Advertisement

Lie Algebra Cohomology and the Generalized Borel-Weil Theorem

  • Bertram Kostant
Chapter

Abstract

The present paper will be referred to as Part I. A subsequent paper entitled, “Lie algebra cohomology and generalized Schubert cells,” will be referred to as Part II.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces, I. Amer. J. Math., 80 (1958), 458–538.MathSciNetCrossRefGoogle Scholar
  2. 2.
    R. Bott, Homogeneous vector bundles, Ann. of Math., 66 (1957) 203–248.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    E. Cartan, Sur une classe remarquable d’espaces de Riemann, Bull. Soc. Math. France, 54 (1926), 214–264.MathSciNetGoogle Scholar
  4. 4.
    P. Cartier, Remarks on “Lie algebra cohomology and the generalized Borel-Weil theorem”, by B. Kostant, Ann. of Math., 74 (1961), 388–390.Google Scholar
  5. 5.
    C. Ehresmann, Sur la topologie de certains espaces homogènes, Ann. of Math., 35 (1934), 396–443.MathSciNetCrossRefGoogle Scholar
  6. 6.
    H. Freudenthal, Zur Berechnung der Charaktere der halbeinfachen Lieschen Gruppen Neder, Akad. Wetensch. Indag. Math., 57 (1954), 369–376.zbMATHGoogle Scholar
  7. 7.
    G. Hochschild and J.-P. Serre, Cohomology of Lie algebras, Ann. of Math., 57 (1953), 591–603.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    F. Gantmacher, Canonical representation of automorphisms of a complex semi-simple Lie group, Mat. Sb., 47 (1939), 101–143.MathSciNetGoogle Scholar
  9. 9.
    J. L. Koszul, Homologie et cohomologie des algèbres de Lie, Bull. Soc. Math. France, 78 (1950), 65–127.MathSciNetzbMATHGoogle Scholar
  10. 10.
    H. C. Wang, Closed manifolds with homogeneous complex structure, Amer. J. Math., 76 (1954), 1–32.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations