Skip to main content

Ligand-Driven Light-Induced Spin Change (LD-LISC): A Promising Photomagnetic Effect

  • Chapter
Spin Crossover in Transition Metal Compounds II

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 234))

Abstract

“Ligand-driven light-induced spin change” (LD-LISC) is a photomagnetic effect based on the modulation of the ligand-field strength of a suitable spin-crossover complex through a photochemical reaction on the ligand. It allows one to switch the electronic spin state of the metal ion by means of light over a broad range of temperatures possibly including room temperature. Among the photochemical reactions capable of triggering the spin conversion reversibly, we have firstly selected cis-trans isomerization. The occurrence of the LD-LISC effect was shown in several iron(II) or iron(III) complexes. On varying the molecular components, the working temperature and excitation wavelengths were modulated so that the effect could be observed at room temperature upon irradiation of the sample with visible light. The experiments were performed on compounds either in solution or included in polymeric matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. a) Zarembowitch J, Kahn O (1991) New J Chem 15:181; b) Kahn O, Kröber J, Jay C (1992) Adv Mat 4:718; c) Kahn O, Jay-Martinez C (1998) Science 279:44; d) Varret F, Noguès M, Goujon A (2001) In: Miller J, Drillon M (eds) Magnetism: molecules to materials, vol II. Wiley-VCH, p 257

    Google Scholar 

  2. a) Gütlich P, Hauser A, Spiering H (1994) Angew Chem Int Ed 33:2024; b) Kahn O (1993) Molecular magnetism. VCH New York; c) Hauser A (1991) Coord Chem Rev 111:275; d) König E (1991) Struct Bond 76:51; e) Toftlund H (1989) Coord Chem Rev 94:67; f) Beattie JK (1988) Inorg Chem 32:1; g) König E (1987) Prog Inorg Chem 35:527; h) Gütlich P, Hauser A, Spiering H (1999) In: Solomon EI, Lever ABP (eds) Inorganic electronic structure and spectroscopy, vol II. Wiley, New York, p 575; i) Gütlich P, Garcia Y, Woike T (2001) Coord Chem Rev 219/221:839; j) Gütlich P, Garcia Y, Spiering H (2003) In: Miller JS, Drillon M (eds) Magnetism: molecules to materials, vol IV. Wiley-VCH Weinheim, p 271

    Google Scholar 

  3. a) Decurtins S, Gütlich P, Spiering H, Hauser A (1985) Inorg Chem 24:2174; b) Gütlich P, Hauser A (1990) Coord Chem Rev 97:1; c) Hauser A (1995) Comments Inorg Chem 17:17

    Google Scholar 

  4. a) Létard JF, Guionneau P, Rabardel L, Howard JAK, Goeta AE, Chasseau D, Kahn O (1998) Inorg Chem 37:4432; b) Desaix A, Roubeau O, Jeftic J, Haasnoot JG, Boukheddaden K, Codjovi E, Linarès J, Noguès M, Varret F (1998) Eur Phys J B 6:183

    Google Scholar 

  5. Zarembowitch J, Roux C, Boillot M-L, Claude R, Itié J-P, Polian A (1993) Mol Cryst Liq Cryst 234:247

    Google Scholar 

  6. Roux C (1992) Thesis, University Paris-Sud, France

    Google Scholar 

  7. Roux C, Zarembowitch J, Gallois B, Granier T, Claude R (1994) Inorg Chem 33:2273

    Google Scholar 

  8. Balzani V, Credi A, Raymo FM, Stoddart JF (2000) Angew Chem Int Ed 39:3348

    Google Scholar 

  9. Boillot M-L, Roux C, Audière J-P, Dausse A, Zarembowitch J (1996) Inorg Chem 35:3975

    Google Scholar 

  10. Boillot M-L, Chantraine S, Zarembowitch J, Lallemand J-Y, Prunet J (1999) New J Chem 23:179

    Google Scholar 

  11. Sour A, Boillot M-L, Rivière E, Lesot P (1999) Eur J Inorg Chem 2117

    Google Scholar 

  12. a) Boillot M-L, Soyer H (1997) New J Chem 21:889; b) Soyer H, Mingotaud C, Boillot M-L, Delhaès P (1998) Langmuir 14:5890; c) Soyer H (1998) Thesis, University of Bordeaux I, France; d) Boillot M-L, Sour A, Delhaès P, Mingotaud C, Soyer H (1999) Coord Chem Rev 190/192:47; e) Mingotaud C, Delhaès P, Meisel MW, Talham DR (2001) In: Miller J, Drillon M (eds) Magnetism: molecules to materials, vol II. Wiley-VCH, p 457

    Google Scholar 

  13. Fisher E, Frei Y (1957) J Chem Phys 27:808

    Google Scholar 

  14. Claude R, Real J-A, Zarembowitch J, Kahn O, Ouahab L, Grandjean D, Boukheddaden K, Varret F, Dworkin A (1990) Inorg Chem 29:4442

    Google Scholar 

  15. a) Bartocci G, Mazzucato U, Masetti F, Galiazzo G (1980) J Phys Chem 84:847; b) Barigelletti F, Dellonte S, Orlandi G, Bartocci G, Masetti F, Mazzucato U (1984) J Chem Soc, Faraday Trans I 80:1123; c) Marconi G, Bartocci G, Mazzucato U, Spalletti A, Abbate F, Angeloni L, Castellucci E (1995) Chem Phys 196:383

    Google Scholar 

  16. a) Edwards MP, Hoff CD, Curnutte B, Eck JS, Purcell KF (1984) Inorg Chem 23:2616; b) Purcell KF, Edwards MP (1984) Inorg Chem 23:2620

    Google Scholar 

  17. a) Zarnegar PP, Whitten DG (1971) J Am Chem Soc 93:3776; b) Zarnegar PP, Bock CR, Whitten DG (1973) J Am Chem Soc 95:4367; c) Wrighton MS, Morse DL, Pdungsap L (1975) J Am Chem Soc 95:4367

    Google Scholar 

  18. a) Jaiswal A, Floquet S, Boillot M-L, Delhaès P (2002) Chem Phys Chem 12:1045; b) Floquet S, Salunke S, Boillot M-L, Clément R, Varret F, Boukheddaden K, Rivière E (2002) Chem Mater 14:4164

    Google Scholar 

  19. Matsumoto N, Ohta S, Yoshimura C, Ohyoshi A, Kohata S, Okawa H, Maeda Y (1985) J Chem Soc Dalton Trans 2575

    Google Scholar 

  20. Hirose S, Hayami S, Maeda Y (2000) Bull Chem Soc Jpn 73:2059

    Google Scholar 

  21. Sour A, Boillot M-L, Floquet S, Rivière E (2001) ESF Workshop on Molecular Photomagnetism (Seeheim, Germany), October 2001

    Google Scholar 

  22. a) See the chapters by Hauser A et al., Hendrickson DN et al., Varret F et al. in the present book; b) Escax V, Bleuzen A, Cartier dit Moulin C, Villain F, Goujon A, Varret F, Verdaguer M (2001) J Am Chem Soc 123:12536; c) Ohkoshi S, Hashimoto K (2001) J Photochem Photobiol C Photochem Rev 2:71; (d) Rombaut G, Verelst M, Gohlen S, Ouahab L, Mathonière C, Kahn O (2001) Inorg Chem 41:1151

    Google Scholar 

  23. a) Feringa BL, Jager WF, de Lange B (1993) Tetrahedron 49:8267; b) Irie M (2000) Chem Rev 100:1685

    Google Scholar 

  24. Garcia Y, Ksenofontov V, Reiman S, Stauf S, Lang O, Tremel W, Lapouyade R, Gütlich P (2002) Seventh Spin Crossover Family Meeting (Seeheim, Germany), March 2002

    Google Scholar 

  25. Tuna F, Patron L, Rivière E, Boillot M-L (2000) Polyhedron 19:1643

    Google Scholar 

Download references

Acknowledgements

We would like to thank all our collaborators and colleagues, whose names appear with ours in a number of references, for their contributions to the LD-LISC findings presented above. The European Science Foundation, the European TMR programme (ERB-FMRX-CT98-0199) and the CNRS “Groupement de Recherches COMES” are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Laure Boillot .

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Boillot, ML., Zarembowitch, J., Sour, A. Ligand-Driven Light-Induced Spin Change (LD-LISC): A Promising Photomagnetic Effect. In: Spin Crossover in Transition Metal Compounds II. Topics in Current Chemistry, vol 234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b95419

Download citation

  • DOI: https://doi.org/10.1007/b95419

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40396-8

  • Online ISBN: 978-3-540-36774-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics