Skip to main content

Catalysis by Enzyme Conformational Change

  • Chapter
Book cover Orotidine Monophosphate Decarboxylase

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 238))

Abstract

An energy decomposition scheme is presented to elucidate the importance of the change of protein conformation substates to the reduction of activation barrier in an enzyme-catalyzed reaction. The analysis is illustrated by the reaction of orotidine 5′-monophosphate decarboxylase (ODCase), in which the catalyzed reaction is at least 1017 faster than the spontaneous reaction. Analysis reveals that the enzyme conformation is more distorted in the reactant state than in the transition state. The energy released from conformational relaxation of the protein is the main source of the rate enhancement. The proposed mechanism is consistent with results from site-directed mutagenesis where mutations remote from the reaction center affect k cat but not K M.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AMI :

Austin Model 1

EVB :

Empirical valence bond

FEP :

Free energy perturbation

MM :

Molecular mechanics

ODCase :

Orotidine 5′-monophosphate decarboxylase

OMP :

Orotidine 5′-monophosphate

PMF :

Potential of mean force

QM :

Quantum mechanics

QM/MM :

Combined quantum mechanical and molecular mechanical

TS :

Transition state

References

  1. Radzicka A, Wolfenden R (1995) Science (Washington DC) 267:90–93

    Google Scholar 

  2. Lad C, Williams NH, Wolfenden R (2003) Proc Natl Acad Sci USA 100:5607–5610

    Google Scholar 

  3. Jencks WP (1975) Adv Enzymol Relat Areas Mol Biol 43:219–410

    Google Scholar 

  4. Pauling L (1946) Chem Eng News 24:1375

    Google Scholar 

  5. Schowen RL (1978) In: Gandour RD, Schowen RL (eds) Transition states of biochemical processes. Plenum, New York, pp 77–114

    Google Scholar 

  6. Karplus M, McCammon JA (2002) Nature Struc Biol 9:646–652

    Google Scholar 

  7. Colonna-Cesari F, Perahia D, Karplus M, Eklund H, Branden CI, Tapia O (1986) J Biol Chem 261:15273–15278

    Google Scholar 

  8. Rozovsky S, Jogl G, Tong L, McDermott AE (2001) J Mol Biol 310:271–280

    Google Scholar 

  9. Sawaya MR, Kraut J (1997) Biochemistry Field 36:586–603

    Google Scholar 

  10. McMillan FM, Cahoon M, White A, Hedstrom L, Petsko GA, Ringe D (2000) Biochemistry 39:4533–4542

    Google Scholar 

  11. Stroud RM, Finer-Moore JS (2003) Biochemistry 42:239–247

    Google Scholar 

  12. Finer-Moore JS, Santi DV, Stroud RM (2003) Biochemistry 42:248–256

    Google Scholar 

  13. Wagner CR, Huang Z, Singleton SF, Benkovic SJ (1995) Biochemistry 34:15671–15680

    Google Scholar 

  14. Miller BG, Snider MJ, Short SA, Wolfenden R (2000) Biochemistry 39:8113–8118

    Google Scholar 

  15. Appleby TC, Kinsland C, Begley TP, Ealick SE (2000) Proc Natl Acad Sci USA 97:2005–2010

    Google Scholar 

  16. Wu N, Mo Y, Gao J, Pai EF (2000) Proc Natl Acad Sci USA 97:2017–2022

    Google Scholar 

  17. Miller BG, Hassell AM, Wolfenden R, Milburn MV, Short SA (2000) Proc Natl Acad Sci USA 97:2011–2016

    Google Scholar 

  18. Harris P, Poulsen J-CN, Jensen KF, Larsen S (2000) Biochemistry 39:4217–4224

    Google Scholar 

  19. Traut TW, Temple BRS (2000) J Biol Chem 275:28675–28681

    Google Scholar 

  20. Miller BG, Snider MJ, Wolfenden R, Short SA (2001) J Biol Chem 276:15174–15176

    Google Scholar 

  21. Wu N, Gillon W, Pai EF (2002) Biochemistry 41:4002–4011

    Google Scholar 

  22. Wu N, Pai EF (2002) J Biol Chem 277:28080–28087

    Google Scholar 

  23. Feng WY, Austin TJ, Chew F, Gronert S, Wu W (2000) Biochemistry 39:1778–1783

    Google Scholar 

  24. Lee JK, Houk KN (1997) Science (Washington DC) 276:942–945

    Google Scholar 

  25. Silverman RB, Groziak MP (1982) J Am Chem Soc 104:6434–6439

    Google Scholar 

  26. Lee T-S, Chong LT, Chodera JD, Kollman PA (2001) J Am Chem Soc 123:12837–12848

    Google Scholar 

  27. Hur S, Bruice TC (2002) Proc Natl Acad Sci USA 99:9668–9673

    Google Scholar 

  28. Warshel A, Strajbl M, Villa J, Florian J (2002) Biochemistry 39:14728–14738

    Google Scholar 

  29. Allen KN, Lavie A, Petsko GA, Ringe D (1995) Biochemistry 34:3742–3749

    Google Scholar 

  30. Lavie A, Allen KN, Petsko GA, Ringe D (1994) Biochemistry 33:5469–5480

    Google Scholar 

  31. Aaqvist J, Warshel A (1993) Chem Rev (Washington DC) 93:2523–2544

    Google Scholar 

  32. Warshel A, Florian J (1998) Proc Natl Acad Sci USA 95:5950–5955

    Google Scholar 

  33. Garcia-Viloca M, Gao J, Karplus M, Truhlar DG (2004) Science (in press)

    Google Scholar 

  34. Warshel A, Florian J, Strajbl M, Villa J (2001) Chem Bio Chem 2:109–111

    Google Scholar 

  35. Yu EW, Koshland DE Jr (2001) Proc Natl Acad Sci USA 98:9517–9520

    Google Scholar 

  36. Guo H, Cui Q, Lipscomb WN, Karplus M (2003) Angew Chem, Int Edn 42:1508–1511

    Google Scholar 

  37. Hur S, Bruice TC (2003) J Am Chem Soc 125:5964–5972

    Google Scholar 

  38. Guimaraes CRW, Repasky MP, Chandrasekhar J, Tirado-Rives J, Jorgensen WL (2003) J Am Chem Soc 125:6892–6899

    Google Scholar 

  39. Strajbl M, Shurki A, Kato M, Warshel A (2003) J Am Chem Soc 125:10228–10237

    Google Scholar 

  40. Koshland DE Jr (1960) Adv Enzymol 22:45–97

    Google Scholar 

  41. Warshel A, Levitt M (1976) J Mol Biol 103:227–249

    Google Scholar 

  42. Gao J, Xia X (1992) Science 258:631–635

    Google Scholar 

  43. Bash PA, Field MJ, Karplus M (1987) J Am Chem Soc 109:8092–8094

    Google Scholar 

  44. Gao J (1992) J Phys Chem 96:537–540

    Google Scholar 

  45. Field MJ, Bash PA, Karplus M (1990) J Comput Chem 11:700–733

    Google Scholar 

  46. Gao J (1994) ACS Symp Ser 569:8–21

    Google Scholar 

  47. Gao J, Truhlar DG (2002) Ann Rev Phys Chem 53:467–505

    Google Scholar 

  48. Gao J, Pavelites JJ (1992) J Am Chem Soc 114:1912–1914

    Google Scholar 

  49. Gao J (1995) J Am Chem Soc 117:8600–8607

    Google Scholar 

  50. Gao D, Pan Y-K (1999) J Org Chem 64:4492–4501

    Google Scholar 

  51. Gao J (1994) Proc Ind Acad Sci 106:507–519

    Google Scholar 

  52. Orozco M, Luque FJ, Habibollahzadeh D, Gao J (1995) J Chem Phys 102:6145–6152

    Google Scholar 

  53. Gao J (1997) J Comput Chem 18:1062–1971

    Google Scholar 

  54. Kollman P (1993) Chem Rev (Washington DC) 93:2395–2417

    Google Scholar 

  55. Rajamani R, Naidoo K, Gao J (2003) J Computational Chem (in press)

    Google Scholar 

  56. Miller BG, Wolfenden R (2002) Ann Rev Biochem 71:847–885

    Google Scholar 

  57. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902–3909

    Google Scholar 

  58. Jorgensen WL (1989) Acc Chem Res 22:184–189

    Google Scholar 

  59. Alhambra C, Wu L, Zhang Z-Y, Gao J (1998) J Am Chem Soc 120:3858–3866

    Google Scholar 

  60. Miller BG, Butterfoss GL, Short SA, Wolfenden R (2001) Biochemistry 40:6227–6232

    Google Scholar 

Download references

Acknowledgements

We thank the NIH for support for the research at the University of Minnesota. RK thanks NSERC Canada for support through a Discovery Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiali Gao .

Editor information

J.K. Lee

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Gao, J., Byun, K.L., Kluger, R. Catalysis by Enzyme Conformational Change. In: Lee, J. (eds) Orotidine Monophosphate Decarboxylase. Topics in Current Chemistry, vol 238. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b94541

Download citation

  • DOI: https://doi.org/10.1007/b94541

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20566-1

  • Online ISBN: 978-3-540-40039-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics