Skip to main content

Transcriptional regulation of intestinal nutrient transporters

  • Chapter
  • First Online:
Molecular Mechanisms Controlling Transmembrane Transport

Part of the book series: Topics in Current Genetics ((TCG,volume 9))

Abstract

Nutrient transport across the apical plasma membrane of enterocytes is mediated by highly specialised membrane proteins, the majority of which are adaptively regulated by dietary substrates. The nutrient signals are either transmitted by the transporter itself, regulating the external nutrient access to the intracellular environment, or via distinct luminal membrane nutrient sensors. This chapter addresses the importance of the transcriptional regulation of intestinal nutrient transporter genes, and highlights its relevance to nutrition, health and disease. Examples are given of nutrient transporters from both the small and large intestine for which the underlying transcriptional mechanisms have been identified. These include the Na+/glucose cotransporter (SGLT1) and the bile salt transporter (ABST) expressed in the small intestine, and the monocarboxylate transporter (MCT1), residing in the large intestine. A better understanding of transcriptional regulation of intestinal nutrient transporters will undoubtedly have important clinical and nutritional implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Adibi SA (1997) The oligopeptide transporter (Pept-1) in human intestine: biology and function. Gastroenterology 113:332-340

    Article  PubMed  CAS  Google Scholar 

  • 2. Archer SY, Meng S, Shei A, Hodin RA (1998) p21(WAF1) is required for butyrate-mediated growth inhibition of human colon cancer cells. Proc Natl Acad Sci USA 95:6791-6796

    Article  PubMed  CAS  Google Scholar 

  • 3. Bai L, Merchant JL (2000) Transcription factor ZBP-89 cooperates with histone acetyltransferase p300 during butyrate activation of p21waf1 transcription in human cells. J Biol Chem 275:30725-30733

    Article  PubMed  CAS  Google Scholar 

  • 4. Britton RS, Fleming RE, Parkkila S, Waheed A, Sly WS, Bacon BR (2002) Pathogenesis of hereditary hemochromatosis: genetics and beyond. Semin Gastrointest Dis 13:68-79

    PubMed  Google Scholar 

  • 5. Carey M, Smale ST (1999) In Transcriptional regulation in eukaryotes. Cold Spring Harbor Laboratory Press, New York, pp. 1-50

    Google Scholar 

  • 6. Chen F, Ma L, Al-Ansari N, Schneider B (2001) The role of AP-1 in the transcriptional regulation of the rat apical sodium-dependent bile acid transporter. J Biol Chem 276:38703-38714

    Article  PubMed  CAS  Google Scholar 

  • 7. Chen F, Ma L, Dawson PA, Sinal CJ, Sehayek E, Gonzalez FJ, Breslow J, Ananthanaratanan M, Schneider BL (2003) Liver receptor homologue-1 mediates species- and cell line-specific bile acid-dependent negative feedback regulation of the apical sodium dependent bile acid transporter. J Biol Chem 278:19909-19916

    Article  PubMed  CAS  Google Scholar 

  • 8. Cohn SM, Simon TC, Roth KA, Birkenmeier EH, Gordon JI (1992) Use of transgenic mice to map cis-acting elements in the intestinal fatty acid binding protein gene (Fabpi) that control its cell lineage-specific and regional patterns of expression along the duodenal-colonic and crypt-villus axes of the gut epithelium. J Cell Biol 119:27-44

    Article  PubMed  CAS  Google Scholar 

  • 9. Coppola CP, Gosche JR, Arrese M, Ancowitz B, Madsen J, Vanderhoof J, Schneider BL (1998) Molecular analysis of the adaptive response to intestinal bile acid transport after ileal resection. Gastroenterology 115:1172-1178

    Article  PubMed  CAS  Google Scholar 

  • 10. Cuff MA, Shirazi-Beechey SP (2002) The human monocarboxylate transporter, MCT1: genomic organisation and promoter analysis. Biochem Biophys Res Commun 262:1048-1056

    Article  Google Scholar 

  • 11. Cuff MA, Lambert DW, Shirazi-Beechey SP (2002) Substrate-induced regulation of the human colonic monocarboxylate transporter, MCT1. J Physiol (Lond) 539.2:361-371

    Google Scholar 

  • 12. Cummings JH (1984) The importance of SCFA in man. Scand J Gastroenterology 19:89-99

    CAS  Google Scholar 

  • 13. Danielsen M, Jackson AA (1992) Limits of adaptation to a diet low in protein in normal man: urea kinetics. Clin Sci 83:103-108

    PubMed  CAS  Google Scholar 

  • 14. Diamond JM, Karasov WH (1987) Adaptive regulation of intestinal nutrient transporters. Proc Natl Acad Sci USA 84:2242-2245

    Article  PubMed  CAS  Google Scholar 

  • 15. Dyer J, Hosie KB, Shirazi-Beechey SP (1997) Nutrient regulation of human intestinal sugar transporter (SGLT1) expression. Gut 41:56-59

    Article  PubMed  CAS  Google Scholar 

  • 16. Dyer J, Fernandez-Castaño Merediz E, Salmon KSH, Proudman CJ, Edwards GB, Shirazi-Beechey SP (2002) Molecular characterisation of carbohydrate digestion and absorption in equine small intestine. Equine Vet J 34:349-358

    Article  PubMed  CAS  Google Scholar 

  • 17. Dyer J, Vayro S, King TP, Shirazi-Beechey SP (2003a) Glucose sensing in the intestinal epithelium. Eur J Biochem 270:3377-3388

    Article  PubMed  CAS  Google Scholar 

  • 18. Dyer J, Vayro S, Shirazi-Beechey SP (2003b) Mechanism of glucose sensing in the small intestine. Biochem Soc Trans 31:1140-1142

    Article  PubMed  CAS  Google Scholar 

  • 19. Erickson RH, Gum JRG, Lindstrom MM, McKean D, Kim YS (1995) Regional expression and dietary regulation of rat small intestinal peptide and amino acid transporter mRNAs. Biochem Biophys Res Commun 216:249-257

    Article  PubMed  CAS  Google Scholar 

  • 20. Ferraris RP, Diamond JM, Kwan WW (1988) Dietary regulation of the intestinal transport of the dipeptide carnosine. Am J Physiol 255:G143-G149

    PubMed  CAS  Google Scholar 

  • 21. Ferraris RP, Diamond JM (1989) Specific regulation of intestinal nutrient transporters by their dietary substrates. Annu Rev Physiol 51:125-141

    Article  PubMed  CAS  Google Scholar 

  • 22. Ferraris RP, Villenas SA, Hirayama BA, Diamond J (1990) Effect of diet on glucose transporter site density along the intestinal crypt-villus axis. Am J Physiol 262:G1060-G1068

    Google Scholar 

  • 23. Flores G, Duan H, Yan H, Nagaraj R, Fu W, Zou Y, Noll M, Banerjee U (2000) Combinatorial signaling in the specification of unique cell fates. Cell 103:75-85

    Article  PubMed  CAS  Google Scholar 

  • 24. Freeman TC, Wood IS, Sirinathsinghji DJS, Beechey RB, Dyer J, Shirazi-Beechey SP (1993) The expression of Na+-glucose cotransporter (SGLT1) gene in lamb intestine during postnatal development. Biochim Biophys Acta 1146:203-212

    Article  PubMed  CAS  Google Scholar 

  • 25. Ghazi A, VijayRaghhavan K (2000) Developmental biology. Control by combinatorial codes. Nature 408:419-420

    Article  PubMed  CAS  Google Scholar 

  • 26. Gunshin H, MacKenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482-488

    Article  PubMed  CAS  Google Scholar 

  • 27. Hague A, Diaz GD, Hicks D, Krajewski S, Reed JC, Paraskeva C (1997) bcl-2 and bak may play a pivotal role in sodium butyrate-induced apoptosis in colonic epithelial cells; however, overexpression of bcl-2 does not protect against bak-mediated apoptosis. Int J Cancer 72:898-905

    Article  PubMed  CAS  Google Scholar 

  • 28. Hediger MA, Coady MJ, Ikeda TS, Wright EM (1987) Expression cloning and cDNA sequencing of the Na+-glucose co-transporter. Nature 330:379-381

    Article  PubMed  CAS  Google Scholar 

  • 29. Hediger MA, Turk E, Wright EM (1989) Homology of the human intestinal Na+/glucose and Escherichia coli Na+/proline cotransporters. Proc Natl Acad Sci USA 86:5748-5742

    Article  PubMed  CAS  Google Scholar 

  • 30. Hediger MA, Rhoads DB (1994) Molecular physiology of sodium-glucose cotransporters. Physiol Rev 74:993-1026

    PubMed  CAS  Google Scholar 

  • 31. Hermiston ML, Gordon JI (1993) Use of transgenic mice to characterize the multipotent intestinal stem cell and to analyze regulation of gene expression in various epithelial cell lineages as a function of their position along the cephalo-caudal and crypt-to-villus (or crypt-to-surface epithelial cuff) axes of the gut. Semin Dev Biol 4:275-291

    Article  CAS  Google Scholar 

  • 32. Hollands CM, Rivera-Pedrogo J, Gonzalez-Vallina R, Loret-de-Mola O, Nahmad M, Brunweit CA (1998) Ileal exclusion for Byler’s disease: an alternative surgical approach with promising early results for pruritus. J Pediatr Surg 33:220-224

    Article  PubMed  CAS  Google Scholar 

  • 33. Hubert N, Hentze MW (2002) Previously uncharacterized isoforms of divalent metal transporter (DMT)-1: implications for regulation and cellular function. Proc Natl Acad Sci USA 99:12345-12350

    Article  PubMed  CAS  Google Scholar 

  • 34. Lambert DW, Wood IS, Ellis A, Shirazi-Beechey SP (2002) Molecular changes in the expression of human colonic nutrient transporters during the transition from normality to malignancy. Br J Cancer 86:1262-1269

    Article  PubMed  CAS  Google Scholar 

  • 35. Latchman DS (1995) Eukaryotic transcription factors, 2nd Edition. Academic Press Limited

    Google Scholar 

  • 36. Lee PL, Gelbart T, West C, Halloran C, Beutler E (1998) The human Nramp2 gene: characterization of the gene structure, alternative splicing, promoter region and polymorphisms. Blood Cells Mol Dis 24:199-215

    Article  PubMed  CAS  Google Scholar 

  • 37. Ma L, Sehayek E, Breslow J, Schneider B (2000) Discoordinate regulation of the ileal bile acid transporter (ASBT) and bile acid binding protein (ILBP) in mouse ileum. Gastroenterology 118:165 A 934

    Google Scholar 

  • 38. Martin M, Wang J, Solorzano-Vargas S, Lam JT, Turk E, Wright EM (2000) Regulation of the human Na+-glucose cotransporter gene, SGLT1, by HNF-1 and Sp1. Am J Physiol 278:G591-G603

    CAS  Google Scholar 

  • 39. Matthews DM (1991) Protein absorption. Wiley-Liss, New York

    Google Scholar 

  • 40. Macfarlane GT, Cummings JH (1991) The colonic flora, fermentation, and large bowel digestive function. In: Phillips SF, Pemberton JH, Shorter RG, eds. The large intestine; physiology, pathophysiology and disease. Raven Press Ltd, New York, pp. 51-92

    Google Scholar 

  • 41. McKie AT, Marciani P, Rolfs A, Brennan K, Wehr K, Barrow D, Miret S, Bomford A, Peters TJ, Farzaneh F, Hediger MA, Hentze MW, Simpson RJ (2000) A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell 5:299-309

    Article  PubMed  CAS  Google Scholar 

  • 42. Mittanck DW, Kim SW, Rotwein P (1997) Essential promoter elements are located within the 5’ untranslated region of human insulin-like growth factor-I exon I. Mol Cell Endocrinol 126:153-163

    Article  PubMed  CAS  Google Scholar 

  • 43. Oelkers P, Kirby LC, Heubi JE, Dawson PA (1997) Primary bile acid malabsorption caused by mutations in the ileal sodium-dependent bile acid transporter gene (SLC10A2). J Clin Invest 99:1880-1887

    Article  PubMed  CAS  Google Scholar 

  • 44. Palacin M, Estevez R, Bertran J, Zorzano A (1998) Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev 78:969-1054

    PubMed  CAS  Google Scholar 

  • 45. Philpott CC (2002) Molecular aspects of iron absorption: insights into the role of HFE in hemochromatosis. Hepatology 35:993-1001

    Article  PubMed  CAS  Google Scholar 

  • 46. Polakowska RR, Graf BA, Falciano V, LaCelle P (1999) Transcription regulatory elements of the first intron control human transglutaminase type I expression in epidermal keratinocytes. J Cell Biochem 73:355-369

    Article  PubMed  CAS  Google Scholar 

  • 47. Potten CS Loeffler M (1990) Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons from the crypt. Development 110:1001-1020

    PubMed  CAS  Google Scholar 

  • 48. Rings EHHM, DeBoer PAJ, Moorman AFM, VanBeers EH, Dekker J, Montgomery RK, Grand RJ, Buller HA (1992) Lactase gene expression during early development of rat small intestine. Gastroenterology 103:1154-1161

    PubMed  CAS  Google Scholar 

  • 49. Ritzhaupt A, Ellis A, Hosie KB, Shirazi-Beechey SP (1998) The characterization of butyrate transport across pig and human colonic luminal membrane. J Physiol (Lond) 507:819-830

    Google Scholar 

  • 50. Schneider B (2001) Intestinal bile acid transport: biology, physiology, and pathophysiology. J Pediatr Gastroenterol Nutr 32:407-417

    Article  Google Scholar 

  • 51. Seidner DL (2002) Short bowel syndrome: etiology, pathophysiology and management. Practical Gastroenterology 25:63-72

    Google Scholar 

  • 52. Shih D, Bussen M, Sehayek E, Ananthanarayanan M, Schneider B, Suchy F, Shefer S, Bollileni J, Gonzalez F, Breslow J, Stoffel M (2001) Hepatocyte nuclear-factor 1 alpha is an essential regulator of bile acid and plasma cholesterol metabolism. Nat Genet 27:375-382

    Article  PubMed  CAS  Google Scholar 

  • 53. Shirazi-Beechey SP, Hirayama BA, Wang Y, Scott D, Smith MW, Wright EM (1991) Ontogenic development of lamb intestinal sodium-glucose co-transporter is regulated by diet. J Physiol (Lond) 437:699-708

    Google Scholar 

  • 54. Shirazi-Beechey SP (1995) Molecular biology of intestinal glucose transport. Nutr Res Rev 8:27-41

    Article  PubMed  CAS  Google Scholar 

  • 55. Shirazi-Beechey SP (1996) Intestinal sodium-dependent D-glucose cotransporter: dietary regulation. Proc Nutr Soc 55:167-178

    Article  PubMed  CAS  Google Scholar 

  • 56. Siavoshian S, Segain JP, Kornprobst M, Bonnet C, Cherbut C, Galmiche JP, Blottiere HM (2000) Butyrate and trichostatin A effects on the proliferation/differentiation of human intestinal epithelial cells: induction of cyclin D3 and p21 expression. Gut 46:507-514

    Article  PubMed  CAS  Google Scholar 

  • 57. Solberg DH, Diamond JM (1987) Comparison of different dietary sugars as inducers of intestinal sugar transporters. Am J Physiol 252:G574-G584

    PubMed  CAS  Google Scholar 

  • 58. Stein J, Zores M, Schroder O (2000) Short-chain fatty acid (SCFA) uptake into Caco-2 cells by a pH dependent and carrier mediated transport mechanism. European J Nutr 39:121-125

    Article  CAS  Google Scholar 

  • 59. Stravitz RT, Sanyal AJ, Pandak WM, Vlahoevia ZR, Beeta JW, Dawson PA (1997) Induction of sodium-dependent bile acid transporter messenger RNA, protein, and activity in rat ileum by cholic acid. Gastroenterology 113:1599-1608

    Article  PubMed  CAS  Google Scholar 

  • 60. Sweetser DA, Birkenmeier EH, Hoppe PC, McKeel DW, Gordon JI (1988) Mechanisms underlying generation of gradients in gene expression within the intestine: an analysis using transgenic mice containing fatty acid binding protein-human growth hormone fusion genes. Genes Dev 2:1318-1332

    Article  PubMed  CAS  Google Scholar 

  • 61. Tamai I, Sai Y, Ono A, Kido Y, Yabuuchi H, Takanaga H, Satoh E, Ogihara T, Amano O, Izeki S, Tsuji A (1999) Immunohistochemical and functional characterisation of pH-dependent intestinal absorption of weak organic acids by the monocarboxylic acid transporter MCT1. J Pharm Pharmacol 51:1113-1121

    Article  PubMed  CAS  Google Scholar 

  • 62. Tarpey PS, Wood IS, Shirazi-Beechey SP, Beechey RB (1995) Amino acid sequence and the cellular location of the Na(+)-dependent D-glucose symporters (SGLT1) in the ovine enterocyte and the parotid acinar cell. Biochem J 312:293-300

    PubMed  CAS  Google Scholar 

  • 63. Tjian R (1996) The biochemistry of transcription in eukaryotes: a paradigm for multisubunit regulatory complexes. Philos Trans R Soc Lond B 351:491-499

    Article  CAS  Google Scholar 

  • 64. Torchia E, Cheema S, Agellon L (1996) Coordinate regulation of bile acid biosynthetic and recovery pathways. Biochem Biophys Res Commun 225:128-133

    Article  PubMed  CAS  Google Scholar 

  • 65. Traber PG (1990) Regulation of sucrase-isomaltase gene expression along the crypt-villus axis of rat small intestine. Biochem Biophys Res Commun 173:765-773

    Article  PubMed  CAS  Google Scholar 

  • 66. Traber PG, Silberg DG (1996) Intestinal-specific gene transcription. Ann Rev Physiol 58:275-297

    Article  CAS  Google Scholar 

  • 67. Vayro S, Wood IS, Dyer J, Shirazi-Beechey SP (2001) Transcriptional regulation of the ovine intestinal Na+/glucose cotransporter SGLT1 gene: role of HNF-1 in glucose activation of promoter function. Eur J Biochem 268:5460-5470

    Article  PubMed  CAS  Google Scholar 

  • 68. Walker D, Thwaites DT, Simmons NL, Gilbert HJ, Hirst BH (1998) Substrate upregulation of the human small intestinal peptide transporter, hPepT1. J Physiol 507:697-706

    Article  PubMed  CAS  Google Scholar 

  • 69. Wang HT, Miller JH, Iannoli P, Sax HC (1997) Intestinal adaptation and amino acid transport following massive enterectomy. Frontiers in Biosciences 2:116-122

    Google Scholar 

  • 70. Wood IS, Allison GG, Shirazi-Beechey SP (1999) Isolation and characterization of a genomic region upstream from the ovine Na+/D-glucose cotransporter (SGLT1) cDNA. Biochem Biophys Res Comm 257:533-537

    Article  PubMed  CAS  Google Scholar 

  • 71. Wood IS, Dyer J, Hofmann RR, Shirazi-Beechey SP (2000) Expression of the Na+/glucose co-transporter (SGLT1) in the intestine of domestic and wild ruminants. Pflügers Arch 441:155-162

    Google Scholar 

  • 72. Wright EM, Loo DDF, Panayotova-Heiermann M, Lostao MP, Hirayama BA, Mackenzie B, Boorer K, Zampighi G (1994) ”Active” sugar transport in eukaryotes. J Exp Biol 196:197-212

    PubMed  CAS  Google Scholar 

  • 73. Yu J-Y, DeRuiter S, Turner DL (2002) RNA interference by expression of short interfering RNAs and hairpin RNAs in mammalian cells, Proc Natl Acad Sci USA 99:6047-6052

    Google Scholar 

  • 74. Zawel L, Reinberg D (1995) Common themes in assembly and function of eukaryotic transcription complexes. Ann Rev Biochem 64:533-561

    Article  PubMed  CAS  Google Scholar 

  • 75. Zibrik L, Dyer J, Ellis T, Shirazi-Beechey SP (2003) Amino acid transport in human colon in short bowel syndrome. Gastroenterology 124:204, A31

    Article  Google Scholar 

  • 76. Ziegler TR, Fernandez-Estivariz C, Gu LH, Bazargan N, Umeakunne K, Wallace TM, Diaz EE, Rosado KE, Pascal RR, Galloway JR, Wilcox JN, Leader LM (2002) Distribution of the H+/peptide transporter PepT1 in human intestine: upregulated expression in the colonic mucosa of patients with short-bowel syndrome. Am J Clin Nutr 75:922-930

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soraya P. Shirazi-Beechey .

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin/Heidelberg

About this chapter

Cite this chapter

Shirazi-Beechey, S.P. (2004). Transcriptional regulation of intestinal nutrient transporters. In: Molecular Mechanisms Controlling Transmembrane Transport. Topics in Current Genetics, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b96814

Download citation

  • DOI: https://doi.org/10.1007/b96814

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21837-1

  • Online ISBN: 978-3-540-40912-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics