Skip to main content

Charge Transport in DNA-Based Devices

  • Chapter
Book cover Long-Range Charge Transfer in DNA II

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 237))

Abstract

Charge migration along DNA molecules has attracted scientific interest for over half a century. Reports on possible high rates of charge transfer between donor and acceptor through the DNA, obtained in the last decade from solution chemistry experiments on large numbers of molecules, triggered a series of direct electrical transport measurements through DNA single molecules, bundles, and networks. These measurements are reviewed and presented here. From these experiments we conclude that electrical transport is feasible in short DNA molecules, in bundles and networks, but blocked in long single molecules that are attached to surfaces. The experimental background is complemented by an account of the theoretical/computational schemes that are applied to study the electronic and transport properties of DNA-based nanowires. Examples of selected applications are given, to show the capabilities and limits of current theoretical approaches to accurately describe the wires, interpret the transport measurements, and predict suitable strategies to enhance the conductivity of DNA nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Ade (A):

Adenine

Cyt (C):

Cytosine

Gua (G):

Guanine

Thy (T):

Thymine

1D:

One-dimensional

AFM :

Atomic force microscope

BLYP :

Becke–Lee–Yang–Parr (GGA)

BZ :

Brillouin zone

CNT :

Carbon nanotube

DFT :

Density functional theory

DOS :

Density of states

EFM :

Electrostatic force microscope

GGA :

Generalized gradient approximation

HF :

Hartree–Fock

HOMO :

Highest occupied molecular orbital

LDA:

Local density approximation

LEEPS :

Low-energy electron point source

LUMO :

Lowest unoccupied molecular orbital

MP2 :

Møller–Plesset 2nd order

NMR :

Nuclear magnetic resonance

PBE :

Perdew–Burke–Ernzerhof (GGA)

SEM :

Scanning electron microscope

SFM :

Scanning force microscope

STM :

Scanning tunneling microscope

TB :

Tight binding

TEM :

Transmission electron microscope

References

  1. Luryi S, Xu J, Zaslavsky A (1999) (eds) Future trends in microelectronics: the road ahead. Wiley, New York

    Google Scholar 

  2. Joachim C, Gimzewski JK, Aviram A (2000) Nature 408:541

    Google Scholar 

  3. Aviram A, Ratner MA (1998) (eds) Molecular electronics science and technology. Annals of the New York Academy of Sciences, vol 852. The New York Academy of Sciences, New York

    Google Scholar 

  4. Aviram A, Ratner MA, Mujica V (2002) (eds) Molecular electronics II. Annals of the New York Academy of Sciences, vol 960. The New York Academy of Sciences, New York

    Google Scholar 

  5. Tour JM (2000) Acc Chem Res 33:791

    Google Scholar 

  6. Aviram A, Ratner MA (1974) Chem Phys Lett 29:277

    Google Scholar 

  7. Metzger RM (1999) Acc Chem Res 9:2027

    Google Scholar 

  8. Collier CP, Wong EW, Bolohradsky M, Raymo FM, Stoddart JF, Kuekes PJ, Williams RS, Heath JR (1999) Science 285:391

    Google Scholar 

  9. Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM (1997) Science 278:252

    Google Scholar 

  10. Collier CP, Mattersteig G, Wong EW, Luo Y, Beverly K, Sampario J, Raymo FM, Stoddart JF, Heath JR (2001) Science 289:1172

    Google Scholar 

  11. Chen J, Reed MA (2002) Chem Phys 281:127

    Google Scholar 

  12. Braun E, Eichen Y, Sivan U, Ben-Yoseph G (1998) Nature 391:775

    Google Scholar 

  13. Keren K, Krueger M, Gilad R, Ben-Yoseph G, Sivan U, Braun E (2002) Science 297:72

    Google Scholar 

  14. Porath D, Bezryadin A, de Vries S, Dekker C (2000) Nature 403:635

    Google Scholar 

  15. Rinaldi R, Biasco A, Maruccio G, Cingolani R, Alliata D, Andolfi L, Facci P, De Rienzo F, Di Felice R, Molinari E (2002) Adv Mater 14:1453

    Google Scholar 

  16. Rinaldi R, Biasco A, Maruccio G, Arima V, Visconti P, Cingolani R, Facci P, De Rienzo F, Di Felice R, Molinari E, Verbeet MP, Canters GW (2003) Appl Phys Lett 82:472

    Google Scholar 

  17. Rinaldi R, Branca E, Cingolani R, Di Felice R, Calzolari A, Molinari E, Masiero S, Spada G, Gottarelli G, Garbesi A (2002) Ann N Y Acad Sci 960:184

    Google Scholar 

  18. Alberti P, Mergny J-L (2003) Proc Natl Acad Sci USA 100:1569

    Google Scholar 

  19. Benenson Y, Paz-Elizur T, Adar R, Keinan E, Livneh Z, Shapiro E (2001) Nature 414:430

    Google Scholar 

  20. Benenson Y, Adar R, Paz-Elizur T, Livneh Z, Shapiro E (2003) Proc Natl Acad Sci USA 100:2191

    Google Scholar 

  21. Porath D, Millo O (1997) J Appl Phys 81:2241

    Google Scholar 

  22. Lemay SG, Janssen JW, van den Hout M, Mooji M, Bronikowski MJ, Willis PA, Smalley RE, Kouwenhoven LP, Dekker C (2001) Nature 412:617

    Google Scholar 

  23. Liang W, Shores MP, Bockrath M, Long JR, Park H (2002) Nature 417:725

    Google Scholar 

  24. Thorwart M, Grifoni M, Cuniberti G, Postma HWC, Dekker C (2002) Phys Rev Lett 89:196402

    Google Scholar 

  25. Lehn JM (1990) Angew Chem Int Ed 29:1304

    Google Scholar 

  26. Di Mauro E, Hollenberg CP (1993) Adv Mat 5:384

    Google Scholar 

  27. Niemeyer CM (1997) Angew Chem Int Ed 36:585

    Google Scholar 

  28. Niemeyer CM (2001) Angew Chem Int Ed 40:4128

    Google Scholar 

  29. Chen J, Seeman NC (1991) Nature 350:631

    Google Scholar 

  30. Zhang Y, Seeman NC (1994) J Am Chem Soc 116:1661

    Google Scholar 

  31. La Bean T, Yan H, Kopatsch J, Liu F, Winfree E, Reif JH, Seeman NC (2000) J Am Chem Soc 122:1848

    Google Scholar 

  32. Seeman NC (2001) Nano Lett 1:22

    Google Scholar 

  33. Zhang Y, Austin RH, Kraeft J, Cox EC, Ong NP (2002) Phys Rev Lett 89:198102

    Google Scholar 

  34. Dekker C, Ratner MA (2001) Phys World 14:29

    Google Scholar 

  35. Eley DD, Spivey DI (1962) Trans Faraday Soc 12:245

    Google Scholar 

  36. Warman JM, de Haas MP, Rupprecht A (1996) Chem Phys Lett 249:319

    Google Scholar 

  37. O’Neill P, Fielden EM (1993) Adv Radiat Biol 17:53

    Google Scholar 

  38. Retèl J, Hoebee B, Braun JEF, Lutgerink JT, van den Akker E, Wanamarta AH, Joenjie H, Lafleur MVM (1993) Mutation Res 299:165

    Google Scholar 

  39. Turro NJ, Barton JK (1998) J Biol Inorg Chem 3:201

    Google Scholar 

  40. Lewis FD, Wu T, Liu X, Letsinger RL, Greenfield SR, Miller SE, Wasielewski MR (2000) J Am Chem Soc 122:2889

    Google Scholar 

  41. Murphy CJ, Arkin MA, Jenkins Y, Ghatlia ND, Bossman S, Turro NJ, Barton JK (1993) Science 262:1025

    Google Scholar 

  42. Hall DB, Holmlin RE, Barton JK (1996) Nature 382:731

    Google Scholar 

  43. Kelley SO, Jackson NM, Hill MG, Barton JK (1999) Angew Chem Int Ed 38:941

    Google Scholar 

  44. Grinstaff MW (1999) Angew Chem Int Ed 38:3629

    Google Scholar 

  45. Barbara PF, Olson EJC (1999) Adv Chem Phys 107:647

    Google Scholar 

  46. Bixon M, Giese B, Wessely S, Langenbacher T, Michel-Beyerle ME, Jortner J (1999) Proc Natl Acad Sci USA 96:11713

    Google Scholar 

  47. Schuster GB (2000) Acc Chem Res 33:253

    Google Scholar 

  48. Conwell EM, Rakhmanova SV (2000) Proc Natl Acad Sci USA 97:4556

    Google Scholar 

  49. Okahata Y, Kobayashi T, Tanaka K, Shimomura M (1998) J Am Chem Soc 120:6165

    Google Scholar 

  50. Fink HW, Schönenberger C (1999) Nature 398:407

    Google Scholar 

  51. Nitzan A (2001) J Phys Chem A 105:2677

    Google Scholar 

  52. Meggers E, Michel-Beyerle ME, Giese B (1998) J Am Chem Soc 120:12950

    Google Scholar 

  53. Giese B, Amaudrut J, Köhler AK, Spormann M, Wessely S (2001) Nature 412:318

    Google Scholar 

  54. Davis WB, Naydenova I, Haselbeger R, Ogrodnik A, Giese B, Michel-Beyerle ME (2000) Angew Chem Int Ed 39:3649

    Google Scholar 

  55. Giese B (2002) Curr Opin Chem Biol 6:612

    Google Scholar 

  56. O’Neill MA, Barton JK (2002) Proc Natl Acad Sci USA 99:16543

    Google Scholar 

  57. Henderson PT, Jones D, Hampikian G, Kan Y, Schuster G (1999) Proc Natl Acad Sci USA 96:8353

    Google Scholar 

  58. de Pablo PJ, Moreno-Herrero F, Colchero J, Gómez Herrero J, Herrero P, Baró AM, Ordejón P, Soler JM, Artacho E (2000) Phys Rev Lett 85:4992

    Google Scholar 

  59. Storm AJ, van Noort J, de Vries S, Dekker C (2001) Appl Phys Lett 79:3881

    Google Scholar 

  60. Kasumov AY, Kociak M, Guéron S, Reulet B, Volkov VT, Klinov DV, Bouchiat H (2001) Science 291:280

    Google Scholar 

  61. Watanabe H, Manabe C, Shigematsu T, Shimotani K, Shimizu M (2001) Appl Phys Lett 79:2462

    Google Scholar 

  62. Shigematsu T, Shimotani K, Manabe C, Watanabe H, Shimizu M (2003) J Chem Phys 118:4245

    Google Scholar 

  63. Bezryadin A, Dekker C (1997) J Vac Sci Technol 15:793

    Google Scholar 

  64. Bezryadin A, Dekker C, Schmid G (1997) Appl Phys Lett 71:1273

    Google Scholar 

  65. Bockrath M, Markovic N, Shepard A, Tinkham M, Gurevich L, Kouwenhoven LP, Wu MW, Sohn LL (2002) Nano Lett 2:187

    Google Scholar 

  66. Gómez-Navarro C, Moreno-Herrero F, de Pablo PJ, Colchero J, Gómez-Herrero J, Baró AM (2002) Proc Natl Acad Sci USA 99:8484

    Google Scholar 

  67. Cai L, Tabata H, Kawai T (2000) Appl Phys Lett 77:3105

    Google Scholar 

  68. Rinaldi R, Branca E, Cingolani R, Masiero S, Spada GP, Gottarelli G (2001) Appl Phys Lett 78:3541

    Google Scholar 

  69. Lee HY, Tanaka H, Otsuka Y, Yoo K-H, Lee J-O, Kawai T (2002) Appl Phys Lett 80:1670

    Google Scholar 

  70. Tabata H, Cai LT, Gu J-H, Tanaka S, Otsuka Y, Sacho Y, Taniguchi M, Kawai T (2003) Synth Met 133:469

    Google Scholar 

  71. Rakitin A, Aich P, Papadopoulos C, Kobzar Y, Vedeneev AS, Lee JS, Xu JM (2001) Phys Rev Lett 86:3670

    Google Scholar 

  72. Aich P, Labiuk SL, Tari LW, Delbaere LJT, Roesler WJ, Falk KJ, Steer RP, Lee JS (1999) J Mol Biol 294:477

    Google Scholar 

  73. Wettig SD, Wood DO, Lee JS (2003) J Inorg Biochem 94:94

    Google Scholar 

  74. Li C-Z, Long Y-T, Kraatz H-B, Lee JS (2003) J Phys Chem B 107:2291

    Google Scholar 

  75. Yoo K-H, Ha DH, Lee J-O, Park JW, Kim J, Kim JJ, Lee H-Y, Kawai T, Choi HY (2001) Phys Rev Lett 87:198102

    Google Scholar 

  76. Jortner J (1976) J Chem Phys 64:4860

    Google Scholar 

  77. Marcus R, Sutin N (1985) Biochem Biophys Acta 811:265

    Google Scholar 

  78. Bixon M, Jortner J (2001) J Am Chem Soc 123:12556

    Google Scholar 

  79. Jortner J, Bixon M, Langenbacher T, Michel-Beyerle ME (1998) Proc Natl Acad Sci USA 95:12759

    Google Scholar 

  80. Bixon M, Jortner J (2000) J Phys Chem B 104:3906

    Google Scholar 

  81. Landauer R (1957) IBM J Res Develop 1:223, reprinted (1996) J Math Phys 37:5259

    Google Scholar 

  82. Datta S (1995) Electronic transport in mesoscopic systems. Cambridge University Press, Cambridge

    Google Scholar 

  83. Ferry DK, Goodnick SM (1999) Transport in nanostructures. Cambridge University Press, Cambridge

    Google Scholar 

  84. Xue Y, Datta S, Ratner MA (2002) Chem Phys 281:151

    Google Scholar 

  85. Calzolari A, Souza I, Marzari N, Buongiorno Nardelli M (2003) (preprint)

    Google Scholar 

  86. Brandbyge M, Mozos J-L, Ordejón P, Taylor J, Sokbro K (2002) Phys Rev B 65:165401

    Google Scholar 

  87. Gutierrez R, Fagas G, Cuniberti G, Grossmann F, Schmidt R, Richter K (2002) Phys Rev B 65:113410

    Google Scholar 

  88. Šponer J, Leszczynski J, Hobza P (1996) J Phys Chem 100:1965

    Google Scholar 

  89. Šponer J, Leszczynski J, Hobza P (1996) J Phys Chem 100:5590

    Google Scholar 

  90. Di Felice R, Calzolari A, Molinari E, Garbesi A (2002) Phys Rev B 65:045104

    Google Scholar 

  91. Calzolari A, Di Felice R, Molinari E, Garbesi A (2002) Physica E 13:1236

    Google Scholar 

  92. Adessi C, Walch S, Anantram MP (2003) Phys Rev B 67:081405(R)

    Google Scholar 

  93. Calzolari A, Di Felice R, Molinari E, Garbesi A (2002) Appl Phys Lett 80:3331

    Google Scholar 

  94. Gervasio FR, Carloni P, Parrinello M (2002) Phys Rev Lett 89:108102

    Google Scholar 

  95. Barnett RN, Cleveland CL, Joy A, Landmann U, Schuster GB (2001), Science 294:567

    Google Scholar 

  96. Dreizler RM, Gross EKU (1990) Density functional theory. An approach to the quantum many-body problem. Springer, Berlin Heidelberg New York

    Google Scholar 

  97. Hohenberg P, Kohn W (1964) Phys Rev 136:B864

    Google Scholar 

  98. Kohn W, Sham LJ (1965) Phys Rev 140:A1133

    Google Scholar 

  99. Becke ADA (1988) Phys Rev A 38:3098

    Google Scholar 

  100. Perdew JP, Chvary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671

    Google Scholar 

  101. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785

    Google Scholar 

  102. Becke ADA (1993) J Chem Phys 98:1372

    Google Scholar 

  103. Becke ADA (1993) J Chem Phys 98:5648

    Google Scholar 

  104. Johnson BG, Gill PMW, Pople JA (1993) J Chem Phys 98:5612

    Google Scholar 

  105. Cuniberti G, Großmann F, Gutiérrez R (2002) Adv Solid State Phys 42:133

    Google Scholar 

  106. Saito R, Dresselhaus MS, Dresselhaus G (1998) Physical properties of carbon nanotubes. World Scientific, Singapore

    Google Scholar 

  107. Elstner M, Hobza P, Frauenheim T, Suhai S, Kaxiras E (2001) J Chem Phys 114:5149

    Google Scholar 

  108. Voityuk AA, Jortner J, Bixon M, Rösch N (2000) Chem Phys Lett 324:430

    Google Scholar 

  109. Voityuk AA, Rösch N, Bixon M, Jortner J (2000) J Phys Chem B 104:9740

    Google Scholar 

  110. Voityuk AA, Jortner J, Bixon M, Rösch N (2002) J Chem Phys 114:5614

    Google Scholar 

  111. Bogár F, Ladik J (1998) Chem Phys 237:273

    Google Scholar 

  112. Ye Y, Chen RS, Martinez A, Otto P, Ladik J (1999) Solid State Commun 112:139

    Google Scholar 

  113. Friesner RA, Dunietz BD (2001) Acc Chem Res 34:351

    Google Scholar 

  114. Artacho E, Machado M, Sánchez-Portal D, Ordejón P, Soler JM (2002) airXiV:cond-mat/0209563 (to be published in Mol Phys)

    Google Scholar 

  115. Hjort M, Stafström S (2001) Phys Rev Lett 87:228101

    Google Scholar 

  116. Gottarelli G, Masiero S, Mezzina E, Spada GP, Mariani P, Recanatini M (1998) Helv Chim Acta 81:2078

    Google Scholar 

  117. Artacho E, Sánchez-Portal D, Ordejón P, García A, Soler JM (1999) Phys Status Solidi B 215:809

    Google Scholar 

  118. Phillips K, Dauter Z, Morchie AIH, Lilley DMJ, Luisi B (1997) J Mol Biol 273:171

    Google Scholar 

  119. Tanaka K, Yamada Y, Shionoya M (2002) J Am Chem Soc 124:8802

    Google Scholar 

  120. Tanaka K, Tengeiji A, Kato T, Toyama N, Shionoya M (2003) Science 299:1212

    Google Scholar 

  121. Carloni P, Andreoni W (1996) J Phys Chem 100:17797

    Google Scholar 

  122. Cuniberti G, Craco L, Porath D, Dekker C (2002) Phys Rev B 65:241314(R)

    Google Scholar 

  123. Zwolak M, Di Ventra M (2002) Appl Phys Lett 81:925

    Google Scholar 

  124. Li XQ, Yan Y (2001) Appl Phys Lett 79:2190

    Google Scholar 

  125. Li XQ, Yan Y (2001) J Chem Phys 115:4169

    Google Scholar 

  126. Imry Y (2002) Introduction to mesoscopic physics, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  127. Fisher DS, Lee PA (1981) Phys Rev B 23:R6851

    Google Scholar 

  128. Jauho AP (2003) Nonequilibrium Green function modeling of transport in mesoscopic systems. In: Bonitz M, Semkat D (eds) Progress in nonequilibrium Green’s functions II. World Scientific, Singapore

    Google Scholar 

  129. Frauenheim T, Seifert G, Elstner M, Niehaus T, Köhler C, Amkreutz M, Sternberg M, Hajnal Z, Di Carlo A, Suhai S (2002) J Phys Condens Matter 14:3015

    Google Scholar 

  130. Büttiker M (1986) Phys Rev B 33:3020

    Google Scholar 

  131. D’Amato JL, Pastawski HM (1990) Phys Rev B 41:7411

    Google Scholar 

  132. Richter J, Mertig M, Pompe W, Mönch I, Schackert HK (2001) Appl Phys Lett 78:536

    Google Scholar 

  133. Parkinson GN, Lee MPH, Neidle S (2002) Nature 417:876

    Google Scholar 

Download references

Acknowledgements

Funding by the EU through grant FET-IST-2001-38951 is acknowledged. DP is thankful to Cees Dekker and his group, with whom experiment [14] was done, to Joshua Jortner, Avraham Nitzan, Julio Gomez-Herrrero, Christian Schönenberger, and Hezy Cohen for fruitful discussions about the conductivity in DNA and critical reading of the manuscript. DP research is funded by: The First foundation, The Israel Science Foundation, The German-Israel Foundation, and Hebrew University Grants. GC acknowledges the collaboration with Luis Craco with whom part of the work reviewed was done. The critical reading of Miriam del Valle, Rafael Gutierrez, and Juyeon Yi is also gratefully acknowledged. GC research has been funded by the Volkswagen Foundation. RDF is extremely grateful to Arrigo Calzolari, Anna Garbesi, and Elisa Molinari for fruitful collaborations and discussions on topics related to this chapter, and for a critical reading of the manuscript. RDF research is funded by INFM through PRA-SINPROT, and through the Parallel Computing Committee for allocation of computing time at CINECA, and by MIUR through FIRB-NOMADE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny Porath .

Editor information

G.B. Schuster

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Porath, D., Cuniberti, G., Di Felice, R. Charge Transport in DNA-Based Devices. In: Schuster, G. (eds) Long-Range Charge Transfer in DNA II. Topics in Current Chemistry, vol 237. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b94477

Download citation

  • DOI: https://doi.org/10.1007/b94477

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20131-1

  • Online ISBN: 978-3-540-39912-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics