Skip to main content

Excited States and Optical Spectroscopy of Nitronyl Nitroxides and their Lanthanide and Transition Metal Complexes

  • Chapter

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 241))

Abstract

Nitronyl nitroxides are stable free radicals that have been used to prepare new molecular solids with intriguing magnetic properties. These properties have been probed for the electronic ground state using a large number of different physical techniques and theoretical methods. In contrast, the excited states and optical spectroscopy of these compounds and their metal complexes have received little attention until recently. In this overview, we present their absorption and luminescence spectra. Luminescence is observed between 700 nm and 1100 nm, and the lowest-energy absorption bands occur between 500 nm and 700 nm. Several excited electronic states are in the red to near-infrared wavelength range, leading to a wide variety of interesting spectroscopic features.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kahn O (1996) Adv Inorg Chem 43:179

    Google Scholar 

  2. Luneau D (2001) Curr Opin Solid State Mater Sci 5:123

    Google Scholar 

  3. Benelli C, Gatteschi D (2002) Chem Rev 102:2369

    Google Scholar 

  4. Kaizaki S (2003) Bull Chem Soc Jpn 76:673

    Google Scholar 

  5. Kinoshita M, Turek P, Tamura M, Nozawa K, Shiomi D, Nakazawa Y, Ishikawa M, Takahashi M, Awaga K, Inabe T, Maruyama Y (1991) Chem Lett 1225

    Google Scholar 

  6. Cirujeda J, Mas M, Molins E, Lanfranc de Panthou F, Laugier J, Park JG, Paulsen C, Rey P, Rovira C, Veciana J (1995) Chem Commun 709

    Google Scholar 

  7. Caneschi A, Ferraro F, Gatteschi D, Le Lirzin A, Novak MA, Rentschler E, Sessoli R (1995) Adv Mater 7:476

    Google Scholar 

  8. Romero FM, Ziessel R, Drillon M, Tholence JL, Paulsen C, Kyritsakas N, Fisher J (1996) Adv Mater 8:826

    Google Scholar 

  9. Hirel C, Luneau D, Pécaut J, Öhrström L, Bussière G, Reber C (2002) Chem Eur J 8:3157

    Google Scholar 

  10. Inoue K, Iwamura H (1994) J Am Chem Soc 116:3173

    Google Scholar 

  11. Inoue K, Hayamizu T, Iwamura H, Hashizume D, Ohashi Y (1996) J Am Chem Soc 118:1803

    Google Scholar 

  12. Iwamura H, Inoue K, Koga N (1998) New J Chem 201

    Google Scholar 

  13. Luneau D, Romero FM, Ziessel R (1998) Inorg Chem 37:5078

    Google Scholar 

  14. Fegy K, Luneau D, Ohm T, Paulsen C, Rey P (1998) Angew Chem Int Ed 37:1270

    Google Scholar 

  15. Caneschi A, Gatteschi D, Sessoli R, Rey P (1989) Acc Chem Res 22:392

    Google Scholar 

  16. Matsuda K, Irie M (2000) J Am Chem Soc 122:7195

    Google Scholar 

  17. Nakano M, Yamada S, Yamagushi K (1998) Bull Chem Soc Jpn 71:845

    Google Scholar 

  18. McCarthy PJ, Güdel HU (1988) Coord Chem Rev 88:69

    Google Scholar 

  19. Mathonière C, Kahn O, Daran JC, Hilbig H, Kohler FH (1993) Inorg Chem 32:4057

    Google Scholar 

  20. Mathonière C, Kahn O (1994) Inorg Chem 33:2103

    Google Scholar 

  21. Ullman EF, Osiecki JH, Boocock DGB, Darcy R (1972) J Am Chem Soc 94:7049

    Google Scholar 

  22. Karayannis NM, Paleos CM, Mikulski CM, Pytlewski LL, Blum H, Labes MM (1973) Inorg Chim Acta 7:74

    Google Scholar 

  23. Richardson PF, Kreilick RW (1977) J Am Chem Soc 99:8183

    Google Scholar 

  24. Yoshida T, Kanamori K, Takamizawa S, Mori W, Kaizaki S (1997) Chem Lett 603

    Google Scholar 

  25. Yoshida T, Suzuki T, Kanamori K, Kaizaki S (1999) Inorg Chem 38:1059

    Google Scholar 

  26. Lescop C, Luneau D, Bussière G, Triest M, Reber C (2000) Inorg Chem 39:3740

    Google Scholar 

  27. Lescop C, Luneau D, Rey P, Bussière G, Reber C (2002) Inorg Chem 41:5566

    Google Scholar 

  28. Beaulac R, Bussière G, Reber C, Lescop C, Luneau D (2003) New J Chem 27:1200

    Google Scholar 

  29. Tsukuda T, Suzuki T, Kaizaki S (2002) J Chem Soc, Dalton Trans 1721

    Google Scholar 

  30. Ogita M, Yamamoto Y, Suzuki T, Kaizaki S (2002) Eur J Inorg Chem 886

    Google Scholar 

  31. Tsukahara Y, Iino A, Yoshida T, Suzuki T, Kaizaki S (2002) J Chem Soc Dalton Trans 181

    Google Scholar 

  32. Lescop C, Luneau D, Belorizky E, Fries P, Guillot M, Rey P (1999) Inorg Chem 38:5472

    Google Scholar 

  33. Lescop C, Belorizky E, Luneau D, Rey P (2002) Inorg Chem 42:3375

    Google Scholar 

  34. Davis MJ, Reber C (1995) Inorg Chem 34:4585

    Google Scholar 

  35. Bussière G, Beaulac R, Cardinal-David B, Reber C (2001) Coord Chem Rev 219/221:509

    Google Scholar 

  36. Herzberg G (1950) Molecular spectra and molecular structure I. Diatomic molecules. D. Van Nostrand Company, Toronto, New York, London, pp 421, 558

    Google Scholar 

  37. MacSpartan Pro, version 1.0.4 (2000) Wavefunction, Irvine, CA 92612. Molecular orbitals were calculated with the SVWN density functional method and the DN* basis set

    Google Scholar 

  38. Yoshioka N, Irasawa M, Mochizuki Y, Kato T, Inoue H, Ohba S (1997) Chem Lett 251

    Google Scholar 

  39. Zheludev A, Barone V, Bonnet M, Delley B, Grand A, Ressouche E, Rey P, Subra R, Schweizer J (1994) J Am Chem Soc 116:2019

    Google Scholar 

  40. Zheludev A, Bonnet M, Luneau D, Ressouche E, Rey P, Schweizer J (1995) Phys B Condens Matter (Amsterdam) 213/214:268

    Google Scholar 

  41. Ressouche E, Boucherle JX, Gillon B, Rey P, Schweizer J (1993) J Am Chem Soc 115:3610

    Google Scholar 

  42. Zoppellaro G, Ivanova A, Enkelmann, V, Geies A, Baumgarten M (2003) Polyhedron 22:2099

    Google Scholar 

  43. Claiser N, Souhassou M, Lecomte C, Pontillon Y, Romero F, Ziessel R (2002) J Phys Chem B 106:12896

    Google Scholar 

  44. Wexler D, Zink JI, Reber C (1992) J Phys Chem 96:8757

    Google Scholar 

  45. Fettouhi M, Ali BE, Morsy M, Golhen S, Ouahab L, Guennic BL, Saillard J-Y, Daro N, Sutter J-P, Amouyal E (2003) Inorg Chem 42:1316

    Google Scholar 

  46. Benelli C, Dei A, Gatteschi D, Güdel HU, Pardi L (1989) Inorg Chem 28:3089

    Google Scholar 

  47. Yamamoto Y, Suzuki T, Kaizaki S (2001) J Chem Soc Dalton Trans 1566

    Google Scholar 

  48. Grey JK, Butler IS, Reber C (2002) J Am Chem Soc 224:9384

    Google Scholar 

  49. Grey JK, Butler IS, Reber C (2003) Inorg Chem 42:6503

    Google Scholar 

  50. Romanenko GV, Fokin SV, Vasilevskii SF, Tret’yakov EV, Shvedenkov YG, Ovcharenko VI (2001) Russ J Coord Chem 27:360

    Google Scholar 

  51. Tsukahara Y, Kamatani T, Suzuki T, Kaizaki S (2003) J Chem Soc Dalton Trans 1276

    Google Scholar 

  52. Benelli C, Caneschi A, Gatteschi D, Pardi L (1992) Inorg Chem 31:741

    Google Scholar 

Download references

Acknowledgements

Financial support from the Natural Sciences and Engineering Research Council (Canada), the Centre Jacques Cartier, and the Commission Permanente de Coopération Franco-Québécoise is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dominique Luneau or Christian Reber .

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Bussière, G. et al. Excited States and Optical Spectroscopy of Nitronyl Nitroxides and their Lanthanide and Transition Metal Complexes. In: Transition Metal and Rare Earth Compounds. Topics in Current Chemistry, vol 241. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b96861

Download citation

  • DOI: https://doi.org/10.1007/b96861

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20948-5

  • Online ISBN: 978-3-540-39904-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics