Skip to main content

Recycled Polyolefins. Material Properties and Means for Quality Determination

  • Chapter

Part of the book series: Advances in Polymer Science ((POLYMER,volume 169))

Abstract

Recycling of polymers has come to be a necessary part of the development of a sustainable society. Recycling of low price bulk polymers, to which group the polyolefins belong, is seen by many as a waste of time and resources when they simply may be energy recovered. Several life-cycle assessments (LCA) have, however, proven that it is also valuable to material recycle bulk polymers such as polyolefins. In many instances, polyolefins are in-plant recycled and used again in similar products, but they may also be separated and sorted from municipal solid waste. This paper will discuss recycled polyolefins, in particular their change in material properties and how to characterise these properties and show that these analyses are a basis for quality determination. In fact, an important vehicle for the success of recycled polymeric materials is to use a quality concept. Accurate determination of a series of polymeric properties will be the only way recycled polymeric materials can compete with virgin ones. Analytical methods useful in the quality concept are presented and discussed. In particular, three parameters are important for quality measurements. These are degree of degradation, polymer composition and presence of low molecular weight compounds (degradation products of polymer matrix and additives, initiator/catalysts, solvents, use-related e.g. fragrance or flavour etc.). For the future it is important to give recycled polymeric materials status as resources besides the fossil and renewable ones.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

APME :

Association of Plastic Producers in Europe

ATR :

Attenuated total reflectance

CI :

Carbonyl index

CL :

Chemiluminescence

CLS :

Classical least square

DSC :

Differential scanning calorimetry

FDA :

Food and Drug Administration

LCA :

Life cycle assessment

MIR :

Mid-infrared

MLR :

Multiple linear regression

MSC :

Multiple scattering correction

MSW :

Municipal solid waste

NIR :

Near infrared

OIT :

Oxidation induction time

PLS :

Partial least square

PCR :

Post-consumer recyclate

PCW :

Post-consumer waste

PCA :

Principal component analysis

PCR :

Principal component regression

RMSEP :

Root-mean-square error of prediction

References

  1. APME (1998) Assessing the potential for post-use plastics waste recycling—predicting recovery in 2001 and 2006. APME Summary Report, Reference 8023

    Google Scholar 

  2. APME (2001) Plastics—An analysis of plastics consumption and recovery in Western Europe. APME Report, Reference 2002

    Google Scholar 

  3. Scott G (1999) Polymers and the environment. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  4. Wogrooly E (1996) In: Brandrup J (ed) Recycling and recovery of plastics. Hanser, New York

    Google Scholar 

  5. Rånby B, Albertsson A-C (1978) AMBIO 7(4):172

    Google Scholar 

  6. Haider N (2000) Consumption and loss of commercial stabilisers in polyethylene exposed to different natural environments. PhD Thesis, Royal Institute of Technology, Stockholm, Sweden

    Google Scholar 

  7. Council Directive 1999/31/EC on the landfill of waste (1999) Off J Eur Communities L 182:1–19

    Google Scholar 

  8. Förpackningsinsamligens INFO (2001) 2

    Google Scholar 

  9. European Parliament and Council Directive 94/62/EC of 20 December 1994 on packaging and packaging waste (1994), Off J Eur Communities L 365:10–23

    Google Scholar 

  10. Swedish Waste Management 2001 (2002) Renhållningverksföreningen RVF, Sweden

    Google Scholar 

  11. Swedish Recycling Industries (SRI), Autumn report 2002

    Google Scholar 

  12. Scobbo JJ (1992) Macromol Symp 57:331

    Google Scholar 

  13. Pospisil J, Nespurek S, Zweifel H (1997) Trends Polym Sci 5(9):294

    Google Scholar 

  14. Pospisil J, Sitek FA, Pfaender R (1995) Polym Degrad Stab, 48:351

    Google Scholar 

  15. Hope PS, Bonner JG, Milles (1994) Plast Rubber, Compos Process Appl 22 (3):147

    Google Scholar 

  16. Tall S (2000) Recycling of mixed plastic waste—Is separation worthwhile? PhD Thesis, Royal Institute of Technology, Stockholm, Sweden

    Google Scholar 

  17. Stangenberg F, Ågren S, Karlsson S (2003) Chromatographia (in press)

    Google Scholar 

  18. Electrostatic recovery of paper and plastic packaging waste (ELREC), BRPR-CT96-0247 (European Project)

    Google Scholar 

  19. Shiers J (1998) Polymer recycling. Wiley, Chichester, UK, p 1

    Google Scholar 

  20. Development of multipurpose industrial units for recycling of plastic wastes by on-line pattern recognition of polymers features (SURE-PLAST) (European Project) BRPR-CT-98-0783

    Google Scholar 

  21. Pospisil J, Nespurek S, Zweifel H (1997) Trends Polym Sci 5:294

    Google Scholar 

  22. Tall S, Albertsson A-C, Karlsson S (1998) J Appl Polym Sci 70(12):2981

    Google Scholar 

  23. Allen NS (1994) Trends Polym Sci 2:366

    Google Scholar 

  24. Boldizar A, Jansson A, Gevert T, Möller K (2000) Polym Degrad Stab 68:317

    Google Scholar 

  25. Hinsken H, Moss S, Zweifel H (1991) Polym Degrad Stab 34:279

    Google Scholar 

  26. Allen NS, Edge M; Mohammadian M, Jones K (1993) Polym Degrad Stab 41:191

    Google Scholar 

  27. Lemaire J, Arnaud R, Lacoste J (1988) Photochim Mol Macromol, Acta Polym, 39:27

    Google Scholar 

  28. Hoff A, Jacobsson S (1984) J Appl Polym Sci 29:465

    Google Scholar 

  29. Tidjani A (2000) Polym Degrad Stab 68:465

    Google Scholar 

  30. Denisov, ET (1989) Polym Degrad Stab 25:209

    Google Scholar 

  31. Klemchuk PP, Gande ME (1988) Polym Degrad Stab 22:241

    Google Scholar 

  32. Klemchuk PP, Gande ME (1990) Polym Degrad Stab 27:65

    Google Scholar 

  33. Osawa Z (1984) Polym Degrad Stab 7:193

    Google Scholar 

  34. Osawa Z (1988) Polym Degrad Stab 20: 203

    Google Scholar 

  35. Zweifel H, (1997) Stabilization of polymeric materials. Springer, Berlin Heidelberg New York

    Google Scholar 

  36. Allen N, Edge M (1992) Fundamentals of polymer degradation and stabilisation. Elsevier Applied Science, London

    Google Scholar 

  37. Scott G (1990) Polym Degrad Stab 27:183

    Google Scholar 

  38. Klemchuk PP, Horng PL (1991) Polym Degrad Stab 34:333

    Google Scholar 

  39. Hubber F, Piringer OG (1994) Food Addit Contam 11:479

    Google Scholar 

  40. FDA (1992) Points to consider for the use of recycled plastics in food packaging: Chemistry considerations. Chemistry Review Branch, US Food and Drug Administration, Washington DC

    Google Scholar 

  41. FDA (1993) US FDA FED Reg 58(195):52719–52729

    Google Scholar 

  42. Helberg J (1996) In: Brandrup J (ed) Recycling and recovery of plastics. Hanser, New York

    Google Scholar 

  43. Kartalis CN (1999) J Appl Polym Sci 73:1775

    Google Scholar 

  44. Pospisil J, Nespurek S, Zweifel H (1996) Polym Degrad Stab 54:7

    Google Scholar 

  45. Pospisil J, Nespurek S, Zweifel H (1996) Polym Degrad Stab 54:15

    Google Scholar 

  46. Pospisil J (1995) Adv Polym Sci 124:87

    Google Scholar 

  47. Pospisil J, Nespurek S (1997) Macrom Symp 115:143

    Google Scholar 

  48. Pospisil J (1991) Polym Degrad Stab 34:85

    Google Scholar 

  49. Pfnaeder R, Herbst H, Hoffmann K (1995) Angew Makromol Chem 232:193

    Google Scholar 

  50. Pfnaeder R, Herbst H, Hoffmann K (1995) In: Proceedings of Davos Recycle ‘95, Switzerland, 22–26 March, 8/2-1-8/2-14

    Google Scholar 

  51. Eriksson PA, Albertsson A-C, Boydel P, Prautzsch G, Manson JAE (1996) Polym Compos 17:830

    Google Scholar 

  52. Ha CS, Park HD, Kim Y (1996) Polym Adv Technol 7:483

    Google Scholar 

  53. Li T, Topolkareev VA, Hiltner A, Raer E (1995) J Polym Sci Polym Phys 33:667

    Google Scholar 

  54. Welander M, Rigdahl M (1989) Polymer 30:207

    Google Scholar 

  55. Saleem M, Baker WE (1990) J Polym Appl Sci 39:655

    Google Scholar 

  56. Ajji A (1995) Polym Eng Sci 35:64

    Google Scholar 

  57. Koning C, Vand Duin M, Jerome R (1998) Prog Polym Sci 23:707

    Google Scholar 

  58. Fuzessery S (1989) In: Proceedings of Davos Recycle ‘89, Switzerland, 10–13 April, 271

    Google Scholar 

  59. Hamid HS, Atiqullah M (1995) Rev Macromol Chem Phys C35 (3): 495

    Google Scholar 

  60. Dörner G, Lang RW (1998) Polym Degrad Stab 62:431

    Google Scholar 

  61. Eriksson PA, Albertsson A-C, Boydell P, Manson JAE (1998) Polym Eng Sci 38:749

    Google Scholar 

  62. Ruddle LH, Wilson JR (1969) Analyst,94:105

    Google Scholar 

  63. Burcfield HP, July JN (1960) Anal Chem 19:383

    Google Scholar 

  64. Klemchuk P, Horg P (1985) Plast Compounds 8:42

    Google Scholar 

  65. Crompto TR (1993) Practical polymer analysis. Plenum, New York

    Google Scholar 

  66. Haider N, Karlsson S (1999) The Analyst 124:797

    Google Scholar 

  67. Viregust B, Kolset K, Nordenson S, Henriksen A, Kleveland K (1991) Appl Spectrosc 2:173

    Google Scholar 

  68. Karstang TV, Henriksen A (1992) Chem Intell Lab Syst 14:331

    Google Scholar 

  69. Luongo JP (1965) Appl Spectrosc 19:117

    Google Scholar 

  70. Miller RGJ, Willis HA (1959) Spectrochim Acta 14:119

    Google Scholar 

  71. Freitag W (1983) Fresenius’ Z Anal Chem 365:495

    Google Scholar 

  72. Rao PVC, Prasad JV, Koshi VJ (1995) Anal Chim 85:171

    Google Scholar 

  73. Huang JB, Hong JW, Urban MW (1992) Polymer 33:5173

    Google Scholar 

  74. Baker C, Maddams WF (1976) Makromol Chem 177:437

    Google Scholar 

  75. Camacho W, Karlsson S (2001) Int J Polym Anal Charact 41:1626

    Google Scholar 

  76. Shimonaya M (1998) Near Infrared Spectrosc 6:317

    Google Scholar 

  77. Karstang TV, Henriksen A (1992) Chemometr Intell Lab Syst 14:331

    Google Scholar 

  78. Kosky PG, McDonald RS Guggeheim EA (1985) Polym Eng Sci 25:389

    Google Scholar 

  79. Honings DE, Hirscheld TB, Hiefte M, (1985) Anal Chem 57:443

    Google Scholar 

  80. Siesler HW, Holland-Moritz K (1980) Infrared and Raman spectroscopy of polymers. Decker, New York

    Google Scholar 

  81. Burns DA, Ciurcziak EW (1992) Handbook of near infrared analysis. Decker, New York

    Google Scholar 

  82. Miller CE (1991) Appl Spectrosc Rev 26:277

    Google Scholar 

  83. Martens H, Naes T (1989) Multivariate calibration. Wiley, Chichester

    Google Scholar 

  84. Cowe JW, McNicol C (1985) Appl Spectrosc 39:257

    Google Scholar 

  85. Miller CE (1991) Appl Spectrosc Rev 26:277

    Google Scholar 

  86. Miller CE (1993) Appl Spectrosc 47:222

    Google Scholar 

  87. Miller CE (1990) Appl Spectrosc 44:496

    Google Scholar 

  88. Miller CE, Svendsen SA, Naes T (1993) Appl Spectrosc 47 (3):436

    Google Scholar 

  89. Gartner C, Sierra JD, Avakian R (19) ANTEC 98:2012

    Google Scholar 

  90. Prasad A (1988) Polym Eng Sci 38:1716

    Google Scholar 

  91. Chundury D, Scheibelhoffer A, Bauer V (1988) Society of Plastic Engineers—Annual Tech Conf 1243

    Google Scholar 

  92. Paroli RM, Lara J, Hechler JJ, Cole KC, Butler IS (1987) Appl Spectrosc 41:319

    Google Scholar 

  93. Miller CE, Eichinger BE (1990) Appl Spectrosc 44(3):496

    Google Scholar 

  94. Zhu C, Hieftje G (1992) Appl Spectrosc 46:69

    Google Scholar 

  95. Miller CE (1993) Appl Spectrosc 47(2):222

    Google Scholar 

  96. Lachenal G (1995) Vibrational Spectrosc 9:93

    Google Scholar 

  97. Lachemal G (1998) J Near Infrared Spectrosc 6:299

    Google Scholar 

  98. Rohe T, Becker W, Kölle S, Eisenreich N, Eyerer P (1999) Talanta 50:283

    Google Scholar 

  99. Michaeli W, Plessmann KW, Andrassy B, Breyer K, Laufens P (1997/8) Poly Recyc 3:287

    Google Scholar 

  100. Natarajan S, Michielsen S (1999) J Appl Polym Sci 73:943

    Google Scholar 

  101. Williams KP, Everall J (1995) J Raman Spectrosc 26:427

    Google Scholar 

  102. Sano K, Shimoyama M, Ohgane KM, Higashiyama H, Watari M, Tomo M, Ninomiya T, Ozaki Y (1999) J Appl Spectrosc 53:551

    Google Scholar 

  103. Everall N, Tayler P, Chalmers JM, MacKerron D, Ferwerda R, van der Maas J H (1994) Polymer 35:3184

    Google Scholar 

  104. Ewen JC, Kellar A, Galiotis C, Andrews EH (1996) Macromolecules 29:3515

    Google Scholar 

  105. Tomba PJ, de la Puente E, Pastor JM (2000) J Polym Sci B: Polym Phys 38:1013

    Google Scholar 

  106. Shimoyama M, Hayano S, Matsukawa K, Inoue H, Ninomiya T, Ozaki Y (1998) J Polym Sci B: Polym Phys 36:1529

    Google Scholar 

  107. Ewen JC, Kellar A, Evans M, Knowles J, Galiotis C, Andrews EH (1997) Macromolecules 30:2400

    Google Scholar 

  108. Everall N, King B (1999) Macromol Symp 141:103

    Google Scholar 

  109. Deshpande BJ, Dhamdhere MS, Li J, Hansen MG (1998) ANTEC ‘98:1672

    Google Scholar 

  110. Fraser GV, Hendra PJ, Chalmers JM, Cudby, MEA Willis, H A (1973) Makromol Chem 173:195

    Google Scholar 

  111. Everall N, Davis K, Owen H, Pelletier M J, Slater J (1996) Appl Spectrosc 50:388

    Google Scholar 

  112. Camacho W, Karlsson S (2001) Polymer Recycling 6:89

    Google Scholar 

  113. Camacho W, Karlsson S (2001) Polym Degrad Stab 71:123

    Google Scholar 

  114. Haider N, Karlsson S (2001) Polym Degrad Stab 74:103

    Google Scholar 

  115. Haider N, Karlsson S (2003) J Appl Polym Sci

    Google Scholar 

  116. Stangenberg F, Ågren S, Karlsson S (2003) In: Dhir RK, Newlands MD, E??????????? J (eds) Recycling and Rense of Waste Material. Thomas ??????, London, p 324

    Google Scholar 

  117. Stangenberg F, Ågren S, Karlsson S (2002) Refined routine analyses for quality assessment of recycled plastics in standardisation. KTH, Stockholm, Sweden

    Google Scholar 

  118. Camacho W, Karlsson S (2003) J Appl Polym Sci (in press)

    Google Scholar 

  119. Dhenim V, Rose (2002) Polym Preprints 41:285

    Google Scholar 

  120. Willis JN, Wheeler C (1995) Polym Preprints 19

    Google Scholar 

  121. Eriksson PA, Albertsson A-C, Boydell P. Manson JAE (1998) J Therm Anal Calorim 53:19

    Google Scholar 

  122. Camacho W, Karlsson S (2001) Polym Eng Sci 41:1626

    Google Scholar 

  123. Tall S, Karlsson S, Albertsson A-C (1997) Polym Polym Compos 5:417

    Google Scholar 

  124. Pospisil JJ, Horak Z, Kruls Z, Nespurek, S, Kurola S (1999) Polym Degrad Stab 65:405

    Google Scholar 

  125. Epacher E, Tolveth J, Stoll K, Pukanskkzly B (1999) J Appl Polym Sci 74:1596

    Google Scholar 

  126. Fearon P, Marshall N, Billingham NC, Bigger SW (2001) J Appl Polym Sci 79:733

    Google Scholar 

  127. Brosca R, Rychly J (2001) Polym Degrad Stab 72:271

    Google Scholar 

  128. Braun D, Ritcher S, Hellma GP, Rätzch M (1998) J Appl Polym Sci 68:2019

    Google Scholar 

  129. Albertsson A-C, Karlsson S (1997) Comparative LCA on three different schemes for the treatment of MSW. KTH Stockholm, Sweden

    Google Scholar 

Download references

Acknowledgement

Several European projects have financed different parts of the studies presented and discussed here. These are ‘Electrostatic recovery of paper and plastic packaging waste’ (ELREC), BRPR-CT96-0247; ‘Development of multipurpose industrial units for recycling of plastic wastes by on-line pattern recognition of polymers features’ (SURE-PLAST), BRPR-CT-98-0783 and ‘Industrial production of high performance ecological polymeric composites based on residual/renewable cellulose fibres and post consumer thermoplastics’ (ECOSITES), G5RD-CT-2000-00337. Dr. Walker Camacho, former PhD. student, and Frida Stangenberg are gratefully acknowledged for contributions to various parts of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigbritt Karlsson .

Editor information

Ann-Christine Albertsson

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Karlsson, S. Recycled Polyolefins. Material Properties and Means for Quality Determination. In: Albertsson, AC. (eds) Long Term Properties of Polyolefins. Advances in Polymer Science, vol 169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b94173

Download citation

  • DOI: https://doi.org/10.1007/b94173

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40769-0

  • Online ISBN: 978-3-540-45196-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics