Skip to main content

What Has Theory and Crystallography Revealed About the Mechanism of Catalysis by Orotidine Monophosphate Decarboxylase?

  • Chapter
Book cover Orotidine Monophosphate Decarboxylase

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 238))

Abstract

In 1995, Wolfenden and Radzicka showed that orotidine 5′-monophosphate decarboxylase (ODCase) was the most proficient enzyme. Since then, the mechanism of catalysis has been widely debated. The recent appearance of crystal structures for ODCase has led not to a definitive picture of catalysis as might be expected, but to even more conjecture concerning the mechanism. In addition, the many theoretical studies on ODCase have caused opinions to diverge, rather than converge, about the mechanism. This review summarizes the mechanistic, crystallographic, and computational evidence for the mechanism of ODCase, and offers a critical evaluation of the various mechanisms based upon this evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ODCase :

Orotidine 5′-monophosphate decarboxylase

OMP :

Orotidine 5′-monophosphate

UMP :

Uridine 5′-monophosphate

BMP :

Barbituric acid ribosyl 5′-monophosphate

6-azaUMP :

6-azauridylate 5′-monophosphate

XMP :

Xanthosine 5′-monophosphate

CMP :

Cytidine 5′-monophosphate

CPMD :

Car-Parrinello molecular dynamics

References

  1. Radzicka A, Wolfenden R (1995) Science 267:90

    Google Scholar 

  2. Snider MJ, Wolfenden R (2000) J Am Chem Soc 122:11507

    Google Scholar 

  3. Wolfenden R, Snider MJ (2001) Acc Chem Res 34:938

    Google Scholar 

  4. Zhou X, Jin X, Medhekar R, Chen X, Dieckmann T, Toney MD (2001) Biochemistry 40:1367

    Google Scholar 

  5. Beak P, Siegel B (1976) J Am Chem Soc 98:3601

    Google Scholar 

  6. Silverman RB, Groziak MP (1982) J Am Chem Soc 104:6434

    Google Scholar 

  7. Acheson SA, Bell JB, Jones ME, Wolfenden R (1990) Biochemistry 29:3198

    Google Scholar 

  8. Shostack K, Jones ME (1992) Biochemistry 31:12155

    Google Scholar 

  9. Miller BG, Traut TW, Wolfenden R (1998) J Am Chem Soc 120:2666

    Google Scholar 

  10. Cui W, DeWitt JG, Miller SM, Wu M (1999) Biochem Biophys Res Commun 259:133

    Google Scholar 

  11. Miller BG, Snider MJ, Short SA, Wolfenden R (2001) J Biol Chem 276:15174

    Google Scholar 

  12. Miller BG, Snider MJ, Short SA, Wolfenden R (2000) Biochemistry 39:8113

    Google Scholar 

  13. Miller BG, Butterfoss GL, Short SA, Wolfenden R (2001) Biochemistry 40:6227

    Google Scholar 

  14. Appleby TC, Kinsland C, Begley TP, Ealick SE (2000) Proc Nat Acad Sci USA 97:2005

    Google Scholar 

  15. Miller BG, Hassell AM, Wolfenden R, Milburn MV, Short SA (2000) Proc Nat Acad Sci USA 97:2011

    Google Scholar 

  16. Wu N, Mo Y, Gao J, Pai EF (2000) Proc Nat Acad Sci USA 97:2017

    Google Scholar 

  17. Harris P, Poulsen J-CN, Jensen KF, Larsen S (2000) Biochemistry 39:4217

    Google Scholar 

  18. Poulsen J-CN, Harris P, Jensen KF, Larsen S (2001) Acta Cryst D 57:1251

    Google Scholar 

  19. Wu N, Gillon W, Pai EF (2002) Biochemistry 41:4002

    Google Scholar 

  20. Harris P, Poulsen J-CN, Jensen KF, Larsen S (2002) J Mol Biol 318:1019

    Google Scholar 

  21. Wu N, Pai EF (2002) J Biol Chem 277:28080

    Google Scholar 

  22. Houk KN, Lee JK, Tantillo DJ, Bahmanyar S, Hietbrink BN (2001) ChemBioChem 2:113

    Google Scholar 

  23. Begley TP, Appleby TC, Ealick SE (2000) Curr Op Struct Biol 10:711

    Google Scholar 

  24. Smiley JA, Saleh L (1999) Bioorg Chem 27:297

    Google Scholar 

  25. Bruice TC, Benkovic S (1966) In: Bioorganic mechanisms, vol 2. Benjamin, New York, pp 188–194

    Google Scholar 

  26. Bender ML (1971) In: Mechanisms of homogeneous catalysis from protons to proteins. Wiley, New York, p 165 and p 586

    Google Scholar 

  27. Lee JK, Houk KN (1997) Science 276:942

    Google Scholar 

  28. Singleton DA, Merrigan SR, Kim BJ, Beak P, Phillips LM, Lee JK (2000) J Am Chem Soc 122:3296

    Google Scholar 

  29. Ehrlich JI, Hwang CC, Cook PF, Blanchard JS (1999) J Am Chem Soc 117:9357

    Google Scholar 

  30. Phillips LM, Lee JK (2001) J Am Chem Soc 123:12067

    Google Scholar 

  31. Rishavy MA, Cleland WW (2000) Biochemistry 39:4569

    Google Scholar 

  32. Smiley JA, Jones ME (1992) Biochemistry 31:12162

    Google Scholar 

  33. Jencks WP (1987) Catalysis in chemistry and enzymology. Dover, New York

    Google Scholar 

  34. Wolfenden R, Milburn MV, Short SA (2000) Proc Nat Acad Sci USA 97:2011

    Google Scholar 

  35. Gao J (2002) International society of quantum biology and pharmocology, President’s conference, Snowbird, Utah 2002

    Google Scholar 

  36. Warshel A, Strajbl M, Villà J, Florián J (2000) Biochemistry 39:14728

    Google Scholar 

  37. Warshel A, Florián J, Strajbl M, Villà J (2001) ChemBioChem 2:109

    Google Scholar 

  38. Lee TS, Chong LT, Chodera JD, Kollman PA (2001) J Am Chem Soc 123:12837

    Google Scholar 

  39. Hur S, Bruice TC (2002) Proc Nat Acad Sci USA 99:9668

    Google Scholar 

  40. Lundberg M, Blomberg MRA, Siegbahn PE (2002) M J Mol Model 8:119

    Google Scholar 

  41. Car R, Parrinello M (1985) Phy Rev Lett 55:2471

    Google Scholar 

  42. Carloni P, Rothlisberger U, Parrinello M (2002) Acc Chem Res 35:455

    Google Scholar 

  43. Hutter J et al (2001) CPMD 3.5 (Copyright IBM Zurich Research Laboratory and MPI für Festkörperforschung 1995–2001)

    Google Scholar 

  44. Hu Y, Mundy C, Houk KN (unpublished results)

    Google Scholar 

  45. Houk KN, Stanton CL (unpublished results)

    Google Scholar 

  46. Heron EJ, Caprioli RM (1975) Biochim Biophys Acta 403:563

    Google Scholar 

  47. Littlechild JA, Watson HC (1993) Trends Biochem Sci 18:36

    Google Scholar 

  48. Aberhart DJ, Gould SJ, Lin HJ, Thiruvengadam TK, Weiller BH (1983) J Am Chem Soc 105:5461

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Houk .

Editor information

J.K. Lee

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Houk, K.N., Tantillo, D.J., Stanton, C., Hu, Y. What Has Theory and Crystallography Revealed About the Mechanism of Catalysis by Orotidine Monophosphate Decarboxylase?. In: Lee, J. (eds) Orotidine Monophosphate Decarboxylase. Topics in Current Chemistry, vol 238. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b94536

Download citation

  • DOI: https://doi.org/10.1007/b94536

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20566-1

  • Online ISBN: 978-3-540-40039-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics