Skip to main content

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 234))

Abstract

Cobalt(II), a d 7 ion, can exist in a low spin doublet state or a high spin quartet state. Both spin-state configurations are known in four-, five- and six-coordinate complexes. For each of these coordination numbers, systems are known where the two spin states may be thermally interconverted. For four-coordinate and some five-coordinate systems these interconversions are best regarded as configurational equilibria; in other instances a spin transition is involved. The features of these transitions show similarities to, but also marked differences from, those in iron(II) systems. The smaller change in spin associated with the transition (ΔS=1) and the operation of a Jahn-Teller effect in the doublet state species confer special characteristics on the cobalt(II) systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Figgins PE, Busch DH (1960) J Am Chem Soc 82:820

    Google Scholar 

  2. Griffith JS (1956) J Inorg Nucl Chem 2:229

    Google Scholar 

  3. Figgins PE, Busch DH (1961) J Phys Chem 65:2236

    Google Scholar 

  4. Stoufer RC, Busch DH, Hadley WB (1961) J Am Chem Soc 83:3732

    Google Scholar 

  5. Hogg R, Wilkins RG (1962) J Chem Soc 341

    Google Scholar 

  6. Beattie JK, Sutin N, Turner DH, Flynn GW (1973) J Am Chem Soc 95:2052

    Google Scholar 

  7. Beattie JK (1988) Adv Inorg Chem 32:1

    Google Scholar 

  8. Dose EV, Hoselton MA, Sutin N, Tweedle MF, Wilson LJ (1978) J Am Chem Soc 100:1141

    Google Scholar 

  9. a. Gütlich P, Garcia Y, Woike T (2001) Coord Chem Revs 219–221:839; b. Maeda Y, Ohshio H, Takashima Y (1982) Bull Chem Soc Jpn 55:3500

    Google Scholar 

  10. Schmidt JG, Brey WS, Stoufer RC (1967) Inorg Chem 6:268

    Google Scholar 

  11. Kremer S, Henke W, Reinen D (1982) Inorg Chem 21:3013

    Google Scholar 

  12. Figgis BN, Nyholm RS (1959) J Chem Soc 338

    Google Scholar 

  13. König E, Kremer S (1974) Ber Bunsen Phys Chem 78:786

    Google Scholar 

  14. a. Morassi R, Bertini I, Sacconi L (1973) Coord Chem Revs 11:343; b. Sacconi L (1971) Pure App Chem 27:161

    Google Scholar 

  15. Harris CM, Lockyer TN, Martin RL, Patil HRH, Sinn E, Stewart IM (1969) Aust J Chem 22:2105

    Google Scholar 

  16. Judge JS, Baker WA, Inorg Chim Acta (1967) 1:68

    Google Scholar 

  17. Maslen EN, Raston CL, White AH (1974) J Chem Soc 1803

    Google Scholar 

  18. Figgis BN, Kucharski ES, White AH (1983) Aust J Chem 36:1527

    Google Scholar 

  19. Stoufer RC, Smith DW, Clevenger EA, Norris TE (1966) Inorg Chem 5:1167

    Google Scholar 

  20. Oshio H, Spiering H, Ksenofontov V, Renz F, Gütlich P (2001) Inorg Chem 40:1143

    Google Scholar 

  21. Figgis BN, Kucharski ES, White AH (1983) Aust J Chem 36:1537

    Google Scholar 

  22. Raston CL, White AH (1976) J Chem Soc Dalton Trans 7

    Google Scholar 

  23. Henke W, Kremer S (1982) Inorg Chim Acta 65:L115

    Google Scholar 

  24. Figgis BN, Kucharski ES, White AH (1983) Aust J Chem 36:1563

    Google Scholar 

  25. Baker AT, Goodwin HA (1985) Aust J Chem 38:207

    Google Scholar 

  26. Craig DC, Scudder ML, McHale W-A, Goodwin HA (1998) Aust J Chem 51:1131

    Google Scholar 

  27. Constable EC, Housecroft CE, Kulke T, Lazzarini C, Schofieldm ER, Zimmermann Y (2001) J Chem Soc Dalton Trans 2864

    Google Scholar 

  28. Hathcock DJ, Stone K, Madden J, Slattery SJ (1998) Inorg Chim Acta 282:131

    Google Scholar 

  29. Schmiedekamp AM, Ryan MD, Deeth RJ (2002) Inorg Chem 41:

    Google Scholar 

  30. Constable EC, Cargill Thompson AMW, Tocher DA, Daniels MAM (1992) New J Chem 16:855

    Google Scholar 

  31. Gaspar AB, Munoz MC, Niel V, Real JA (2001) Inorg Chem 40:9

    Google Scholar 

  32. Schubert US, Eschbaumer C (2002) Angew Chem Int Ed 41:2892; Constable EC, Housecroft CE, Cattalini, M, Phillips D (1998) New J Chem 193

    Google Scholar 

  33. a. Storrier GD, Colbran SB, Craig DC (1997) J Chem Soc Dalton Trans 3011; b. Storrier GD, Colbran SB, Craig DC (1998) J Chem Soc Dalton Trans 1351

    Google Scholar 

  34. Maestri M, Armaroli N, Balzani V, Constable EC, Cargill Thompson AMW (1995) Inorg Chem 34:2759

    Google Scholar 

  35. Constable EC, Kulke T, Neuburger M, Zehnder M (1997) New J Chem 21:1091

    Google Scholar 

  36. Childs BJ, Craig DC, Scudder ML, Goodwin HA (1998) Inorg Chim Acta 274:32

    Google Scholar 

  37. Goodwin HA, Sylva RN, Vagg RS, Watton EC (1969) Aust J Chem 22:1605

    Google Scholar 

  38. Goodwin HA, Smith FE (1973) Inorg Chim Acta 7:541

    Google Scholar 

  39. Krumholz P (1965) Inorg Chem 4:612

    Google Scholar 

  40. Chia PSK, Livingstone SE (1969) Aust J Chem 22:1825

    Google Scholar 

  41. Simmons MG, Wilson LJ (1977) Inorg Chem 16:126

    Google Scholar 

  42. Zhu T, Su CH, Lemke BK, Wilson LJ, Kadish KM (1983) Inorg Chem 22:2527

    Google Scholar 

  43. McWhinnie WR, Kulasingam GC (1966) J Chem Soc A 1199

    Google Scholar 

  44. Berrett RR, Fitzsimmons BW, Owusu AA (1968) J Chem Soc A 1575

    Google Scholar 

  45. Barnard PFB, Chamberlain AT, Kulasingam GC, McWhinnie WR, Dosser RJ (1970) Chem Commun 520

    Google Scholar 

  46. Kucharski ES, McWhinnie WR, White AH (1978) Aust J Chem 31:2647

    Google Scholar 

  47. Barnard PFB, Lancaster JC, Fernandopulle ME, McWhinnie WR (1973) J Chem Soc Dalton Trans 2172

    Google Scholar 

  48. Figgis BN, Gerloch M, Lewis J, Mabbs FE, Webb GA (1968) J Chem Soc A 2086

    Google Scholar 

  49. Mizuno K, Lunsford JH (1983) Inorg Chem 22:3484

    Google Scholar 

  50. Tiwary SK Vasudevan S (1998) Inorg Chem 37:5239

    Google Scholar 

  51. Sieber R, Decurtins S, Stoeckli-Evans H, Wilson C, Yufit D, Howard JAK, Capelli SC, Hauser A (2000) Chem Eur J 6:361

    Google Scholar 

  52. Onggo D, Rae AD, Goodwin HA (1990) Inorg Chim Acta 178:151

    Google Scholar 

  53. Goodwin HA, Kepert DL, Patrick JM, Skelton BW, White AH (1984) Aust J Chem 37:1817

    Google Scholar 

  54. Fisher HM Stoufer RC (1966) Inorg Chem 5:1172

    Google Scholar 

  55. Williams DL, Smith DW, Stoufer RC (1967) Inorg Chem 6:590

    Google Scholar 

  56. Kennedy BJ, Fallon GD, Gatehouse BMKC, Murray KS (1984) Inorg Chem 23:580

    Google Scholar 

  57. Müller EW, Spiering H, Gütlich P (1984) Inorg Chem 23:119

    Google Scholar 

  58. Garcia-Espana E, Ballester M-J, Lloret F, Moratal JM, Faus J, Bianchi A (1988) J Chem Soc Dalton Trans 101

    Google Scholar 

  59. Faus J, Julve M, lloret F, Real JA, Sletten J (1994) Inorg Chem 33:5535

    Google Scholar 

  60. Earnshaw A, Hewlett PC, King EA, Larkworthy LF (1968) J Chem Soc A 241

    Google Scholar 

  61. DeIasi R, Holt SL, Post B (1971) Inorg Chem 10:1498

    Google Scholar 

  62. Marzilli LG, Marzilli PA (1972) Inorg Chem 11:457

    Google Scholar 

  63. Nivorozhkin AL, Toftlund H, Nielsen M (1994) J Chem Soc Dalton Trans 361

    Google Scholar 

  64. Zarembowitch J (1992) New J Chem 16:255

    Google Scholar 

  65. König E, Ritter G, Dengler J, Thuéry P, Zarembowitch J (1989) Inorg Chem 28:1757

    Google Scholar 

  66. Zarembowitch J, Kahn O (1984) Inorg Chem 23:589

    Google Scholar 

  67. Thuéry P, Zarembowitch J (1986) Inorg Chem 25:2001

    Google Scholar 

  68. Claude R, Zarembowitch J, Philoche-Levisalles M, d’Yvoire F (1991) New J Chem 15:635

    Google Scholar 

  69. Roux C, Zarembowitch J, Itie JP, Verdaguer M, Dartyge E, Fontaine A, Tolentino H (1991) Inorg Chem 30:3174

    Google Scholar 

  70. Charpin P, Nierlich M, Vigner D, Lance M, Thuéry P, Zarembowitch J, d’Yvoire F (1988) J Cryst Spectros 18:5

    Google Scholar 

  71. Thuéry P, Zarembowitch J, Michalowicz A, Kahn O (1987) Inorg Chem 26:851

    Google Scholar 

  72. Tuna F, Patron L, Rivière E, Boillot M-L (2000) Polyhedron 19:1643

    Google Scholar 

  73. Brooker S, Duncan J de G, Kelly RJ, Plieger PG, Moubaraki B, Murray KS, Jameson GB (2002) J Chem Soc Dalton Trans 2080

    Google Scholar 

  74. Sacconi L (1972) Coord Chem Revs 8:351

    Google Scholar 

  75. Kelly WSJ, Ford GH, Nelson SM (1971) J Chem Soc A 388

    Google Scholar 

  76. Dahlhoff WV, Nelson SM (1971) J Chem Soc A 2184

    Google Scholar 

  77. Sacconi L (1970) J Chem Soc A 248

    Google Scholar 

  78. Morassi R, Mani F, Sacconi L (1973) Inorg Chem 12:1246

    Google Scholar 

  79. Sacconi L, Ferraro JR (1974) Inorg Chim Acta 9:49

    Google Scholar 

  80. Orlandini AB, Calabresi C, Ghilardi CA, Orioli PL, Sacconi L (1973) J Chem Soc Dalton Trans 1383

    Google Scholar 

  81. Gatteschi D, Ghilardi CA, Orlandini A, Sacconi L (1978) Inorg Chem 17:3023

    Google Scholar 

  82. Everett GW, Holm RH (1968) Inorg Chem 7:776

    Google Scholar 

  83. Gerlach DH, Holm RH (1969) Inorg Chem 8:2292

    Google Scholar 

  84. Wolny JA, Rudolf MF, Ciunik Z, Gatner K, and Wolowiec S (1993) J Chem Soc Dalton Trans 1611

    Google Scholar 

  85. Nicolini M, Pecile C, Turco A (1965) J Am Chem Soc 87:2379

    Google Scholar 

  86. Heinze K, Huttner G, Zsolnai L, Schober P (1997) Inorg Chem 36:5457

    Google Scholar 

  87. Rohmer MM, Strich A, Bénard M, Malrieu J-P (2001) J Am Chem Soc 123:9126

    Google Scholar 

  88. Clérac R, Cotton FA, Daniels LM, Dunbar KR, Kirschbaum K, Murillo CA, Pinkerton AA, Schultz AJ, Wang X (2000) J Am Chem Soc 122:6226

    Google Scholar 

  89. Clérac R, Cotton FA, Daniels LM, Dunbar KR, Murillo CA, Wang X (2001) Inorg Chem 40:1256

    Google Scholar 

  90. Clérac R, Cotton FA, Dunbar KA, Lu T, Murillo CA, Wang X (2000) J Am Chem Soc 122:2272

    Google Scholar 

  91. Wakatsuki Y, Okada T, Yamazaki H, Cheng G (1988) Inorg Chem 27:2958

    Google Scholar 

Download references

Acknowledgement

The support of the University of New South Wales, the Australian Research Council and the Alexander von Humboldt Stiftung, together with the hospitality and collaboration of Professor P. Gütlich and his group at Mainz are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Goodwin, H.A. Spin Crossover in Cobalt(II) Systems. In: Spin Crossover in Transition Metal Compounds II. Topics in Current Chemistry, vol 234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b95411

Download citation

  • DOI: https://doi.org/10.1007/b95411

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40396-8

  • Online ISBN: 978-3-540-36774-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics