Skip to main content

Pressure Effect Studies on Spin Crossover and Valence Tautomeric Systems

  • Chapter

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 235))

Abstract

In the present review chapter we discuss the results of investigations of the influence of hydrostatic pressure (up to 1.2 GPa) on the spin transition behaviour in coordination compounds of 3d transition metal ions. The systems under investigation are mononuclear spin crossover compounds of iron(II) and chromium(II), dinuclear complexes of iron(II) exhibiting coexistence of intramolecular antiferromagnetic coupling and thermal spin crossover, and 1D, 2D and 3D polynuclear spin crossover complexes of iron(II). Results from studies of the effect of pressure on coordination compounds exhibiting thermally induced electron transfer with subsequent spin state changes are also presented and discussed. It is demonstrated that pressure effect studies are very helpful in elucidating the mechanism of cooperative dynamic electronic structure phenomena accompanied by significant volume changes. Application of hydrostatic pressure serves as a tool for modifying the ligand field strength in a controlled manner.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ST:

Spin transition

SCO:

Spin crossover

HS:

High spin

LS:

Low spin

χM :

Molar magnetic susceptibility

T 1/2 :

Temperature at which 50% of the “ST-active” molecules change the spin state

T c :

Critical temperature of spin transition

ΔT 1/2 :

Hysteresis width of spin transition

P:

Pressure

P1/2 :

Pressure at which 50% of the “ST-active” molecules change the spin state

Pc :

Critical pressure of spin transition

γHS :

HS molar fraction

γHS(T):

HS molar fraction as a function of temperature

γLS :

LS molar fraction

γG :

Grüneisen parameter

γ0 :

Eshelby constant

H:

Magnetic field

ZFS:

Zero field splitting

ΔS:

Entropy difference between the HS and LS states

ΔH:

Enthalpy difference between the HS and LS states

Γ:

Parameter accounting for intermolecular interactions

K:

Bulk modulus

V:

Volume

ΔV:

Molecular volume change between HS and LS species

fint(γ, T):

Free energy of intermolecular interaction

G:

Gibbs free energy

ΔF HL :

Change of the (Helmholtz) free energy due to spin transition

Δ s :

Energy shift of the lattice upon interaction with the reference lattice

* :

Reduced pressure

kB :

Boltzmann constant

2-pic:

2-(Aminomethyl)pyridine

pyz:

1-Pyrazolyl

pz:

Pyrazine

phen:

1,10-Phenanthroline

ptz:

1-n-Propyl-tetrazole

depe:

1,2-Bis(diethylphosphino)ethane

PM-Bia:

(N-(2′-Pyridylmethylene)-4-aminobiphenyl

bipy:

2,2′-Bipyridine

PM-Aza:

(N-(2′-Pyridylmethylene)-4-azophenylaniline

mtz:

1-Methyl-tetrazole

abpt:

4-Amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole

bt:

2,2′-Bithiazoline

phy:

1,10-Phenanthroline-2-carbaldehyde-phenylhydrazone

5-NO2-sal-N(1,4,7,10):

5-NO2-Salicylaldehyde-1,4,7,10-tetraazadecane

bpym:

2,2′-Bipyrimidine

4-R-trz:

4-Substituted-1,2,4-triazole

hyptrz:

4-(3′-Hydroxypropyl)-1,2,4-triazole

hyetrz:

4-(2′-Hydroxy-ethyl)-1,2,4-triazole

4,4′-bipy:

4,4′-Bipyridine

azpy:

4,4′-Azopyridine

btr:

4,4′-Bitriazole

btre:

1,2-Bis(1,2,4-triazol-4-yl)ethane

bpb:

1,4-Bis(4-pyridyl-butadiyne)

btzb:

1,4-Bis-(tetrazol-1-yl)butane-N1,N1′

py:

Pyridine

bpe:

trans-1,2-Bis(4-pyridyl)ethylene

cat:

Catecholato

sq:

Semiquinonato

phendiox:

9,10-Dioxophenanthrene

cth:

dl-5,7,7,12,14,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane

References

  1. Ewald AH, Martin RL, Sinn E, White AH (1969) Inorg Chem 8:1837

    Google Scholar 

  2. König E (1972) Ber Bunsenges Phys Chem 76:975

    Google Scholar 

  3. Drickamer HG, Frank CW (1973): Electronic transitions and the high pressure chemistry and physics of solids. Chapman and Hall, London

    Google Scholar 

  4. Adams DM, Long GJ, Williams AD (1982) Inorg Chem 21:1049

    Google Scholar 

  5. Pebler J (1983) Inorg Chem 22:4125

    Google Scholar 

  6. König E, Ritter G, Kulshreshtha SK, Waigel J, Goodwin HA, (1984) Inorg Chem 23:1896

    Google Scholar 

  7. Usha S, Srinivasan R, Rao CNR (1985) Chem Phys 100:447

    Google Scholar 

  8. Meissner E, Köppen H, Köhler CP, Spiering H, Gütlich P, (1987) Hyperfine Interact 36:1

    Google Scholar 

  9. Long GL, Hutchinson BB (1987) Inorg Chem 26:608

    Google Scholar 

  10. McCusker JK, Zvagulis M, Drickamer HG, Hendrickson DN (1989) Inorg Chem 28:1380

    Google Scholar 

  11. Konno M, Mikami-Kido M (1991) Bull Chem Soc Jpn 64:339

    Google Scholar 

  12. a) Köhler CP, Jakobi R, Meissner E, Wiehl L, Spiering H, Gütlich P (1990) J Phys Chem Solids 51:239; b) Kohlhaas T, Spiering H, Gütlich P (1997) Z Physik B 102:455; c) Romstedt H, Hauser A, Spiering H (1998) J Phys Chem Solids 59:265

    Google Scholar 

  13. Adler P, Spiering H, Gütlich P (1988) Hyperfine Interact 42:1035

    Google Scholar 

  14. Gütlich P, Hauser A, Spiering H (1994) Angew Chem Int Ed Engl 33:2024

    Google Scholar 

  15. Müller EW, Spiering H, Gütlich P (1982) Chem Phys Lett 93:567

    Google Scholar 

  16. König E, Ritter G, Waigel J, Goodwin HA (1985) J Chem Phys 83:3055.

    Google Scholar 

  17. Ksenofontov V, Spiering H, Schreiner A, Levchenko G, Goodwin HA, Gütlich P (1999) J Phys Chem Solids 60:393

    Google Scholar 

  18. Ksenofontov V, Levchenko G, Reiman S, Gütlich P, Bleuzen A, Escax V, Verdaguer M, (2003) Phys Rev B 68:024415

    Google Scholar 

  19. Long GJ, Becker LW, Hutchinson BB (1981) Adv Chem Ser 194:453

    Google Scholar 

  20. Guionneau P, Brigouleix C, Barrans Y, Goeta AE, Létard JF, Howard J, Gaultier J, Chasseau D (2001) C R Acad Sci IIC 4:161

    Google Scholar 

  21. Granier T, Gallois B, Gaultier J, Réal JA, Zarembowitch J (1993) Inorg Chem 32:5305

    Google Scholar 

  22. Real JA, Gaspar AB, Niel V, Muñoz MC (2003) Coord Chem Rev 236:121

    Google Scholar 

  23. Hannay C, Hubin-Franskin MJ, Grandjean F, Briois V, Itie JP, Polian A, Trofimenko S, Long GJ (1997) Inorg Chem 36:5580

    Google Scholar 

  24. Piquer C, Grandjean F, Mathon O, Pascarelli S, Reger DL, Little CA, Long GJ (2003) Inorg Chem 42:982

    Google Scholar 

  25. Adams DM, Long GJ, Williams AD (1982) Inorg Chem 21:1049

    Google Scholar 

  26. Molnar G, Niel V, Réal JA, Dubrovinsky L, Bousseksou A, McGarvey JJ (2003) J Phys Chem B 107:3149

    Google Scholar 

  27. Jeftić J, Hinek R, Capelli SC, Hauser A (1997) Inorg Chem 36:3080

    Google Scholar 

  28. Jeftić J, Menéndez N, Wack A, Codjovi E, Linarès J, Goujon A, Hamel G, Klotz S, Syfosse G, Varret F (1999) Meas Sci Tech 10:1059

    Google Scholar 

  29. Baran M, Levchenko GG, Dyakonov VP, Shymchak G (1995) Physica C 241:383

    Google Scholar 

  30. Madeja K, König E (1963) J Inorg Nuclear Chem 25:377

    Google Scholar 

  31. Fisher DC, Drickamer HG (1971) J Chem Phys 54:4825

    Google Scholar 

  32. a) Ganguli P, Gütlich P, Müller EW (1982) Inorg Chem 21:3249; b) Gallois B, Réal JA, Hauw C, Zarembowitch J (1990) Inorg Chem 29:1152

    Google Scholar 

  33. Gütlich P, Gaspar AB, Ksenofontov V, Garcia Y (2004) J Phys Cond Matter 16:1

    Google Scholar 

  34. a) Meissner E, Köppen H, Spiering H, Gütlich P (1983) Chem Phys Lett 95:163; b) Spiering H, Meissner E, Köppen H, Müller EW, Gütlich P (1982) Chem Phys 68:65; c) Adler P, Wiehl L, Meissner E, Köhler CP, Spiering H, Gütlich P (1987) J Phys Chem Solids 48:517

    Google Scholar 

  35. Halepoto DM, Holt DGL, Larkworthy LF, Leigh GL, Povey DC, Smith GW (1989) J Chem Soc Chem Commun 1322

    Google Scholar 

  36. a) Kusz J, Spiering H, Gütlich P (2001) J Appl Cryst 34:229; b) Chapter 16 of this series

    Google Scholar 

  37. Ksenofontov V, Levchenko GG, Spiering H, Gütlich P, Létard JF, Bouhedja Y, Kahn O (1998) Chem Phys Lett 294:545

    Google Scholar 

  38. Ksenofontov V, Gaspar A, Levchenko G, Campbell S, Garcia Y, Gütlich P (manuscript in preparation)

    Google Scholar 

  39. a) Wiehl L (1993) Acta Cryst B49:289; b) Wiehl L, Spiering H, Gütlich H, Knorr K (1990) J Appl Cryst 23:151

    Google Scholar 

  40. Poganiuch P, Decurtins S, Gütlich P (1990) J Am Chem Soc 112:3270

    Google Scholar 

  41. a) Gaspar AB, Muñoz MC, Moliner N, Ksenofontov V, Levchenko G, Gütlich P, Real JA (2003) Monatsh Chem 134:285; b) Gaspar AB, Muñoz MC, Moliner N, Ksenofontov V, Levchenko G, Gütlich P, Real JA (2003) In: Linert W, Verdaguer M (eds) Molecular magnets. Recent highlights. Springer, Berlin Heidelberg New York, pp 169–178

    Google Scholar 

  42. König E, Ritter G, Grünsteudel H, Dengler J, Nelson J (1994) J Inorg Chem 33:837

    Google Scholar 

  43. Bruns-Yilmaz C (1999) PhD Thesis, University of Mainz, Germany

    Google Scholar 

  44. Das AN, Ghos B (1983) J Phys C Solid State Phys 16:1799

    Google Scholar 

  45. a) Willenbacher N, Spiering H (1988) J Phys C 21:1423; b) Spiering H, Willenbacher N (1989) J Phys Condens Matter 1:10089

    Google Scholar 

  46. Eshelby JD (1956) Solid State Phys 3:79

    Google Scholar 

  47. Levchenko GG, Ksenofontov V, Stupakov AV, Spiering H, Garcia Y, Gütlich P (2002) Chem Phys 277:125

    Google Scholar 

  48. a) Dalton LR, Harper AW, Ghosn R, Steier WH, Ziari M, Fetterman H, Shi Y, Mustacich RW, Jen AKY, Shea KJ (1995) Chem Mater 7:1060; b) Dagani R (1996) Chem Eng News March 4:22

    Google Scholar 

  49. Real JA, Gaspar AB, Muñoz MC, Gütlich P, Ksenofontov V, Spiering H (2004) In: Topics Curr Chem, Springer, Berlin Heidelberg New York

    Google Scholar 

  50. Real JA, Bolvin H, Bousseksou A, Dworkin A, Kahn O, Varret F, Zarembowitch J (1992) J Am Chem Soc 114:4650

    Google Scholar 

  51. Ksenofontov V, Gaspar AB, Real JA, Gütlich P (2001) J Chem Phys B 105:12266

    Google Scholar 

  52. Gaspar AB, Ksenofontov V, Spiering H, Reiman S, Real JA, Gütlich P (2002) Hyp Interact 144/145:297

    Google Scholar 

  53. a) Haasnot JG, Groeneveld WL (1979) Z Naturforsch 346:1500; b) Haasnot JG (2000) Coord Chem Rev 200/202:131; c) Niel V, Muñoz MC, Gaspar AB, Galet A, Levchenko G, Real JA (2002) Chem Eur J 11:2446; d) Real JA, Andrés E, Muñoz MC, Julve M, Trainer T, Bousseksou A (1995) Science 268:265; e) Halder GJ, Kepert CJ, Mourabaki B, Murray KS, Cashion JD (2002) Science 298:1762; f) Niel V, Martinez-Agudo JM, Gaspar AB, Muñoz MC, Real JA (2001) Inorg Chem 40:3838; g) Niel V, Galet A, Gaspar AB, Muñoz MC, Real JA (2003) Chem Comm 1248

    Google Scholar 

  54. a) Lavrenova LG, Ikorskii VN, Varnek VA, Oglezneva IM, Larionov SV (1986) Koord Kim 12:207; b) Lavrenova LG, Ikorskii VN, Varnek VA, Oglezneva IM, Larionov SV (1993) J Struc Chem 34:960; c) Lavrenova LG, Yudina LG, Ikorskii VN, Varnek VA, Oglezneva IM, Larionov SV (1995) Polyhedron 14:1333

    Google Scholar 

  55. a) Kröber J, Codjovi E, Kahn O, Grolière F, Jay C (1993) J Am Chem Soc 115:9810; b) Codjovi E, Sommier L, Kahn O, Jay C (1996) New J Chem 20:503; c) Kahn O, Martinez CJ (1998) Science 279:44

    Google Scholar 

  56. Michalowicz A, Moscovici J, Ducourant B, Cracco D, Kahn O (1995) Chem Mater 7:1833

    Google Scholar 

  57. García Y, Ksenofontov V, Gütlich P (2002) Hyperfine Interact 139/140:543

    Google Scholar 

  58. García Y, van Koningsbruggen PJ, Lapouyade R, Fournés L, Rabardel L, Kahn O, Ksenofontov V, Levchenko G, Gütlich P (1998) Chem Mater 10:2426

    Google Scholar 

  59. Moliner N, Muñoz MC, Létard S, Salmon L, Tuchagues JP, Bousseksou A, Real JA (2002) Inorg Chem 41:6997

    Google Scholar 

  60. Gaspar AB (2002) PhD Thesis, Valencia

    Google Scholar 

  61. Klokishner S, Linarès J, Varret F (2000) Chem Phys 255:317

    Google Scholar 

  62. García Y, Ksenofontov V, Levchenko GG, Schimtt G, Gütlich P (2000) J Phys Chem B 104:5045

    Google Scholar 

  63. a) Vreugdenhil W, van Diemen JH, de Graff RAG, Haasnot JG, Reedijk J, van der Kraan A, Kahn O, Zarembowitch J (1990) Polyhedron 9:2971; b) Ozarowski A, Shunzhong Y, McGarvey BR, Mislankar A, Drake JE (1991) Inorg Chem 30:3167; c) Martin JP, Zarembowitch J, Dworkin A, Haasnot JG, Codjovi EC (1994) Inorg Chem 33:2617

    Google Scholar 

  64. Jeftic J, Hauser A (1997) J Phys Chem B 101:10262

    Google Scholar 

  65. Slichter CP, Drickamer HG (1972) J Chem Phys 56:2142

    Google Scholar 

  66. Kambara T (1981) J Phys Soc Jpn 50:2257

    Google Scholar 

  67. a) Jung J, Schmitt G, Wiehl L, Hauser A, Knorr K, Spiering H, Gütlich P (1996) Z Phys B 100:523; b) Jeftic J, Romstedt H, Hauser A (1996) J Phys Chem Solids 57:1743

    Google Scholar 

  68. García Y, Ksenofontov V, Bravic G, Chasseau D, Gütlich P (unpublished results)

    Google Scholar 

  69. Codjovi E, Menéndez N, Jeftic J, Varret F (2001) C R Acad Sci Series IIC Chem 4:181

    Google Scholar 

  70. Moliner N, Muñoz MC, Létard S, Solans X, Menéndez N, Goujon A, Varret F, Real JA, (2000) Inorg Chem 39:5390

    Google Scholar 

  71. Gaspar AB, Ksenofontov V, Real JA, Gütlich P (manuscript in preparation)

    Google Scholar 

  72. García Y, Kahn O, Rabardel L, Chansou L, Salmon L, Tuchagues JP (1999) Inorg Chem 38:4663

    Google Scholar 

  73. van Koningsbruggen PJ, García Y, Kooijman H, Spek AL, Haasnot JG, Kahn O, Linarès J, Codjovi E, Varret F (2001) J Chem Soc Dalton Trans 466

    Google Scholar 

  74. Shultz A (2001) In: Miller JS, Drillon M (eds) Magnetism: molecules to materials II. Wiley VCH, Weinheim, p 281

    Google Scholar 

  75. Caneschi A, Dei A, Fabrizi de Biani F, Gütlich P, Ksenofontov V, Levchenko G, Hoefer A, Renz F (2001) Chem Eur J 7:3926

    Google Scholar 

  76. Sato O, Iyoda T, Fujishima A, Hashimoto K (1996) Science 272:704

    Google Scholar 

  77. Verdaguer M (1996) Science 272:698

    Google Scholar 

Download references

Acknowledgements

We thank the European Commission for granting the TMR-Network “Thermal and Optical Switching of Molecular Spin States (TOSS)”, Contract no. ERB-FMRX-CT98-0199EEC/TMR. Financial support from the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie and the Materialwissenschaftliches Forschungszentrum of the University of Mainz is gratefully acknowledged. A.B.G. is grateful for a fellowship from Alexander von Humboldt Foundation. We thank Prof. J.A. Real for making available structural data and Dr. H. Spiering for his critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Gütlich .

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Ksenofontov, V., Gaspar, A.B., Gütlich, P. Pressure Effect Studies on Spin Crossover and Valence Tautomeric Systems. In: Spin Crossover in Transition Metal Compounds III. Topics in Current Chemistry, vol 235. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b95421

Download citation

  • DOI: https://doi.org/10.1007/b95421

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40395-1

  • Online ISBN: 978-3-540-44984-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics