Skip to main content

Strategies for Total and Diversity-Oriented Synthesis of Natural Product(-Like) Macrocycles

  • Chapter

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 243))

Abstract

Numerous biologically active macrocycles, including antibiotic, antifungal, and antitumor compounds, have been isolated from natural sources. In recent years the number of such structures has steadily increased, predominantly by polyketide- and peptide-derived compounds from various microorganisms. Macrocycles can combine the right amount of rigidity and flexibility and often exhibit unrivalled activity, thereby deviating from the current paradigm that medicinally active compounds should be small, nitrogen-rich heterocycles. Their challenging structures and intriguing activities have motivated organic chemists to find synthetic access to these compounds. Total synthesis plays a crucial role in the medicinal chemistry efforts towards macrocycles of already defined activity, as well as in the development of new and selective macrocyclization reactions. For lead discovery purposes, however, isolation or classical total synthesis may lack structural variability or prove to be too time consuming and impractical. A more rapid solution may be provided by diversity-oriented synthesis (DOS) of natural product-like molecules. A compromise between total synthesis and combinatorial chemistry, DOS concerns molecules displaying sufficient molecular complexity to resemble natural products, but features a more straightforward synthesis, thus allowing introduction of significant structural diversity. A brief review of flexible macrocyclization strategies and applications of DOS is given, as well as an overview of contributions to total and diversity-oriented synthesis of macrocycles from our laboratory.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

BCL:

Burkholderia cepacia lipase (Amano PS)

BINAP:

2,2′-Bis(diphenylphosphino)-1,1′-binaphthyl

CAL-B:

Candida antarctica lipase B

DOS:

Diversity-oriented synthesis

EDCI:

N-Ethyl-N′-(dimethylaminopropyl)carbodiimide·HCl

FDPP:

Pentafluorophenyldiphenylphosphinate

HATU:

O-(7-Azabenzotriazolyl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate

MCR:

Multi component reaction

MiB:

Multiple Multicomponent Macrocyolization including Bifunctional Building Blocks

NaHMDS:

Sodium hexamethyldisilazide

PyBOP:

(Benzotriazol-1-yloxy)-tripyrrolidinophosphonium hexafluorophosphate

RCM:

Ring-closing metathesis

rPLE:

Recombinant pig liver esterase

TAS-F:

Tris(dimethylamino)sulfonium difluorotrimethylsilicate

TBS:

(= TBDMS) tert-Butyldimethylsilyl

U4CR:

Ugi four component reaction

References

  1. Newman DJ, Cragg GM, Snader KM (2003) J Nat Prod 66:1022

    Google Scholar 

  2. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Adv Drug Delivery Rev 46:3

    Google Scholar 

  3. Lee M-L, Schneider G (2001) J Comb Chem 3:284

    Google Scholar 

  4. Wessjohann LA, Ruijter E, Garcia-Rivera O, Brandt W (2004) Molecular diversity (in press)

    Google Scholar 

  5. Schrekker HS, Wessjohann LA (2004) Tetrahedron Lett, submitted

    Google Scholar 

  6. Hoffmann RW (1987) Angew Chem 99:503; Angew Chem Int Ed 26:489

    Google Scholar 

  7. Brautaset T, Sekurova ON, Sletta HE, T.E., Strøm AR, Valla S, Zotchev SB (2003) Chem Biol 7:395

    Google Scholar 

  8. Nakatsuka M, Ragan JA, Sammakia T, Smith DB, Uehling DE, Schreiber SL (1990) J Am Chem Soc 112:5583

    Google Scholar 

  9. Nicolaou KC, Roschangar F, Vourloumis D (1998) Angew Chem Int Ed Engl 37:2014; 10:2120

    Google Scholar 

  10. Mulzer J (2000) Monatsh Chem 131:205

    Google Scholar 

  11. Altmann K-H (2001) Curr Opin Chem Biol 5:424

    Google Scholar 

  12. Wessjohann LA (1997) Angew Chem 109:738; Angew Chem Int Ed 36:715

    Google Scholar 

  13. Wessjohann LA, Scheid GO (2000) In: Schmalz H-G (ed) Organic synthesis highlights, vol IV. Wiley-VCH, Weinheim, p 251

    Google Scholar 

  14. Schreiber SL (1998) Bioorg Med Chem 6:1127

    Google Scholar 

  15. Schreiber SL (2000) Science 287:1964

    Google Scholar 

  16. Lokey RS (2003) Curr Opin Chem Biol 7:91

    Google Scholar 

  17. Hotha S, Yarrow JC, Yang JG, Garrett S, Renduchintala KV, Mayer TU, Kapoor TM (2003) Angew Chem 115:2481; Angew Chem Int Ed 42:2379

    Google Scholar 

  18. Pelish HE, Westwood NJ, Feng Y, Kirchhausen T, Shair MD (2001) J Am Chem Soc 123:6740

    Google Scholar 

  19. Nielsen J (2003) Curr Opin Chem Biol 6:297

    Google Scholar 

  20. Wessjohann LA (2000) Curr Opin Chem Biol 4:303

    Google Scholar 

  21. Henkel T, Brunne RM, Mueller H, Reichel F (1999) Angew Chem 111:688; Angew Chem Int Ed 38:643

    Google Scholar 

  22. Pojer F, Li S-M, Heide L (2002) Microbiology 148:3901

    Google Scholar 

  23. Breinbauer R, Vetter IR, Waldmann H (2002) Angew Chem 114:3002; Angew Chem Int Ed 41:2878

    Google Scholar 

  24. Breinbauer R, Manger M, Scheck M, Waldmann H (2002) Curr Med Chem 9:2129

    Google Scholar 

  25. Stahl P, Kissau L, Mazitschek R, Huwe A, Furet P, Giannis A, Waldmann H (2001) J Am Chem Soc 123:11586

    Google Scholar 

  26. Stahl P, Kissau L, Mazitschek R, Giannis A, Waldmann H (2002) Angew Chem 114:1222; Angew Chem Int Ed 41:1174

    Google Scholar 

  27. Ghosh AK, Wang Y (2001) Tetrahedron Lett 42:3399

    Google Scholar 

  28. Crimmins MT, Al-awar RS, Vallin IM, Hollis WGJ, O’Mahony R, Lever JG, Bankaitis-Davis DM (1996) J Am Chem Soc 118:7513

    Google Scholar 

  29. Mitsunobu O (1981) Synthesis 1

    Google Scholar 

  30. Kruizinga WH, Kellogg RM (1981) J Am Chem Soc 103:5183

    Google Scholar 

  31. Mori K, Tomioka H (1992) Liebigs Ann 1011

    Google Scholar 

  32. Pawar AS, Chattopadhyay S, Chattopadhyay A, Mamdapur VR (1993) J Org Chem 58:7535

    Google Scholar 

  33. Kohli RM, Walsh CT, Burkart MD (2002) Nature 418:658

    Google Scholar 

  34. Martín MT, Plou FJ, Alcalde M, Ballesteros A (2003) J Mol Cat B Enzym 21:299

    Google Scholar 

  35. Yokokawa F, Sameshima H, In Y, Minoura K, Ishida T, Shioiri T (2002) Tetrahedron 58:8127

    Google Scholar 

  36. Erickson SD, Simon JA, Still WC (1993) J Org Chem 58:1305

    Google Scholar 

  37. Meutermans WDF, Bourne GT, Golding SW, Horton DA, Campitelli MR, Craik D, Scanlon M, Smythe ML (2003) Org Lett 5:2711

    Google Scholar 

  38. Schuster M, Blechert S (1997) Angew Chem 109:2124; Angew Chem Int Ed 36:2036

    Google Scholar 

  39. Smith AB, Zheng J (2002) Tetrahedron 58:6455

    Google Scholar 

  40. Fürstner A, Mathes C, Lehmann CW (2001) Chemistry 7:5299

    Google Scholar 

  41. Beck B, Larbig G, Magnin-Lachaux M, Picard A, Herdtweck E, Dömling A (2003) Org Lett 5:1047

    Google Scholar 

  42. van Maarseveen JH (1998) Comb Chem High Throughput Screening 1:185

    Google Scholar 

  43. Park K-H, Kurth MJ (2000) Drugs Fut 25:1265

    Google Scholar 

  44. van Maarseveen JH, den Hartog JAJ, Engelen V, Finner E, Visser G, Kruse CG (1996) Tetrahedron Lett 37:8249

    Google Scholar 

  45. Nicolaou KC, Vourloumis D, Li T, Pastor J, Winssinger N, He Y, Ninkovic S, Sarabia F, Vallberg H, Roschangar F, King NP, Finlay MRV, Giannakakou P, Verdierpinard P, Hamel E (1997) Angew Chem 109:2181; Angew Chem Int Ed 36:2097

    Google Scholar 

  46. Nicolaou KC, Winssinger N, Pastor J, Ninkovic S, Sarabia F, He Y, Vourloumis D, Yang Z, Li T, Giannakakou P, Hamel E (1997) Nature 387:268

    Google Scholar 

  47. Brohm D, Philipe N, Metzger S, Bhargava A, Müller O, Lieb F, Waldmann H (2002) J Am Chem Soc 124:13171

    Google Scholar 

  48. Brohm D, Metzger S, Bhargava A, Müller O, Lieb F, Waldmann H (2002) Angew Chem 114:319; Angew Chem Int Ed 41:307

    Google Scholar 

  49. Balog A, Meng D, Kamenecka T, Bertinato P, Su D-S, Sorensen EJ, Danishefsky SJ (1996) Angew Chem 108:2976; Angew Chem Int Ed 35:2801

    Google Scholar 

  50. Eichelberger U, Scheid GO, Wessjohann LA (2003) (unpublished results)

    Google Scholar 

  51. Pattenden G, Sinclair DJ (2002) J Organomet Chem 653:261

    Google Scholar 

  52. Stocks MJ, Harrison RP, Teague SJ (1995) Tetrahedron Lett 36:6555

    Google Scholar 

  53. Sellès P, Lett R (2002) Tetrahedron Lett 43:4627

    Google Scholar 

  54. Spring DR, Krishnan S, Blackwell HE, Schreiber SL (2001) J Am Chem Soc 124:1354

    Google Scholar 

  55. Laib T, Zhu J (1999) Tetrahedron Lett 40:83

    Google Scholar 

  56. Temal-Laib T, Chastanet J, Zhu J (2002) J Am Chem Soc 124:583

    Google Scholar 

  57. Boisnard S, Zhu J (2002) Tetrahedron Lett 43:2577

    Google Scholar 

  58. Venkatraman S, Njoroge FG, Girijavallabhan V (2002) Tetrahedron Lett 58:5453

    Google Scholar 

  59. Pearson AJ, Bignan G (1996) Tetrahedron Lett 37:735

    Google Scholar 

  60. Pearson AJ, Heo J-N (2000) Tetrahedron Lett 41:5991

    Google Scholar 

  61. Pearson AJ, Zigmantas S (2001) Tetrahedron Lett 42:8765

    Google Scholar 

  62. Otto S, Furlan RLE, Sanders JKM (2003) Curr Opin Chem Biol 6:321

    Google Scholar 

  63. Huc I, Nguyen R (2001) Comb Chem High Throughput Screening 4:53

    Google Scholar 

  64. Furlan RLE, Ng Y-F, Otto S, Sanders JKM (2001) J Am Chem Soc 123:8876

    Google Scholar 

  65. Weber L (2002) Curr Med Chem 9:1241

    Google Scholar 

  66. Weber L (2002) Drug Disc Today 7:143

    Google Scholar 

  67. Beck B, Magnin-Lachaux M, Dömling A (2001) Org Lett 3:2875

    Google Scholar 

  68. Gámez-Montańo R, González-Zamora E, Potier P, Zhu J (2002) Tetrahedron 58:6351

    Google Scholar 

  69. Kolb J, Beck B, Dömling A (2002) Tetrahedron Lett 43:6897

    Google Scholar 

  70. Hebach C, Kazmaier U (2003) Chem Commun 596

    Google Scholar 

  71. Lee D, Sello JK, Schreiber SL (1999) J Am Chem Soc 121:10648

    Google Scholar 

  72. Kolb HC, Finn MG, Sharpless KB (2001) Angew Chem 113:2056; Angew Chem Int Ed 40:2004

    Google Scholar 

  73. Merrifield RB (1963) J Am Chem Soc 85:2149

    Google Scholar 

  74. Blackwell HE, Clemons PA, Schreiber SL (2001) Org Lett 3:1185

    Google Scholar 

  75. Tan DS, Foley MA, Stockwell BR, Shair MD, Schreiber SL (1999) J Am Chem Soc 121:9073

    Google Scholar 

  76. Tan DS, Foley MA, Shair MD, Schreiber SL (1998) J Am Chem Soc 120:8565

    Google Scholar 

  77. Akritopoulou-Zanze I, Sowin TJ (2001) J Comb Chem 3:301

    Google Scholar 

  78. 2nd International Conference on Multi Component Reactions, Combinatorial and Related Chemistry (2003) Genova, April 14–16, 2003; Wessjohann LA, Ruijter E (2004) Molecular diversity (in print)

    Google Scholar 

  79. Lee D, Sello JK, Schreiber SL (2000) Org Lett 2:709

    Google Scholar 

  80. Gerth K, Bedorf N, Höfle G, Irschik H, Reichenbach H (1996) J Antibiotics 49:560

    Google Scholar 

  81. Höfle G, Bedorf N, Steinmetz H, Schomburg D, Gerth K, Reichenbach H (1996) Angew Chem 108:1671; Angew Chem Int Ed Engl 35:1567

    Google Scholar 

  82. Bollag DM, McQueney PA, Zhu J, Hensens O, Koupal L, Liesch J, Goetz M, Lazarides E, Woods CM (1995) Cancer Res 55:2325

    Google Scholar 

  83. Nicolaou KC, Ninkovic S, Sarabia F, Vourloumis D, He Y, Vallberg H, Finlay MRV, Yang Y (1997) J Am Chem Soc 119:7974

    Google Scholar 

  84. Harris CR, Danishefsky SJ (1999) J Org Chem 64:8434

    Google Scholar 

  85. Mulzer J, Karig G, Pojarliev P (2000) Tetrahedron Lett 41:7635

    Google Scholar 

  86. Scheid GO, Kuit W, Ruijter E, Orru RVA, Henke E, Bornscheuer U, Wessjohann LA (2004) Eur J Org Chem :1063

    Google Scholar 

  87. Wessjohann LA, Scheid GO (2000) German patent DE 10051136 (16.10.2000); CA 136:325358

    Google Scholar 

  88. Wessjohann LA, Scheid GO, Bornscheuer U, Henke E, Kuit W, Orru RVA (2001) German patent DE 10134172 A1 (13.7.2001); CA 136:340534; (2002) International patent, PCT WO 02/32844 A2 (25.4.2002); CA 136:340534

    Google Scholar 

  89. Braun M (1987) Angew Chem 99:24; Angew Chem Int Ed 26:24

    Google Scholar 

  90. Wessjohann LA, Scheid GO (1999) Synthesis 1

    Google Scholar 

  91. Gabriel T, Wessjohann LA (1997) Tetrahedron Lett 38:4387

    Google Scholar 

  92. Gabriel T, Wessjohann LA (1997) Tetrahedron Lett 38:1363

    Google Scholar 

  93. Hardt IH, Steinmetz H, Gerth K, Sasse F, Reichenbach H, Höfle G (2001) J Nat Prod 64:847

    Google Scholar 

  94. de Greef M, Abeln S, Belkasmi K, Dömling A, Orru RVA, Wessjohann LA (2004): manuscript in preparation (to be added in proof)

    Google Scholar 

  95. Rodrigues O, Braga AL, Wessjohann LA (2004): manuscript in preparation (to be added in proof)

    Google Scholar 

  96. Jauch J (2001) J Org Chem 66:609

    Google Scholar 

  97. Wessjohann LA, Voigt B, Garcia-Rivera D (2004) Angew Chem: submitted (to be added in proof)

    Google Scholar 

  98. Zhu M, Ruijter E, Wessjohann LA (2003) Org Lett: submitted (to be added in proof)

    Google Scholar 

  99. Ulijn RV, Baragana B, Halling PJ, Flitsch SL (2002) J Am Chem Soc 124:10988

    Google Scholar 

  100. Basso A, De Martin L, Gardossi L, Margetts G, Brazendale I, Bosma AY, Ulijn RV, Flitsch SL (2003) Chem Commun 1296

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludger A. Wessjohann .

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Wessjohann, L.A., Ruijter, E. Strategies for Total and Diversity-Oriented Synthesis of Natural Product(-Like) Macrocycles. In: Natural Product Synthesis I. Topics in Current Chemistry, vol 243. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b96883

Download citation

Publish with us

Policies and ethics