F956

    PubMed  CAS  Google Scholar 

  • 68. Pearl M, Taylor A (1985) Role of the cytoskeleton in the control of transcellular water flow by vasopressin in amphibian urinary bladder. Biol Cell 55:163-172

    PubMed  CAS  Google Scholar 

  • 69. Risinger C, Bennett MK (1999) Differential phosphorylation of syntaxin and synaptosome-associated protein of 25 kDa (SNAP-25) isoforms. J Neurochem 72:614-624

    Article  PubMed  CAS  Google Scholar 

  • 70. Rouch AJ, Kudo LH (1996) Alpha 2-adrenergic-mediated inhibition of water and urea permeability in the rat IMCD. Am J Physiol 271:F150-F157

    PubMed  CAS  Google Scholar 

  • 71. Sabolic I, Katsura T, Verbavatz JM, Brown D (1995) The AQP2 water channel: effect of vasopressin treatment, microtubule disruption, and distribution in neonatal rats. J Membr Biol 143:165-175

    Article  PubMed  CAS  Google Scholar 

  • 72. Saito M, Tahara A, Sugimoto T (1997a) 1-desamino-8-D-arginine vasopressin (DDAVP) as an agonist on V1b vasopressin receptor. Biochem Pharmacol 53:1711-1717

    Article  PubMed  CAS  Google Scholar 

  • 73. Saito M, Tahara A, Sugimoto T, Abe K, Furuichi K (2000) Evidence that atypical vasopressin V(2) receptor in inner medulla of kidney is V(1B) receptor. Eur J Pharmacol 401:289-296

    Article  PubMed  CAS  Google Scholar 

  • 74. Saito T, Ishikawa SE, Sasaki S, Fujita N, Fushimi K, Okada K, Takeuchi K, Sakamoto A, Ookawara S, Kaneko T, Marumo F (1997b) Alteration in water channel AQP-2 by removal of AVP stimulation in collecting duct cells of dehydrated rats. Am J Physiol 272:F183-F191

    PubMed  CAS  Google Scholar 

  • 75. Sands JM, Naruse M, Baum M, Jo I, Hebert SC, Brown EM, Harris HW (1997) Apical extracellular calcium/polyvalent cation-sensing receptor regulates vasopressin-elicited water permeability in rat kidney inner medullary collecting duct. J Clin Invest 99:1399-1405

    Article  PubMed  CAS  Google Scholar 

  • 76. Schafer DA (2002) Coupling actin dynamics and membrane dynamics during endocytosis. Curr Opin Cell Biol 14:76-81

    Article  PubMed  CAS  Google Scholar 

  • 77. Shimazaki Y, Nishiki T, Omori A, Sekiguchi M, Kamata Y, Kozaki S, Takahashi M (1996) Phosphorylation of 25-kDa synaptosome-associated protein. Possible involvement in protein kinase C-mediated regulation of neurotransmitter release. J Biol Chem 271:14548-14553

    Article  PubMed  CAS  Google Scholar 

  • 78. Simon H, Gao Y, Franki N, Hays RM (1993) Vasopressin depolymerizes apical F-actin in rat inner medullary collecting duct. Am J Physiol 265:C757-C762

    PubMed  CAS  Google Scholar 

  • 79. Snyder HM, Noland TD, Breyer MD (1992) cAMP-dependent protein kinase mediates hydrosmotic effect of vasopressin in collecting duct. Am J Physiol 263:C147-C153

    PubMed  CAS  Google Scholar 

  • 80. Sollner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P, Rothman JE (1993) SNAP receptors implicated in vesicle targeting and fusion. Nature 362:318-324

    Article  PubMed  CAS  Google Scholar 

  • 81. Star RA, Nonoguchi H, Balaban R, Knepper MA (1988) Calcium and cyclic adenosine monophosphate as second messengers for vasopressin in the rat inner medullary collecting duct. J Clin Invest 81:1879-1888

    Article  PubMed  CAS  Google Scholar 

  • 82. Stokes JB 3rd (1985) Modulation of vasopressin-induced water permeability of the cortical collecting tubule by endogenous and exogenous prostaglandins. Miner Electrolyte Metab 11:240-248

    PubMed  CAS  Google Scholar 

  • 83. Sun TX, Van Hoek A, Huang Y, Bouley R, McLaughlin M, Brown D (2002) Aquaporin-2 localization in clathrin-coated pits: inhibition of endocytosis by dominant-negative dynamin. Am J Physiol Renal Physiol 282:F998-F1011

    PubMed  CAS  Google Scholar 

  • 84. Tamma G, Klussmann E, Maric K, Aktories K, Svelto M, Rosenthal W, Valenti G (2001) Rho inhibits cAMP-induced translocation of aquaporin-2 into the apical membrane of renal cells. Am J Physiol Renal Physiol 281:F1092-F1101

    PubMed  CAS  Google Scholar 

  • 85. Tamma G, Klussmann E, Procino G, Svelto M, Rosenthal W, Valenti G (2003a) cAMP-induced AQP2 translocation is associated with RhoA inhibition through RhoA phosphorylation and interaction with RhoGDI. J Cell Sci 116:1519-1525

    Article  PubMed  CAS  Google Scholar 

  • 86. Tamma G, Wiesner B, Furkert J, Hahm D, Oksche A, Schaefer M, Valenti G, Rosenthal W, Klussmann E (2003b) The prostaglandin E2 analogue sulprostone antagonizes vasopressin-induced antidiuresis through activation of Rho. J Cell Sci 116:3285-3294

    Article  PubMed  CAS  Google Scholar 

  • 87. Valenti G, Procino G, Carmosino M, Frigeri A, Mannucci R, Nicoletti I, Svelto M (2000) The phosphatase inhibitor okadaic acid induces AQP2 translocation independently from AQP2 phosphorylation in renal collecting duct cells. J Cell Sci 113 (Pt 11):1985-1992

    PubMed  CAS  Google Scholar 

  • 88. Valenti G, Procino G, Liebenhoff U, Frigeri A, Benedetti PA, Ahnert-Hilger G, Nurnberg B, Svelto M, Rosenthal W (1998) A heterotrimeric G protein of the Gi family is required for cAMP-triggered trafficking of aquaporin 2 in kidney epithelial cells. J Biol Chem 273:22627-22634

    Article  PubMed  CAS  Google Scholar 

  • 89. Verkman AS, Lencer WI, Brown D, Ausiello DA (1988) Endosomes from kidney collecting tubule cells contain the vasopressin-sensitive water channel. Nature 333:268-269

    Article  PubMed  CAS  Google Scholar 

  • 90. Wade JB, Kachadorian WA (1988) Cytochalasin B inhibition of toad bladder apical membrane responses to ADH. Am J Physiol 255:C526-C530

    PubMed  CAS  Google Scholar 

  • 91. Wall SM, Han JS, Chou CL, Knepper MA (1992) Kinetics of urea and water permeability activation by vasopressin in rat terminal IMCD. Am J Physiol 262:F989-F998

    PubMed  CAS  Google Scholar 

  • 92. Yamamoto T, Sasaki S, Fushimi K, Ishibashi K, Yaoita E, Kawasaki K, Marumo F, Kihara I (1995) Vasopressin increases AQP-CD water channel in apical membrane of collecting duct cells in Brattleboro rats. Am J Physiol 268:C1546-C1551

    PubMed  CAS  Google Scholar 

  • 93. Yip KP (2002) Coupling of vasopressin-induced intracellular Ca2+ mobilization and apical exocytosis in perfused rat kidney collecting duct. J Physiol 538:891-899

    Article  PubMed  CAS  Google Scholar 

  • 94. Zelenina M, Christensen BM, Palmer J, Nairn AC, Nielsen S, Aperia A (2000) Prostaglandin E(2) interaction with AVP: effects on AQP2 phosphorylation and distribution. Am J Physiol Renal Physiol 278:F388-F394

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin/Heidelberg

About this chapter

Cite this chapter

Frische, S., Kwon, TH., Frøkiær, J., Nielsen, S. (2004). Aquaporin-2 trafficking. In: Molecular Mechanisms Controlling Transmembrane Transport. Topics in Current Genetics, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b97874

Download citation

  • DOI: https://doi.org/10.1007/b97874

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21837-1

  • Online ISBN: 978-3-540-40912-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics