Skip to main content

Paraconic Acids—The Natural Products from Lichen Symbiont

  • Chapter

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 243))

Abstract

Paraconic acids, belonging to the class of γ-butyrolactone natural products, display a broad range of biological activities such as antibiotic and antitumor properties. Consequently a great number of synthetic strategies have been devised for them, ranging from diastereoselective and chiral pool approaches to the application of asymmetric catalysis. This review gives a critical account on the different methods developed that lead to paraconic acids of great structural variety.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Ac:

Acetyl

AIBN:

2,2′-Azobisisobutyronitrile

9-BBN:

9-Borabicyclo[3.3.1]nonane

Bn:

Benzyl

Bu:

Butyl

t-Bu:

tert-Butyl

Bz:

Benzoyl

CAN:

Ceric ammonium nitrate

cat:

Catalyst

Cp:

Cyclopentadienyl

DABCO:

1,4-Diazabicyclo[2.2.2]octane

DET:

Diethyl tartrate

DIBALH:

Diisobutylaluminum hydride

DMAP:

4-(Dimethylamino)pyridine

DBU:

1,8-Diazabicyclo[4.3.0]undec-7-ene

DEAD:

Diethyl azodicarboxylate

DME:

1,2-Dimethoxyethane

DMF:

Dimethylformamide

DMSO:

Dimethyl sulfoxide

ee:

Enantiomer excess

equiv:

Equivalent(s)

Et:

Ethyl

h:

Hour(s)

HMPA:

Hexamethylphosphoric triamide

LDA:

Lithium diisopropylamide

m-CPBA:

m-Chloroperoxybenzoic acid

Me:

Methyl

Mes:

Mesityl, 2,4,6-trimethylphenyl

min:

Minute(s)

NaHMDS:

Sodium hexamethyldisilazide

NBS:

N-Bromosuccinimide

Nu:

Nucleophile

PDC:

Pyridinium dichromate

Ph:

Phenyl

PPTS:

Pyridinium p-toluenesulfonate

rt:

Room temperature

Tf:

Trifluoromethanesulfonyl (triflyl)

THF:

Tetrahydrofuran

THP:

Tetrahydropyran-2-yl

TMEDA:

N,N,N′,N′-Tetramethyl-1,2-ethylenediamine

TMS:

Trimethylsilyl

Ts:

Tosyl, 4-Toluenesulfonyl

References

  1. David F, Elix JA, Samsudin MW (1990) Aust J Chem 43:1297

    Google Scholar 

  2. (a) Maier DI, Marimon G, Stortz CA, Adler MT (1999) J Nat Prod 62:1565; (b) Park BK, Nakagawa M, Hirota A, Nakayama M (1988) J Antibiot 41:751; (c) Bérdy J, Aszalos A, Bostian M, McNitt KL (1982) In: CRC handbook of antibiotic compounds. CRC Boca Raton Fla, p 39

    Google Scholar 

  3. (a) Miyabe H, Fujii K, Goto T, Naito T (2000) Org Lett 2:4071; (b) Fernandez AM, Plaquevent JC, Duhamel L (1997) J Org Chem 62:4007; (c) Sibi MP, Lu J, Talbacka CL (1996) J Org Chem 61:7848; (d) Peng Z-H, Woerpel KA (2001) Org Lett 3:675

    Google Scholar 

  4. For non-stereoselective syntheses see: (a) Pohmakotr M, Reutrakul V, Phongpradit T, Chansri A (1982) Chem Lett 687; (b) Brückner C, Reissig HU (1988) J Org Chem 53:2440; (c) Lawlor JM, McNamee MB (1983) Tetrahedron Lett 24:2211; (d) van Tamelen EE, Bach SR (1958) J Am Chem Soc 80:3079; (e) Pohmakotr M, Harnying W, Tucinda P, Reutrakul V (2002) Helv Chim Acta 85:3792

    Google Scholar 

  5. For stereoselective syntheses before 1991 see: (a) Damon RE, Schlessinger RH (1976) Tetrahedron Lett 1561; (b) Carlson RM, Oyler AR (1976) J Org Chem 41:4065; (c) Martin J, Watts PC, Johnson F (1974) J Org Chem 39:1676; (d) Löffler A, Pratt RD, Pucknat J, Gelbard G, Dreiding AS (1969) Chimica 23:413

    Google Scholar 

  6. (a) Hoppe D (1984) Angew Chem Int Ed Engl 23:932; (b) Roder H, Helmchen G, Peters EM, Peters K, Schnering HG (1984) Angew Chem Int Ed Engl 23:898; (c) Hoppe D, Zschage O (1989) Angew Chem Int Ed Engl 28:69; (d) Hoppe D, Hense T (1997) Angew Chem Int Ed Engl 36:2282; (e) Ahlbrecht H, Beyer U (1999) Synthesis 365; (f) Whisler MC, Vaillancourt L, Beak P (2000) Org Lett 2:2655; (g) Johnson TA, Curtis MD, Beak P (2001) J Am Chem Soc 123:1004; (h) Lim SH, Curtis MD, Beak P (2001) Org Lett 3:711; (i) Schlappbach A, Hoffmann RW (2001) Eur J Org Chem 323; (j) Gaul C, Seebach D (2002) Helv Chim Acta 85:963; (k) Özlügedik M, Kristensen J, Wibbeling B, Fröhlich R, Hoppe D (2002) Eur J Org Chem 414 and references cited therein

    Google Scholar 

  7. Fotiadu F, Michel F, Buono G (1990) Terahedron Lett 31:4863

    Google Scholar 

  8. (a) Sarkar S, Ghosh S, (1996) Tetrahedron Lett 37:4809; (b) For the synthesis of (±)-protolichesterinic acid see: Ghatak A, Sarkar S, Ghosh S (1997) Tetrahedron 53:17335

    Google Scholar 

  9. Mawson SD, Weavers RT (1995) Terahedron 51:11257

    Google Scholar 

  10. Maiti G, Roy SC (1996) J Chem Soc Perkin Trans 1 5:403

    Google Scholar 

  11. Reissig H-U (1988) Top Curr Chem 144:73

    Google Scholar 

  12. Shimada S, Hashimoto Y, Saigo K (1993) J Org Chem 58:5226

    Google Scholar 

  13. (a) Mandal PK, Maiti G, Roy SC (1998) J Org Chem 63:2829; (b) Mandal PK, Roy SC (1999) Tetrahedron 55:11395

    Google Scholar 

  14. cf Martin VS, Woodard SS, Katsuki T, Yamada Y, Ikeda M, Sharpless KB (1981) J Am Chem Soc 103:6237

    Google Scholar 

  15. Beckwith ALJ, Easton CJ, Lawrence T, Serelis AK (1983) Aust J Chem 36:545

    Google Scholar 

  16. Rajanbabu TV (1991) Acc Chem Res 24:139

    Google Scholar 

  17. Corey EJ, Schmidt G (1979) Tetrahedron Lett 20:399

    Google Scholar 

  18. Mulzer J, Kattner L, Strecker AR, Schröder C, Buschmann J, Lehmann C, Luger P (1991) J Am Chem Soc 113:4218

    Google Scholar 

  19. Mulzer J, Salimi N, Hartl H (1993) Tetrahedron Asym 4:457

    Google Scholar 

  20. Review: Mulzer J, Altenbach J, Braun M, Krohn K, Reissig HU (1990) In: Organic synthesis highlights. VCH, Weinheim New York, p 158

    Google Scholar 

  21. Ziegler GE (1988) Chem Rev 88:1423

    Google Scholar 

  22. (a) Mulzer H, Kappert M (1982) Angew Chem Suppl 23; (b) Minami M, Ko SS, Kishi Y (1982) J Am Chem Soc 104:1109; (c) Katsuki T, Lee AWM, Ma P, Martin VS, Masamune S, Sharpless KB, Tuddenham D, Walker FJ (1982) J Org Chem 47:1373

    Google Scholar 

  23. (a) Wick AE, Felix D, Steen K, Eschenmoser A (1964) Helv Chim Acta 74:2425; (b) Welch JT, Eswarakrishnan S (1985) J Org Chem 50:5907

    Google Scholar 

  24. Hoffman RW (1989) Chem Rev 89:1841

    Google Scholar 

  25. Ashahina Y, Yanagita M (1937) Ber Dtsch Chem Ges 70:227

    Google Scholar 

  26. Ulrich Steffen (1989) PhD thesis, FU Berlin

    Google Scholar 

  27. Barton DHR, McCombie SW (1975) J Chem Soc Perkin Trans I 1574

    Google Scholar 

  28. (a) Morpain C, Nasser B, Laude B, Latruffe N (1990) Org Prep Proced Intern 22:540; (b) Eastwood FW, Harrington KJ, Josan JS, Pura JL (1970) Tetrahedron Lett 11:5223

    Google Scholar 

  29. Forster A, Kovac T, Mosimann H, Renaud P, Vogel P (1999) Tetrahedron Asymmetry 10:567 and references cited therein

    Google Scholar 

  30. Black KA, Vogel P (1984) Helv Chim Acta 67:1612

    Google Scholar 

  31. (a) Vieira E, Vogel P (1983) Helv Chim Acta 66:1865; (b) Reymond JL, Vogel P (1990) Tetrahedron Asymmetry 1:729; (c) Ronan B, Kagan HB (1991) Tetrahedron Asymmetry 2:75; (d) Aggarwal VK, Lightowler M, Lindell SD (1992) Synlett 730; (e) Corey EJ, Loh TP (1993) Tetrahedron Lett 34:3979

    Google Scholar 

  32. Brecht-Forster A, Fitremann J, Renaud P (2002) Helv Chim Acta 85:3965

    Google Scholar 

  33. According to Huneck S, Toensberg T, Bohlmann F (1986) Phytochemistry 25:453 and [12] the product is named as pertusarinic acid and not as dihydropertusarinic acid as Renaud et al. proposed

    Google Scholar 

  34. (a) Vogel P, Fattori D, Gasparini F, Le Drian C (1990) Synlett 173; (b) Renaud P, Vionnet JP (1993) J Org Chem 58:5895

    Google Scholar 

  35. Zhang Z, Lu X (1996) Tetrahedron Asymmmetry 7:1923

    Google Scholar 

  36. Stucky G (1988) GIT Fachz Lab 32:535

    Google Scholar 

  37. For reviews concerning the synthesis of butenolides and saturated γ-lactones see: (a) Nagao Y, Ochiai M, Shiro M (1989) J Org Chem 54:5211 and references cited therein; (b) Corey EJ, Cheng XM (1989) In: The logic of chemical synthesis. Wiley, New York

    Google Scholar 

  38. Takahata H, Uchida Y, Momose T (1994) J Org Chem 59:7201

    Google Scholar 

  39. Takahata H, Uchida Y, Momose T (1995) J Org Chem 60:5628

    Google Scholar 

  40. For a review on electrophile-mediated heterocyclization see: (a) Harding KE, Timer TH (1991) In: Trost BM (ed) Comprehensive organic synthesis. Pergamon, Oxford, p 353; (b) Cardillo G, Orena M (1990) Tetrahedron 46:3321; (c) Takahata H (1993) Yakugaku Zasshi 113:737

    Google Scholar 

  41. (a) Hesse O (1898) J Prakt Chem 57:232; (b) Huneck S, Follmann GJ (1967) Naturforsch B 22:666; (c) cf. [19]

    Google Scholar 

  42. (a) Perkmutter P (1992) In: Baldwin JE (ed) Conjugation addition reactions in organic synthesis. Pergamon, Oxford, p 283; (b) Stork G, Rychnovsky SD (1987) J Am Chem Soc 109:1564; (c) Vigneron JP (1984) Tetrahedron 40:6521; (d) von Oeveren A, Jansen JFGA, Feringa BL (1994) J Org Chem 59:5999

    Google Scholar 

  43. (a) Masuda M, Nishimura K (1971) Phytochemistry 10:401; (b) Masuda M, Nishimura K (1981) Chem Lett 1333; (c) Pai Y-C, Fang J-M, Wu S-H (1994) J Org Chem 59:6018; (d) Ebata T, Matsmoto K, Yoshikoshi H, Koseki K, Kawakami H, Okano K, Matsushita H (1993) Heterocycles 36:1017

    Google Scholar 

  44. (a) ter Heide R, deValois PJ, Visser J, Jaegers PP, Timar R (1978) In: Charalambous (ed) Analysis of food and beverages. Academic Press, New York, p 275; (b) Nishimura K (1987) Chem Today 189:30; (c) Orutuno RM, Merce R, Font J (1987) Tetrahedron 43:4497

    Google Scholar 

  45. (a) Greene AE, Charbonnier F (1985) Tetrahedron Lett 26:5525; (b) Greene AE, Charbonnier F, Luche M-J, Moyano A (1987) J Am Chem Soc 109:4752; (c) Frater G, Müller U, Günther W (1986) Helv Chim Acta 69:1858

    Google Scholar 

  46. (a) Whitesell JK, Chen HH, Lawrence RM (1985) J Org Chem 50:4663; (b) Whitesell JK, Lawrence RM (1986) Chimica 40:318; (c) Schwartz A, Madan P, Whitesell JK, Lawrence RM (1990) Org Synth 69:1

    Google Scholar 

  47. (a) Azevedo MBM, Murta MM, Greene AE (1992) J Org Chem 57:4567; (b) Murta MM, Azevedo MBM, Greene AE (1993) J Org Chem 58:7537

    Google Scholar 

  48. Gras J-L (1978) Tetrahedron Lett 19:2111

    Google Scholar 

  49. Sibi MP, Deshpande PK, La Loggia AJ (1996) Synlett 343

    Google Scholar 

  50. The choice of the 4-diphenylmethyl-2-oxazolidinone as a chiral auxiliary was based on its known superiority in radical reactions; see: (a) Sibi MP, Despande PK, La Loggia AJ, Christensen JW (1995) Tetrahedron Lett 36:8961; (b) Sibi MP, Jasperse CP, Ji J (1995) J Am Chem Soc 117:10779; (c) Sibi MP, Ji J (1997) Angew Chem Int Ed Engl 36:274

    Google Scholar 

  51. (a) Evans DA, Bartoli J, Shih TL (1981) J Am Chem Soc 103:2127; (b) Evans DA, Urpi F, Somer TC, Clark JS, Bilodeau MT (1990) J Am Chem Soc 112:8215; (c) Evans DA, Bilodeau MT, Somer TC, Clardy JS, Cherry D, Kato Y (1991) J Org Chem 56:5750; (d) Oppolzer W, Cintas-Moreno P, Tamura O, Cardinaux F (1993) Helv Chim Acta 76:187

    Google Scholar 

  52. Sibi MP, Liu P, Ji J, Hajra S, Chen J (2002) J Org Chem 67:1738

    Google Scholar 

  53. Bella M, Margarita R, Orlando C, Orsini M, Parlanti L, Piancatelli G (2000) Tetrahedron Lett 41:561

    Google Scholar 

  54. (a) Lockwood RF, Nicholas KM (1977) Tetrahedron Lett 18:4163; (b) Nicholas KM, Nestle MO, Deyferth D (1978) In: Halper (ed) Transition metal organometallics. Academic Press, New York, p 1; (c) Schreiber SL, Sammakia T, Crowe WE (1986) J Am Chem Soc 108:3128; (d) Nicholas KM, Mulvaney M, Bayer M (1980) J Am Chem Soc 102:2508; (e) Hodes HD, Nicholas KM (1978) Tetrahedron Lett 19:4350; (f) Bramwell AF, Combie L, Knight MH (1965) Chem Ind (London) 1265 and references cited therein; (g) Saha M, Bogby B, Nicholas KM (1986) Tetrahedron Lett 27:915; (h) Schreiber SL, Kalimas MT, Sammakia T (1987) J Am Chem Soc 109:5749

    Google Scholar 

  55. Jacobi PA, Herradura P (2001) Can J Chem 79:1727

    Google Scholar 

  56. (a) Stadtmüller H, Lentz R, Tucker CE, Stüdemamm T, Dörner W, Knochel P (1993) J Am Chem Soc 115:7027; (b) Stadtmüller H, Tucker CE, Vaupel A, Knochel P (1993) Tetrahedron Lett 34:7911; (c) Vaupel A, Knochel P (1994) Tetrahedron Lett 35:8349

    Google Scholar 

  57. (a) Vaupel A, Knochel P (1995) Tetrahedron Lett 36:231; (b) Vaupel A, Knochel P (1996) J Org Chem 61:5743

    Google Scholar 

  58. Zhu G, Lu X (1995) J Org Chem 60:1087

    Google Scholar 

  59. Aoyagi S, Wang TC, Kibayashi C (1993) J Am Chem Soc 115:11393

    Google Scholar 

  60. Martin T, Rodriguez CM, Martin VS (1996) J Org Chem 61:6450

    Google Scholar 

  61. Drioli S, Felluga F, Forzato C, Nitti P, Pitacco G, Valentin E (1998) J Org Chem 63:2385

    Google Scholar 

  62. Patrick TM Jr (1952) J Org Chem 17:1009

    Google Scholar 

  63. Böhm C, Schninnerl M, Bubert C, Zabel M, Labahn T, Parisini E, Reiser O (2000) Eur J Org Chem 2955

    Google Scholar 

  64. Review: Mengel A, Reiser O (1999) Chem Rev 99:1191

    Google Scholar 

  65. (a) Chhor RB, Nosse B, Sörgel S, Böhm C, Seitz M, Reiser O (2003) Chem Eur J 9:260; (b) Böhm C, Reiser O (2001) Org Lett 3:1315

    Google Scholar 

  66. Chatterjee AK, Grubbs RH (1999) Org Lett 1:1751

    Google Scholar 

  67. Ariza X, Garcia J, Lopez M, Montserrat L (2001) Synlett 120

    Google Scholar 

  68. Chandrasekharam M, Liu R-S (1998) J Org Chem 63:9122

    Google Scholar 

  69. (a) Faller JW, Linebarrier DL (1989) J Am Chem Soc 111:1939; (b) Faller JW, John JA, Mazzier MR (1989) Tetrahedron Lett 30:1769

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Reiser .

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Bandichhor, R., Nosse, B., Reiser, O. Paraconic Acids—The Natural Products from Lichen Symbiont. In: Natural Product Synthesis I. Topics in Current Chemistry, vol 243. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b96881

Download citation

Publish with us

Policies and ethics