A Formula for the Multiplicity of a Weight

  • Bertram KostantEmail author


Let g be a complex semi-simple Lie algebra and h a Cartan subalgebra of g. Let ?? be an irreducible representation of g, with highest weight ?, on a finite dimensional vector space V ?. A well known theorem of E. Cartan asserts that the highest weight, ?, of ?? occurs with multiplicity one. It has been a question of long standing to determine, more generally, the multiplicity of an arbitrary weight of ??. Weyl’s formula (1.12) for the character of ?? is an expression for the function ??(?) = tr exp ??(?), ??h, on h in terms of ? and quantities independent of the representation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Bott, Homogeneous vector bundles, Ann. of Math. vol. 66 (1957) pp. 203–255.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    R. Brauer, Sur la multiplication des caractiristiques des groupes continus et semi-simples, C. R. Acad. Sci. Paris vol. 204 (1937) pp. 1784–1786.Google Scholar
  3. 3.
    E. B. Dynkin, Maximal subgroups of the classical groups, Amer. Math. Soc. Translations ser. 2 vol. 6 (1957) pp. 245–378.zbMATHGoogle Scholar
  4. 4.
    H. Freudenthal, Zur Berechrung der Charaktere der halbeinfachen Lieschen Gruppen. I, Nederl. Akad. Wetensch. Indag. Math. vol. 57 (1954) pp. 369–376.zbMATHGoogle Scholar
  5. 5.
    I. Gelfand and M. Neumark, Uber der Zusammenhang zwischen der Darstellungen einer komplexen halbeinfachen Lieschen Gruppe und ihrer maximalen kompakten Untergruppe, Dokl. Akad. Nauk SSSR vol. 63 (1948) pp. 225–228.Google Scholar
  6. 6.
    Harish-Chandra, On representations of Lie algebras, Ann. of Math. vol. 50 (1949) pp. 900–915.Google Scholar
  7. 7.
    Siminaire “Sophus Lie” Ecole Normale Superieure, Paris, 1955.Google Scholar
  8. 8.
    H. Weyl, Über die Darstellungen der halbeinfachen Gruppen durch lineare Transformationen, Math. Z. vol. 24 (1926) pp. 328–395.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations