Skip to main content

Membrane trafficking of yeast transporters: mechanisms and physiological control of downregulation

  • Chapter
  • First Online:
Molecular Mechanisms Controlling Transmembrane Transport

Part of the book series: Topics in Current Genetics ((TCG,volume 9))

Abstract

Of the 125 plasma membrane transporters thus far identified in the yeast S. cerevisiae, a growing number is reported to be subject to tight control at membrane trafficking level, in addition to control at transcriptional level. Typical physiological conditions inducing these controls include changes of substrate concentration and availability of alternative nutrients. These changes of conditions often provoke the downregulation of specific transporters eventually accompanied by upregulation of others, which are more appropriate for the new conditions. Downregulation generally involves the onset or acceleration of endocytosis of the transporter and subsequent targeting to the vacuole where it is degraded. In many cases, the same physiological signals also induce diversion of the neosynthesized transporter from the Golgi apparatus to the endosomal/vacuolar degradation pathway without passing through the plasma membrane. In the present review, we first describe the main factors – including the ubiquitin ligase Rsp5p and its partners – involved in downregulation of yeast transporters, at endocytosis and endosomal/vacuolar targeting steps. We then summarize the wide variety of physiological situations reported to induce the downregulation of specific yeast transporters. Finally, we discuss possible mechanisms responsible for a specific transporter to be ubiquitylated and downregulated only under particular conditions. Evidence is accumulating that these mechanisms involve association of the protein with specific lipid environments, possible phosphorylation by protein kinases, and specific binding of the transporter to its own substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Abe F, Iida H (2003) Pressure-induced differential regulation of the two tryptophan permeases Tat1 and Tat2 by ubiquitin ligase Rsp5 and its binding proteins Bul1 and Bul2. Mol Cell Biol 23:7566-7584

    PubMed  CAS  Google Scholar 

  • 2. Abriel H, Kamynina E, Horisberger J-D, Staub O (2000) Regulation of the cardiac voltage-gated Na+ channel (rH1) by the ubiquitin-protein ligase Nedd4. FEBS Lett 466:377-380

    PubMed  CAS  Google Scholar 

  • 3. Aguilar RC, Watson HA, Wendland B (2003) The yeast Epsin Ent1 is recruited to membranes through multiple independent interactions. J Biol Chem 278:10737-10743

    PubMed  CAS  Google Scholar 

  • 4. Ahmad M, Bussey H (1988) Topology of membrane insertion in vitro and plasma membrane assembly in vivo of the yeast arginine permease. Mol Microbiol 2:627-635

    PubMed  CAS  Google Scholar 

  • 5. Amerik AY, Nowak J, Swaminathan S, Hochstrasser M (2000) The Doa4 deubiquitinating enzyme is functionally linked to the vacuolar protein-sorting and endocytic pathways. Mol Biol Cell 11:3365-3380

    PubMed  CAS  Google Scholar 

  • 6. Arvan P, Zhao X, Ramos-Castaneda J, Chang A (2002) Secretory pathway quality control operating in Golgi, plasmalemmal, and endosomal systems. Traffic 3:771-780

    PubMed  CAS  Google Scholar 

  • 7. Baggett JJ, Wendland B (2001) Clathrin function in yeast endocytosis. Traffic 2:297-302

    PubMed  CAS  Google Scholar 

  • 8. Bagnat M, Chang A, Simons K (2001) Plasma membrane proton ATPase pma1p requires raft association for surface delivery in yeast. Mol Biol Cell 12:4129-4138

    PubMed  CAS  Google Scholar 

  • 9. Beaudenon SL, Huacani MR, Wang G, McDonnell DP, Huibregtse JM (1999) Rsp5 ubiquitin-protein ligase mediates DNA damage-induced degradation of the large subunit of RNA polymerase II in Saccharomyces cerevisiae. Mol Cell Biol 19:6972-6979

    PubMed  CAS  Google Scholar 

  • 10. Beck T, Hall MN (1999) The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402:689-692

    PubMed  CAS  Google Scholar 

  • 11. Beck T, Schmidt A, Hall MN (1999) Starvation induces vacuolar targeting and degradation of the tryptophan permease in yeast. J Cell Biol 146:1227-1238

    PubMed  CAS  Google Scholar 

  • 12. Bilodeau PS, Urbanowski JL, Winistorfer SC, Piper RC (2002) The Vps27p Hse1p complex binds ubiquitin and mediates endosomal protein sorting. Nat Cell Biol 4:534-539

    PubMed  CAS  Google Scholar 

  • 13. Bilodeau PS, Winistorfer SC, Kearney WR, Robertson AD, Piper RC (2003) Vps27-Hse1 and ESCRT-I complexes cooperate to increase efficiency of sorting ubiquitinated proteins at the endosome. J Cell Biol 163:237-243

    PubMed  CAS  Google Scholar 

  • 14. Blondel MO, Morvan J, Dupré S, Urban-Grimal D, Haguenauer-Tsapis R, Volland C (2004) Direct sorting of the yeast uracil permease to the endosomal system is controlled by uracil binding and Rsp5p-dependent ubiquitylation. Mol Biol Cell 15:884-895

    Google Scholar 

  • 15. Bonifacino JS, Traub LM (2003) Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 72:395-447

    PubMed  CAS  Google Scholar 

  • 16. Brondijk TH, van der Rest ME, Pluim D, de Vries Y, Stingl K, Poolman B, Konings WN (1998) Catabolite inactivation of wild-type and mutant maltose transport proteins in Saccharomyces cerevisiae. J Biol Chem 273:15352-15357

    PubMed  CAS  Google Scholar 

  • 17. Buckley KM, Melikian HE, Provoda CJ, Waring MT (2000) Regulation of neuronal function by protein trafficking: a role for the endosomal pathway. J Physiol 525:11-19

    PubMed  CAS  Google Scholar 

  • 18. Buziol S, Becker J, Baumeister A, Jung S, Mauch K, Reuss M, Boles E (2002) Determination of in vivo kinetics of the starvation-induced Hxt5 glucose transporter of Saccharomyces cerevisiae. FEMS Yeast Res 2:283-291

    PubMed  CAS  Google Scholar 

  • 19. Chang A, Cheang S, Espanel X, Sudol M (2000) Rsp5 WW domains interact directly with the carboxyl-terminal domain of RNA polymerase II. J Biol Chem 275:20562-20571

    PubMed  CAS  Google Scholar 

  • 20. Chang A, Slayman CW (1991) Maturation of the yeast plasma membrane [H+]ATPase involves phosphorylation during intracellular transport. J Cell Biol 115:289-295

    PubMed  CAS  Google Scholar 

  • 21. Chen EJ, Kaiser CA (2003) LST8 negatively regulates amino acid biosynthesis as a component of the TOR pathway. J Cell Biol 161:333-347

    PubMed  CAS  Google Scholar 

  • 22. Chen L, Davis NG (2000) Recycling of the yeast a-factor receptor. J Cell Biol 151:731-738

    PubMed  CAS  Google Scholar 

  • 23. Crespo JL, Hall MN (2002) Elucidating TOR signaling and rapamycin action: lessons from Saccharomyces cerevisiae. Microbiol Mol Biol Rev 66:579-591

    PubMed  CAS  Google Scholar 

  • 24. D’Hondt K, Heese-Peck A, Riezman H (2000) Protein and lipid requirements for endocytosis. Annu Rev Genet 34:255-295

    PubMed  Google Scholar 

  • 25. Dancis A, Haile D, Yuan DS, Klausner RD (1994) The Saccharomyces cerevisiae copper transporter protein (Ctr1p). J Biol Chem 269:25660-25667

    PubMed  CAS  Google Scholar 

  • 26. David D, Sundarababu S, Gerst JE (1998) Involvement of long chain fatty acid elongation in the trafficking of secretory vesicles in yeast. J Cell Biol 143:1167-1182

    PubMed  CAS  Google Scholar 

  • 27. Davis NG, Horecka JL, Sprague JGF (1993) Cis- and trans- acting functions required for endocytosis of the yeast pheromone receptors. J Cell Biol 122:53-65

    PubMed  CAS  Google Scholar 

  • 28. De Craene JO, Soetens O, André B (2001) The Npr1 kinase controls biosynthetic and endocytic sorting of the yeast Gap1 permease. J Biol Chem 276:43939-44348

    Google Scholar 

  • 29. Debonneville C, Flores SY, Kamynina E, Plant PJ, Tauxe C, Thomas MA, Munster C, Chraibi A, Pratt JH, Horisberger JD, Pearce D, Loffing J, Staub O (2001) Phosphorylation of Nedd4-2 by Sgk1 regulates epithelial Na(+) channel cell surface expression. EMBO J 20:7052-7059

    PubMed  CAS  Google Scholar 

  • 30. Decottignies A, Owsianik G, Ghislain M (1999) Casein kinase-I-dependent phosphorylation and stability of the yeast multidrug transporter Pdr5p. J Biol Chem 274:37139-37146

    PubMed  CAS  Google Scholar 

  • 31. Dunn R, Hicke L (2001) Domains of the Rsp5 ubiquitin-protein ligase required for receptor-mediated and fluid-phase endocytosis. Mol Biol Cell 12:421-435

    PubMed  CAS  Google Scholar 

  • 32. Dupré S, Haguenauer-Tsapis R (2003) Raft partitioning of the yeast uracil permease during trafficking along the endocytic pathway. Traffic 4:83-96

    PubMed  Google Scholar 

  • 33. Dupré S, Haguenauer-Tsapis R (2001) Deubiquitination step in the endocytic pathway of yeast plasma membrane proteins: crucial role of Doa4p ubiquitin isopeptidase. Mol Cell Biol 21:4482-4494

    PubMed  Google Scholar 

  • 34. Egner R, Kuchler K (1996) The yeast multidrug transporter Pdr5 of the plasma membrane is ubiquitinated prior to endocytosis and degradation in the vacuole. FEBS Lett 378:177-181

    PubMed  CAS  Google Scholar 

  • 35. Egner R, Mahé Y, Pandjaitan R, Kuchler K (1995) Endocytosis and vacuolar degradation of the plasma membrane-localized Pdr5 ATP-binding cassette multidrug transporter in Saccharomyces cerevisiae. Mol Cell Biol 15:5879-5887

    PubMed  CAS  Google Scholar 

  • 36. Ferro-Novick S, Novick P, Field C, Schekman R (1984) Yeast secretory mutants that block the formation of active cell surface enzymes. J Cell Biol 98:35-43

    PubMed  CAS  Google Scholar 

  • 37. Forsberg H, Hammar M, Andreasson C, Moliner A, Ljungdahl PO (2001) Suppressors of ssy1 and ptr3 null mutations define novel amino acid sensor-independent genes in Saccharomyces cerevisiae. Genetics 158:973-988

    PubMed  CAS  Google Scholar 

  • 38. Gagny B, Wiederkehr A, Dumoulin P, Winsor B, Riezman H, Haguenauer-Tsapis R (2000) A novel EH domain protein of Saccharomyces cerevisiae involved in endocytosis. J Cell Sci 113:3309-3319

    PubMed  CAS  Google Scholar 

  • 39. Gajewska B, Kaminska J, Jesionowska A, Martin NC, Hopper AK, Zoladek T (2001) WW domains of Rsp5p define different functions: determination of roles in fluid phase and uracil permease endocytosis in Saccharomyces cerevisiae. Genetics 157:91-101

    PubMed  CAS  Google Scholar 

  • 40. Galan J-M, Haguenauer-Tsapis R (1997) Ubiquitin Lys63 is involved in ubiquitination of a yeast plasma membrane protein. EMBO J 16:5847-5854

    PubMed  CAS  Google Scholar 

  • 41. Galan JM, Cantegrit B, Garnier C, Namy O, Haguenauer-Tsapis R (1997) ”ER degradation” of a mutant yeast plasma membrane protein by the ubiquitin-proteasome pathway. FASEB J 12:315-323

    Google Scholar 

  • 42. Galan JM, Moreau V, André B, Volland C, Haguenauer-Tsapis R (1996) Ubiquitination mediated by the Npi1p/Rsp5p ubiquitin-protein ligase is required for endocytosis of the yeast uracil permease. J Biol Chem 271:10946-10952

    PubMed  CAS  Google Scholar 

  • 43. Garnier C, Blondel MO, Hagenauer-Tsapis R (1996) Membrane topology of the yeast uracil permease. Mol Microbiol 21:1061-1073

    PubMed  CAS  Google Scholar 

  • 44. Gilstring CF, Ljungdahl PO (2000) A method for determining the in vivo topology of yeast polytopic membrane proteins demonstrates that Gap1p fully integrates into the membrane independently of Shr3p. J Biol Chem 275:31488-31495

    PubMed  CAS  Google Scholar 

  • 45. Giorgino F, de Robertis O, Laviola L, Montrone C, Perrini S, McCowen KC, Smith RJ (2000) The sentrin-conjugating enzyme mUbc9 interacts with GLUT4 and GLUT1 glucose transporters and regulates transporter levels in skeletal muscle cells. Proc Natl Acad Sci USA 97:1125-1130

    PubMed  CAS  Google Scholar 

  • 46. Gitan RS, Eide DJ (2000) Zinc-regulated ubiquitin conjugation signals endocytosis of the yeast ZRT1 zinc transporter. Biochem J 346:329-336

    PubMed  CAS  Google Scholar 

  • 47. Gitan RS, Luo H, Rodgers J, Broderius M, Eide D (1998) Zinc-induced inactivation of the yeast ZRT1 zinc transporter occurs through endocytosis and vacuolar degradation. J Biol Chem 273:28617-28624

    PubMed  CAS  Google Scholar 

  • 48. Gitan RS, Shababi M, Kramer M, Eide DJ (2003) A cytosolic domain of the yeast Zrt1 zinc transporter is required for its post-translational inactivation in response to zinc and cadmium. J Biol Chem 278:39558-39564

    PubMed  CAS  Google Scholar 

  • 49. Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373-428

    PubMed  CAS  Google Scholar 

  • 50. Goossens A, de La Fuente N, Forment J, Serrano R, Portillo F (2000) Regulation of yeast H(+)-ATPase by protein kinases belonging to a family dedicated to activation of plasma membrane transporters. Mol Cell Biol 20:7654-7661

    PubMed  CAS  Google Scholar 

  • 51. Graschopf A, Stadler JA, Hoellerer MK, Eder S, Sieghardt M, Kohlwein SD, Schweyen RJ (2001) The yeast plasma membrane protein Alr1 controls Mg2+ homeostasis and is subject to Mg2+-dependent control of its synthesis and degradation. J Biol Chem 276:16216-16222

    PubMed  CAS  Google Scholar 

  • 52. Grenson M (1983a) Inactivation-reactivation process and repression of permease formation regulate several ammonia-sensitive permeases in the yeast Saccharomyces cerevisiae. Eur J Biochem 133:135-139

    PubMed  CAS  Google Scholar 

  • 53. Grenson M (1983b) Study of the positive control of the general amino-acid permease and other ammonia-sensitive uptake systems by the product of the NPR1 gene in the yeast Saccharomyces cerevisiae. Eur J Biochem 133:141-144

    PubMed  CAS  Google Scholar 

  • 54. Grenson M (1992) Amino acid transporters in yeast: structure, function and regulation. In Pont, D (ed.), Molecular Aspects of Transport Proteins. Elsevier Science Publishers B. V, Amsterdam, pp. 219-245.

    Google Scholar 

  • 55. Grenson M, Hou C, Crabeel M (1970) Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. IV. Evidence for a general amino acid permease. J Bacteriol 103:770-777

    PubMed  CAS  Google Scholar 

  • 56. Gurunathan S, David D, Gerst J (2002) Dynamin and clathrin are required for the biogenesis of a distinct class of secretory vesicles in yeast. EMBO J 21:602-614

    PubMed  CAS  Google Scholar 

  • 57. Hampton RY (2002) ER-associated degradation in protein quality control and cellular regulation. Curr Opin Cell Biol 14:476-482

    PubMed  CAS  Google Scholar 

  • 58. Harsay E, Bretscher A (1995) Parallel secretory pathways to the cell surface in yeast. J Cell Biol 131:297-310

    PubMed  CAS  Google Scholar 

  • 59. Harsay E, Schekman R (2002) A subset of yeast vacuolar protein sorting mutants is blocked in one branch of the exocytic pathway. J Cell Biol 156:271-285

    PubMed  CAS  Google Scholar 

  • 60. Hein C, André B (1997) A C-terminal di-leucine motif and nearby sequences are required for NH4(+)-induced inactivation and degradation of the general amino acid permease, Gap1p, of Saccharomyces cerevisiae. Mol Microbiol 24:607-616

    PubMed  CAS  Google Scholar 

  • 61. Hein C, Springael JY, Volland C, Haguenauer-Tsapis R, André B (1995) NPI1, an essential yeast gene involved in induced degradation of Gap1 and Fur4 permeases, encodes the Rsp5 ubiquitin-protein ligase. Mol Microbiol 18:77-87

    PubMed  CAS  Google Scholar 

  • 62. Helliwell SB, Losko S, Kaiser CA (2001) Components of a ubiquitin ligase complex specify polyubiquitination and intracellular trafficking of the general amino acid permease. J Cell Biol 153:649-662

    PubMed  CAS  Google Scholar 

  • 63. Hicke L, Dunn R (2003) Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu Rev Cell Dev Biol 19:141-172

    PubMed  CAS  Google Scholar 

  • 64. Hicke L, Zanolari B, Riezman H (1998) Cytoplasmic tail phosphorylation of the alpha-factor receptor is required for its ubiquitination and internalization. J Cell Biol 141:349-358

    PubMed  CAS  Google Scholar 

  • 65. Hitchcock AL, Auld K, Gygi SP, Silver PA (2003) A subset of membrane-associated proteins is ubiquitinated in response to mutations in the endoplasmic reticulum degradation machinery. Proc Natl Acad Sci USA 100:12735-12740

    PubMed  CAS  Google Scholar 

  • 66. Hoppe T, Matuschewski K, Rape M, Schlenker S, Ulrich HD, Jentsch S (2000) Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 102:577-586

    PubMed  CAS  Google Scholar 

  • 67. Horak J (2003) The role of ubiquitin in down-regulation and intracellular sorting of membrane proteins: insights from yeast. Biochim Biophys Acta 1614:139-155

    PubMed  CAS  Google Scholar 

  • 68. Horak J, Wolf DH (1997) Catabolite inactivation of the galactose transporter in the yeast Saccharomyces cerevisiae: ubiquitination, endocytosis, and degradation in the vacuole. J Bacteriol 179:1541-1549

    PubMed  CAS  Google Scholar 

  • 69. Horak J, Wolf DH (2001) Glucose-induced monoubiquitination of the Saccharomyces cerevisiae galactose transporter is sufficient to signal its internalization. J Bacteriol 183:3083-3088

    PubMed  CAS  Google Scholar 

  • 70. Huang KM, D’Hondt K, Riezman H, Lemmon SK (1999) Clathrin functions in the absence of heterotetrameric adaptors and AP180-related proteins in yeast. EMBO J 18:3897-3908

    PubMed  CAS  Google Scholar 

  • 71. Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O’Shea EK (2003) Global analysis of protein localization in budding yeast. Nature 425:686-691

    PubMed  CAS  Google Scholar 

  • 72. Hung IH, Suzuki M, Yamaguchi Y, Yuan DS, Klausner RD, Gitlin JD (1997) Biochemical characterization of the Wilson disease protein and functional expression in the yeast Saccharomyces cerevisiae. J Biol Chem 272:21461-21466

    PubMed  CAS  Google Scholar 

  • 73. Ikonen E (2001) Roles of lipid rafts in membrane transport. Curr Opin Cell Biol 13:470-477

    PubMed  CAS  Google Scholar 

  • 74. Iraqui I, Vissers S, Bernard F, de Craene JO, Boles E, Urrestarazu A, André B (1999) Amino acid signaling in Saccharomyces cerevisiae: a permease-like sensor of external amino acids and F-Box protein Grr1p are required for transcriptional induction of the AGP1 gene, which encodes a broad-specificity amino acid permease. Mol Cell Biol 19:989-1001

    PubMed  CAS  Google Scholar 

  • 75. Ishida S, Lee J, Thiele DJ, Herskowitz I (2002) Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc Natl Acad Sci USA 99:14298-14302

    PubMed  CAS  Google Scholar 

  • 76. Jauniaux JC, Grenson M (1990) GAP1, the general amino acid permease gene of Saccharomyces cerevisiae. Nucleotide sequence, protein similarity with the other bakers yeast amino acid permeases, and nitrogen catabolite repression. Eur J Biochem 190:39-44

    PubMed  CAS  Google Scholar 

  • 77. Jund R, Weber E, Chevallier MR (1988) Primary structure of the uracil transport protein of Saccharomyces cerevisiae. Eur J Biochem 171:417-424

    PubMed  CAS  Google Scholar 

  • 78. Jurgens G, Geldner N (2002) Protein secretion in plants: from the trans-Golgi network to the outer space. Traffic 3:605-613

    PubMed  CAS  Google Scholar 

  • 79. Kamynina E, Staub O (2002) Concerted action of ENaC, Nedd4-2, and Sgk1 in transepithelial Na(+) transport. Am J Physiol Renal Physiol 283:F377-387

    PubMed  CAS  Google Scholar 

  • 80. Kaouass M, Gamache I, Ramotar D, Audette M, Poulin R (1998) The spermidine transport system is regulated by ligand inactivation, endocytosis, and by the Npr1p Ser/Thr protein kinase in Saccharomyces cerevisiae. J Biol Chem 273:2109-2117

    PubMed  CAS  Google Scholar 

  • 81. Katzmann D, Odorizzi G, Emr S (2002) Receptor downregulation and multivesicular-body sorting. Nat Rev Mol Cell Biol 3:893-905

    PubMed  CAS  Google Scholar 

  • 82. Katzmann DJ, Babst M, Emr SD (2001) Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106:145-155

    PubMed  CAS  Google Scholar 

  • 83. Kim Y, Yun CW, Philpott CC (2002) Ferrichrome induces endosome to plasma membrane cycling of the ferrichrome transporter, Arn1p, in Saccharomyces cerevisiae. EMBO J 21:3632-3642

    PubMed  CAS  Google Scholar 

  • 84. Kipp H, Pichetshote N, Arias IM (2001) Transporters on demand: intrahepatic pools of canalicular ATP binding cassette transporters in rat liver. J Biol Chem 276:7218-7224

    PubMed  CAS  Google Scholar 

  • 85. Kohler JR (2003) Mos10 (Vps60) is required for normal filament maturation in Saccharomyces cerevisiae. Mol Microbiol 49:1267-1285

    PubMed  Google Scholar 

  • 86. Kolling R (2002) Mutations affecting phosphorylation, ubiquitination and turnover of the ABC-transporter Ste6. FEBS Lett 531:548-552

    PubMed  CAS  Google Scholar 

  • 87. Kolling R, Hollenberg CP (1994a) The ABC-transporter Ste6 accumulates in the plasma membrane in a ubiquitinated form in endocytosis mutants. EMBO J 13:3261-3271

    PubMed  CAS  Google Scholar 

  • 88. Kolling R, Hollenberg CP (1994b) The first hydrophobic segment of the ABC-transporter, Ste6, functions as a signal sequence. FEBS Lett 351:155-158

    PubMed  CAS  Google Scholar 

  • 89. Kolling R, Losko S (1997) The linker region of the ABC-transporter Ste6 mediates ubiquitination and fast turnover of the protein. EMBO J 16:2251-2261

    PubMed  CAS  Google Scholar 

  • 90. Kostova Z, Wolf DH (2003) For whom the bell tolls: protein quality control of the endoplasmic reticulum and the ubiquitin-proteasome connection. EMBO J 22:2309-2317

    PubMed  CAS  Google Scholar 

  • 91. Krampe S, Boles E (2002) Starvation-induced degradation of yeast hexose transporter Hxt7p is dependent on endocytosis, autophagy and the terminal sequences of the permease. FEBS Lett 513:193-196

    PubMed  CAS  Google Scholar 

  • 92. Krampe S, Stamm O, Hollenberg CP, Boles E (1998) Catabolite inactivation of the high affinity hexose transporters Hxt6 and Hxt7 of Saccharomyces cerevisiae occurs in the vacuole after internalization by endocytosis. FEBS Lett 441:343-347

    PubMed  CAS  Google Scholar 

  • 93. Kranz A, Kinner A, Kolling R (2001) A family of small coiled-coil-forming proteins functioning at the late endosome in yeast. Mol Biol Cell 12:711-723

    PubMed  CAS  Google Scholar 

  • 94. Kruckeberg AL, Ye L, Berden JA, van Dam K (1999) Functional expression, quantification and cellular localization of the Hxt2 hexose transporter of Saccharomyces cerevisiae tagged with the green fluorescent protein. Biochem J 339 Pt 2:299-307

    Google Scholar 

  • 95. Kuchler K, Dohlman HG, Thorner J (1993) The a-factor transporter (STE6 gene product) and cell polarity in the yeast Saccharomyces cerevisiae. J Cell Biol 120:1203-1215

    PubMed  CAS  Google Scholar 

  • 96. Lai K, Bolognese CP, Swift S, McGraw P (1995) Regulation of inositol transport in Saccharomyces cerevisiae involves inositol-induced changes in permease stability and endocytic degradation in the vacuole. J Biol Chem 270:2525-2534

    PubMed  CAS  Google Scholar 

  • 97. Lai K, McGraw P (1994) Dual control of inositol transport in Saccharomyces cerevisiae by irreversible inactivation of permease and regulation of permease synthesis by INO2, INO4, and OPI1. J Biol Chem 269:2245-2251

    PubMed  CAS  Google Scholar 

  • 98. Lee VH (2000) Membrane transporters. Eur J Pharm Sci 11 Suppl 2:S41-S50

    Google Scholar 

  • 99. Lewis MJ, Nichols BJ, Prescianotto-Baschong C, Riezman H, Pelham HR (2000) Specific retrieval of the exocytic SNARE Snc1p from early yeast endosomes. Mol Biol Cell 11:23-38

    PubMed  CAS  Google Scholar 

  • 100. Li Y, Kane T, Tipper C, Spatrick P, Jenness DD (1999) Yeast mutants affecting possible quality control of plasma membrane proteins. Mol Cell Biol 19:3588-3599

    PubMed  CAS  Google Scholar 

  • 101. Liu XF, Culotta VC (1999a) Mutational analysis of Saccharomyces cerevisiae Smf1p, a member of the Nramp family of metal transporters. J Mol Biol 289:885-891

    PubMed  CAS  Google Scholar 

  • 102. Liu XF, Culotta VC (1999b) Post-translation control of Nramp metal transport in yeast. Role of metal ions and the BSD2 gene. J Biol Chem 274:4863-4868

    PubMed  CAS  Google Scholar 

  • 103. Liu XF, Supek F, Nelson N, Culotta VC (1997) Negative control of heavy metal uptake by the Saccharomyces cerevisiae BSD2 gene. J Biol Chem 272:11763-11669

    PubMed  CAS  Google Scholar 

  • 104. Loayza D, Tam A, Schmidt WK, Michaelis S (1998) Ste6p mutants defective in exit from the endoplasmic reticulum (ER) reveal aspects of an ER quality control pathway in Saccharomyces cerevisiae. Mol Biol Cell 9:2767-2784

    PubMed  CAS  Google Scholar 

  • 105. Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P, Hall MN (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell Biol 10:457-468

    CAS  Google Scholar 

  • 106. Losko S, Kopp F, Kranz A, Kolling R (2001) Uptake of the ATP-binding cassette (ABC) transporter Ste6 into the yeast vacuole is blocked in the doa4 Mutant. Mol Biol Cell 12:1047-1059

    PubMed  CAS  Google Scholar 

  • 107. Lucero P, Lagunas R (1997) Catabolite inactivation of the yeast maltose transporter requires ubiquitin-ligase npi1/rsp5 and ubiquitin-hydrolase npi2/doa4. FEMS Microbiol Lett 147:273-277

    PubMed  CAS  Google Scholar 

  • 108. Lucero P, Moreno E, Lagunas R (2002) Catabolite inactivation of the sugar transporters in Saccharomyces cerevisiae is inhibited by the presence of a nitrogen source. FEMS Yeast Res 1:307-314

    PubMed  CAS  Google Scholar 

  • 109. Lucero P, Penalver E, Vela L, Lagunas R (2000) Monoubiquitination is sufficient to signal internalization of the maltose transporter in Saccharomyces cerevisiae. J Bacteriol 182:241-243

    PubMed  CAS  Google Scholar 

  • 110. Luo WJ, Chang A (1997) Novel genes involved in endosomal traffic in yeast revealed by supression of a targeting-defective plasma membrane ATPase mutant. J Cell Biol 138:731-746

    PubMed  CAS  Google Scholar 

  • 111. Lutsenko S, Kaplan JH (1995) Organization of P-type ATPases: signficance of structural diversity. Biochem 14:15607-15613

    Google Scholar 

  • 112. Malkus P, Jiang F, Schekman R (2002) Concentrative sorting of secretory cargo proteins into COPII-coated vesicles. J Cell Biol 159:915-921

    PubMed  CAS  Google Scholar 

  • 113. Manning BD, Cantley LC (2003) Rheb fills a GAP between TSC and TOR. Trends Biochem Sci 28:573-576

    PubMed  CAS  Google Scholar 

  • 114. Marchal C, Haguenauer-Tsapis R, Urban-Grimal D (1998) A PEST-like sequence mediates phosphorylation and efficient ubiquitination of the yeast uracil permease. Mol Cell Biol 18:314-321

    PubMed  CAS  Google Scholar 

  • 115. Marchal C, Haguenauer-Tsapis R, Urban-Grimal D (2000) Casein kinase I-dependent phosphorylation within a PEST sequence and ubiquitination at nearby lysines, signal endocytosis of yeast uracil permease. J Biol Chem 275:23608-23614

    PubMed  CAS  Google Scholar 

  • 116. Marini AM, André B (2000) In vivo N-glycosylation of the mep2 high-affinity ammonium transporter of Saccharomyces cerevisiae reveals an extracytosolic N-terminus. Mol Microbiol 38:552-564

    PubMed  CAS  Google Scholar 

  • 117. Martinez P, Zvyagilskaya R, Allard P, Persson BL (1998) Physiological regulation of the derepressible phosphate transporter in Saccharomyces cerevisiae. J Bacteriol 180:2253-2256

    PubMed  CAS  Google Scholar 

  • 118. Mason DL, Michaelis S (2002) Requirement of the N-terminal extension for vacuolar trafficking and transport activity of yeast Ycf1p, an ATP-binding cassette transporter. Mol Biol Cell 13:4443-4455

    PubMed  CAS  Google Scholar 

  • 119. Medintz I, Jiang H, Michels C (1998) The role of ubiquitin conjugation in glucose-induced proteolysis of S. cerevisiae maltose permease. J Biol Chem 273:34454-34462

    PubMed  CAS  Google Scholar 

  • 120. Medintz I, Wang X, Hradek T, Michels CA (2000) A PEST-like sequence in the N-terminal cytoplasmic domain of Saccharomyces maltose permease is required for glucose-induced proteolysis and rapid inactivation of transport activity. Biochemistry 182:4518-4526

    Google Scholar 

  • 121. Miller EA, Beilharz TH, Malkus PN, Lee MC, Hamamoto S, Orci L, Schekman R (2003) Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles. Cell 114:497-509

    PubMed  CAS  Google Scholar 

  • 122. Moore RE, Kim Y, Philpott CC (2003) The mechanism of ferrichrome transport through Arn1p and its metabolism in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 100:5664-5669

    PubMed  CAS  Google Scholar 

  • 123. Mukherjee S, Ghosh RN, Maxfield FR (1997) Endocytosis. Physiol Rev 77:759-803

    PubMed  CAS  Google Scholar 

  • 124. Murillas R, Simms KS, Hatakeyama S, Weissman AM, Kuehn MR (2002) Identification of developmentally expressed proteins that functionally interact with Nedd4 ubiquitin ligase. J Biol Chem 277:2897-2907

    PubMed  CAS  Google Scholar 

  • 125. Nikko E, Marini AM, André B (2003) Permease recycling and ubiquitination status reveal a particular role for Bro1 in the multivesicular body pathway. J Biol Chem 278(50):50732-50743

    PubMed  CAS  Google Scholar 

  • 126. Odorizzi G, Katzmann DJ, Babst M, Audhya A, Emr SD (2003) Bro1 is an endosome-associated protein that functions in the MVB pathway in Saccharomyces cerevisiae. J Cell Sci 116:1893-1903

    PubMed  CAS  Google Scholar 

  • 127. Omura F, Kodama Y, Ashikari T (2001a) The basal turnover of yeast branched-chain amino acid permease Bap2p requires its C-terminal tail. FEMS Microbiol Lett 194:207-214

    PubMed  CAS  Google Scholar 

  • 128. Omura F, Kodama Y, Ashikari T (2001b) The N-terminal domain of the yeast permease Bap2p plays a role in its degradation. Biochem Biophys Res Commun 287:1045-1050

    PubMed  CAS  Google Scholar 

  • 129. Omura F, Kodama Y (2003) The Npr1p kinase phosphorylates the N-terminal domain of amino acid permease Bap2p in response to rapamycin. Yeast 20:S142

    Google Scholar 

  • 130. Ooi CE, Rabinovich E, Dancis A, Bonifacino JS, Klausner RD (1996) Copper-dependent degradation of the Saccharomyces cerevisiae plasma membrane copper transporter Ctr1p in the apparent absence of endocytosis. EMBO J 15:3515-3523

    PubMed  CAS  Google Scholar 

  • 131. Paddon C, Loayza D, Vangelista L, Solari R, Michaelis S (1996) Analysis of the localization of STE6/CFTR chimeras in a Saccharomyces cerevisiae model for the cystic fibrosis defect CFTR delta F508. Mol Microbiol 19:1007-1017

    PubMed  CAS  Google Scholar 

  • 132. Paiva S, Kruckeberg A, Casal M (2002) Utilization of green fluorescent protein as a marker for studying the expression and turnover of the monocarboxylate permease Jen1p of Saccharomyces cerevisiae. Biochem J 363:737-744

    PubMed  CAS  Google Scholar 

  • 133. Palmer LK, Wolfe D, Keeley JL, Keil RL (2002) Volatile anesthetics affect nutrient availability in yeast. Genetics 161:563-574

    PubMed  CAS  Google Scholar 

  • 134. Penalver E, Lucero P, Moreno E, Lagunas R (1999) Clathrin and two components of the COPII complex, Sec23p and Sec24p, could be involved in endocytosis of the Saccharomyces cerevisiae maltose transporter. J Bacteriol 181:2555-2563

    PubMed  CAS  Google Scholar 

  • 135. Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, Marsischky G, Roelofs J, Finley D, Gygi SP (2003) A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21:921-926

    PubMed  CAS  Google Scholar 

  • 136. Petersson J, Pattison J, Kruckeberg AL, Berden JA, Persson BL (1999) Intracellular localization of an active green fluorescent protein-tagged Pho84 phosphate permease in Saccharomyces cerevisiae. FEBS Lett 462:37-42

    PubMed  CAS  Google Scholar 

  • 137. Petris MJ, Mercer JF, Culvenor JG, Lockhart P, Gleeson PA, Camakaris J (1996) Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the Golgi apparatus to the plasma membrane: a novel mechanism of regulated trafficking. EMBO J 15:6084-6095

    PubMed  CAS  Google Scholar 

  • 138. Petris MJ, Smith K, Lee J, Thiele DJ (2003) Copper-stimulated endocytosis and degradation of the human copper transporter, hCtr1. J Biol Chem 278:9639-96346

    PubMed  CAS  Google Scholar 

  • 139. Petris MJ, Voskoboinik I, Cater M, Smith K, Kim BE, Llanos RM, Strausak D, Camakaris J, Mercer JF (2002) Copper-regulated trafficking of the Menkes disease copper ATPase is associated with formation of a phosphorylated catalytic intermediate. J Biol Chem 277:46736-46742

    PubMed  CAS  Google Scholar 

  • 140. Piper RC, Luzio JP (2001) Late endosomes: sorting and partitioning in multivesicular bodies. Traffic 2:612-621

    PubMed  CAS  Google Scholar 

  • 141. Plant PJ, Lafont F, Lecat S, Verkade P, Simons K, Rotin D (2000) Apical membrane targeting of Nedd4 is mediated by an association of its C2 domain with annexin XIIIb. J Cell Biol 149:1473-1484

    PubMed  CAS  Google Scholar 

  • 142. Plant PJ, Yeger H, Staub O, Howard P, Rotin D (1997) The C2 domain of the ubiquitin protein ligase Nedd4 mediates Ca2+- dependent plasma membrane localization. J Biol Chem 272:32329-32336

    PubMed  CAS  Google Scholar 

  • 143. Plemper RK, Egner R, Kuchler K, Wolf DH (1998) Endoplasmic reticulum degradation of a mutated ATP-binding cassette transporter Pdr5 proceeds in a concerted action of Sec61 and the proteasome. J Biol Chem 273:32848-32856

    PubMed  CAS  Google Scholar 

  • 144. Portnoy ME, Liu XF, Culotta VC (2000) Saccharomyces cerevisiae expresses three functionally distinct homologues of the nramp family of metal transporters. Mol Cell Biol 20:7893-7902

    PubMed  CAS  Google Scholar 

  • 145. Raasi S, Pickart CM (2003) Rad23 ubiquitin-associated domains (UBA) inhibit 26 S proteasome-catalyzed proteolysis by sequestering lysine 48-linked polyubiquitin chains. J Biol Chem 278:8951-8959

    PubMed  CAS  Google Scholar 

  • 146. Ramamoorthy S, Blakely RD (1999) Phosphorylation and sequestration of serotonin transporters differentially modulated by psychostimulants. Science 285:763-766

    PubMed  CAS  Google Scholar 

  • 147. Riezman H (1998) Downregulation of yeast G protein-coupled receptors. Semin Cell Dev Biol 9:129-134

    PubMed  CAS  Google Scholar 

  • 148. Roberg KJ, Bickel S, Rowley N, Kaiser CA (1997a) Control of amino acid permease sorting in the late secretory pathway of Saccharomyces cerevisiae by SEC13, LST4, LST7 and LST8. Genetics 147:1569-1584

    PubMed  CAS  Google Scholar 

  • 149. Roberg KJ, Rowley N, Kaiser CA (1997b) Physiological regulation of membrane sorting late in the secretory pathway of Saccharomyces cerevisiae. J Cell Biol 137:1469-1482

    PubMed  CAS  Google Scholar 

  • 150. Roth AF, Davis NG (2000) Ubiquitination of the PEST-like endocytosis signal of the yeast a-factor receptor. J Biol Chem 275:8143-8153

    PubMed  CAS  Google Scholar 

  • 151. Rotin D, Staub O, Haguenauer-Tsapis R (2000) Ubiquitination and endocytosis of plasma membrane proteins: role of Nedd4/Rsp5p family of ubiquitin-protein ligases. J Membr Biol 176:1-17

    PubMed  CAS  Google Scholar 

  • 152. Royle SJ, Murrell-Lagnado RD (2003) Constitutive cycling: a general mechanism to regulate cell surface proteins. Bioessays 25:39-46

    PubMed  Google Scholar 

  • 153. Saunders C, Ferrer JV, Shi L, Chen J, Merrill G, Lamb ME, Leeb-Lundberg LM, Carvelli L, Javitch JA, Galli A (2000) Amphetamine-induced loss of human dopamine transporter activity: an internalization-dependent and cocaine-sensitive mechanism. Proc Natl Acad Sci USA 97:6850-6855

    PubMed  CAS  Google Scholar 

  • 154. Schild L, Lu Y, Gautschi I, Schneeberger E, Lifton RP, Rossier BC (1996) Identification of a PY motif in the epithelial Na channel subunits as a target sequence for mutations causing channel activation found in Liddle syndrome. EMBO J 15:2381-2387

    PubMed  CAS  Google Scholar 

  • 155. Schmidt A, Beck T, Koller A, Kunz J, Hall M (1998) The TOR nutrient signalling pathway phosphorylates NPR1 and inhibits turnover of the tryptophan permease. EMBO J 17:6924-6931

    PubMed  CAS  Google Scholar 

  • 156. Schwake M, Friedrich T, Jentsch TJ (2001) An internalization signal in ClC-5, an endosomal Cl-channel mutated in dent’s disease. J Biol Chem 276:12049-12054

    PubMed  CAS  Google Scholar 

  • 157. Séron K, Blondel M-O, Haguenauer-Tsapis R, Volland C (1999) Uracil-induced down regulation of the yeast uracil permease. J Bacteriol 181:1793-1800

    PubMed  Google Scholar 

  • 158. Shcherbik N, Zoladek T, Nickels JT, Haines DS (2003) Rsp5p is required for ER bound Mga2p120 polyubiquitination and release of the processed/tethered transactivator Mga2p90. Curr Biol 13:1227-1233

    PubMed  CAS  Google Scholar 

  • 159. Shih SC, Katzmann DJ, Schnell JD, Sutanto M, Emr SD, Hicke L (2002) Epsins and Vps27p/Hrs contain ubiquitin-binding domains that function in receptor endocytosis. Nat Cell Biol 4:389-393

    PubMed  CAS  Google Scholar 

  • 160. Shih SC, Sloper-Mould KE, Hicke L (2000) Monoubiquitin carries a novel internalization signal that is appended to activated receptors. EMBO J 19:187-198

    PubMed  CAS  Google Scholar 

  • 161. Silve S, Volland C, Garnier C, Jund R, Chevallier MR, Haguenauer-Tsapis R (1991) Membrane insertion of uracil permease, a polytopic yeast plasma membrane protein. Mol Cell Biol 11:1114-1124

    PubMed  CAS  Google Scholar 

  • 162. Siniossoglou S, Pelham HR (2001) An effector of Ypt6p binds the SNARE Tlg1p and mediates selective fusion of vesicles with late Golgi membranes. EMBO J 20:5991-5998

    PubMed  CAS  Google Scholar 

  • 163. Soetens O, De Craene JO, André B (2001) Ubiquitin is required for sorting to the vacuole of the yeast general amino acid permease, Gap1. J Biol Chem 276:43949-43957

    PubMed  CAS  Google Scholar 

  • 164. Springael J-Y, De Craene J-O, André B (1999a) The yeast Npi1/Rsp5 ubiquitin-ligase lacking its N-terminal C2 domain is competent for ubiquitination but not for subsequent endocytosis of the Gap1 permease. Biochem Biophys Res Comm 257:561-566

    PubMed  CAS  Google Scholar 

  • 165. Springael J-Y, Galan J-M, Haguenauer-Tsapis R, André B (1999b) NH4+-induced down-regulation of the Saccharomyces cerevisiae Gap1p permease involves its ubiquitination with lysine-63-linked chains. J Cell Sci 112:1375-1383

    PubMed  CAS  Google Scholar 

  • 166. Springael JY, André B (1998) Nitrogen-regulated ubiquitination of the Gap1 permease of Saccharomyces cerevisiae. Mol Biol Cell 9:1253-1263

    PubMed  CAS  Google Scholar 

  • 167. Springael JY, Nikko E, André B, Marini AM (2002) Yeast Npi3/Bro1 is involved in ubiquitin-dependent control of permease trafficking. FEBS Lett 517:103-109

    PubMed  CAS  Google Scholar 

  • 168. Stanbrough M, Magasanik B (1995) Transcriptional and posttranslational regulation of the general amino acid permease of Saccharomyces cerevisiae. J Bacteriol 177:94-102

    PubMed  CAS  Google Scholar 

  • 169. Staub O, Gautschi I, Ishikawa T, Breitschop K, Ciechanover A, Schild L, Rotin D (1997) Regulation of stability and function of the epithelial Na+ channel (ENaC) by ubiquitination. EMBO J 16:6325-6336

    PubMed  CAS  Google Scholar 

  • 170. Swaminathan S, Amerik AY, Hochstrasser M (1999) The Doa4 deubiquitinating enzyme is required for ubiquitin homeostasis in yeast. Mol Biol Cell 10:2583-2594

    PubMed  CAS  Google Scholar 

  • 171. Swanson R, Locher M, Hochstrasser M (2001) A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and Matalpha2 repressor degradation. Genes Dev 15:2660-2674

    PubMed  CAS  Google Scholar 

  • 172. Szaszi K, Paulsen A, Szabo EZ, Numata M, Grinstein S, Orlowski J (2002) Clathrin-mediated endocytosis and recycling of the neuron-specific Na+/H+ exchanger NHE5 isoform. Regulation by phosphatidylinositol 3’-kinase and the actin cytoskeleton. J Biol Chem 277:42623-42632

    PubMed  CAS  Google Scholar 

  • 173. Terrell J, Shih S, Dunn R, Hicke L (1998) A function for monoubiquitination in the internalization of a G protein-coupled receptor. Mol Cell 1:193-202

    PubMed  CAS  Google Scholar 

  • 174. Touret N, Furuya W, Forbes J, Gros P, Grinstein S (2003) Dynamic traffic through the recycling compartment couples the metal transporter Nramp2 (DMT1) with the transferrin receptor. J Biol Chem 278:25548-25557

    PubMed  CAS  Google Scholar 

  • 175. Tschopp JF, Emr SD, Field C, Schekman R (1986) GAL2 codes for a membrane-bound subunit of the galactose permease in Saccharomyces cerevisiæ. J Bacteriol 166:313-318

    PubMed  CAS  Google Scholar 

  • 176. Umebayashi K, Nakano A (2003) Ergosterol is required for targeting of tryptophan permease to the yeast plasma membrane. J Cell Biol 161:1117-11131

    PubMed  CAS  Google Scholar 

  • 177. Urban-Grimal D, Pinson B, Chevallier J, Haguenauer-Tsapis R (1995) Replacement of Lys by Glu in a transmembrane segment strongly impairs the function of the uracil permease from Saccharomyces cerevisiae. Biochem J 308:847-851

    PubMed  CAS  Google Scholar 

  • 178. Urbanowski J, Piper RC (2001) Ubiquitin sorts proteins into the lumenal degradative compartment of the late endosome/vacuole. Traffic 2:622-630

    PubMed  CAS  Google Scholar 

  • 179. Van Belle D, André B (2001) A genomic view of yeast membrane transporters. Curr Opin Cell Biol 13:389-398

    Google Scholar 

  • 180. Vandenbol M, Jauniaux JC, Grenson M (1990) The Saccharomyces cerevisiae NPR1 gene required for the activity of ammonia-sensitive amino acid permeases encodes a protein kinase homologue. Mol Gen Genet 222:393-399

    PubMed  CAS  Google Scholar 

  • 181. Vandenbol M, Jauniaux JC, Vissers S, Grenson M (1987) Isolation of the NPR1 gene responsible for the reactivation of ammonia-sensitive amino-acid permeases in Saccharomyces cerevisiae. RNA analysis and gene dosage effects. Eur J Biochem 164:607-612

    PubMed  CAS  Google Scholar 

  • 182. Vecchione A, Marchese A, Henry P, Rotin D, Morrione A (2003) The Grb10/Nedd4 complex regulates ligand-induced ubiquitination and stability of the insulin-like growth factor I receptor. Mol Cell Biol 23:3363-3372

    PubMed  CAS  Google Scholar 

  • 183. Volland C, Garnier C, Haguenauer-Tsapis R (1992) In vivo phosphorylation of the yeast uracil permease. J Biol Chem 267:23767-23771

    PubMed  CAS  Google Scholar 

  • 184. Volland C, Urban-Grimal D, Géraud G, Haguenauer-Tsapis R (1994) Endocytosis and degradation of the yeast uracil permease under adverse conditions. J Biol Chem 269:9833-9841

    PubMed  CAS  Google Scholar 

  • 185. Wang G, McCaffery JM, Wendland B, Dupre S, Haguenauer-Tsapis R, Huibregtse JM (2001) Localization of the Rsp5p ubiquitin-protein ligase at multiple sites within the endocytic pathway. Mol Cell Biol 21:3564-3575

    PubMed  CAS  Google Scholar 

  • 186. Wang G, Yang J, Huibregste J (1999) Fonctional domains of the RSP5 ubiquitin-protein ligase. Mol Cell Biol 19:342-352

    PubMed  CAS  Google Scholar 

  • 187. Warner JR (1999) The economics of ribosome biosynthesis in yeast. Trends Biochem Sci 24:437-440

    PubMed  CAS  Google Scholar 

  • 188. Weissman AM (2001) Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2:169-178

    PubMed  CAS  Google Scholar 

  • 189. Wells KM, Rao R (2001) The yeast Na+/H+ exchanger Nhx1 is an N-linked glycoprotein. Topological implications. J Biol Chem 276:3401-3407

    PubMed  CAS  Google Scholar 

  • 190. Welsch CA, Hagiwara S, Goetschy JF, Movva NR (2003) Ubiquitin pathway proteins influence the mechanism of action of the novel immunosuppressive drug FTY720 in Saccharomyces cerevisiae. J Biol Chem 278:26976-26982

    PubMed  CAS  Google Scholar 

  • 191. Wendell DL, Bisson LF (1993) Physiological characterization of putative high-affinity glucose transport protein Hxt2 of Saccharomyces cerevisiae by use of anti-synthetic peptide antibodies. J Bacteriol 175:7689-7696

    PubMed  CAS  Google Scholar 

  • 192. Wendland B (2002) Epsins: adaptors in endocytosis? Nat Rev Mol Cell Biol 3:971-977

    PubMed  CAS  Google Scholar 

  • 193. Wendland B, Steece KE, Emr SD (1999) Yeast epsins contain an essential N-terminal ENTH domain, bind clathrin and are required for endocytosis. EMBO J 18:4383-43893

    PubMed  CAS  Google Scholar 

  • 194. Whitworth TL, Quick MW (2001) Substrate-induced regulation of gamma-aminobutyric acid transporter trafficking requires tyrosine phosphorylation. J Biol Chem 276:42932-42937

    PubMed  CAS  Google Scholar 

  • 195. Yashiroda H, Kaida D, Toh-e A, Kikuchi Y (1998) The PY-motif of Bul1 protein is essential for growth of Saccharomyces cerevisiae under various stress conditions. Gene 225:39-46

    PubMed  CAS  Google Scholar 

  • 196. Yashiroda H, Oguchi T, Yasuda Y, Toh-e A, Kikuchi Y (1996) Bul1, a new protein that bind to the Rsp5 ubiquitin ligase. Mol Cell Biol 16:3255-3263

    PubMed  CAS  Google Scholar 

  • 197. Yonkovich J, McKenndry R, Shi X, Zhu Z (2002) Copper ion-sensing transcription factor Mac1p post-translationally controls the degradation of its target gene product Ctr1p. J Biol Chem 277:23981-23984

    PubMed  CAS  Google Scholar 

  • 198. Zhao R, Reithmeier RA (2001) Expression and characterization of the anion transporter homologue YNL275w in Saccharomyces cerevisiae. Am J Physiol Cell Physiol 281:C33-45

    PubMed  CAS  Google Scholar 

  • 199. Zhao R, Reithmeier RA (2001) Expression and characterization of the anion transporter homologue YNL275w in Saccharomyces cerevisiae. Am J Physiol Cell Physiol 281:C33-45

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosine Haguenauer-Tsapis .

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin/Heidelberg

About this chapter

Cite this chapter

Haguenauer-Tsapis, R., André, B. (2004). Membrane trafficking of yeast transporters: mechanisms and physiological control of downregulation. In: Molecular Mechanisms Controlling Transmembrane Transport. Topics in Current Genetics, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b97215

Download citation

  • DOI: https://doi.org/10.1007/b97215

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21837-1

  • Online ISBN: 978-3-540-40912-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics