Skip to main content

Microbial Biomass in Broad-Leaved Forest Soils

  • Chapter
  • First Online:
Functioning and Management of European Beech Ecosystems

Part of the book series: Ecological Studies ((ECOLSTUD,volume 208))

  • 681 Accesses

Abstract

Long-term analysis of ecosystem processes involves, to a great extent, inventories of element and energy transfers between biotic and abiotic compartments. In terrestrial ecosystems, the heterotrophic activity of soil micro-organisms plays a central role in this element and energy transfer as it involves the release of organic nutrients and mineral elements during microbial mineralisation activities of organic residues from the primary producers. Chronic detrimental impacts would directly affect this vital microbial compartment with subsequent changes in the element and energy budget of a system. For that reason, it is an obligatory necessity to develop a sound knowledge about the size of this microbial pool and the microbial biomass of total fungal and bacterial cells, together with an understanding of its controlling mechanisms. It is most likely that adverse changes in an ecosystem will more easily and at an early stage be detectable at the microbial community level. The objectives of this study were (1) to survey a large number of different forest sites in Lower Saxony for microbial biomass content, microbial growth or activity indices, in order to (2) provide the underlying principles of microbial development in forest soils. All the methods used are well described in the pertaining literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alef K (1991) Methodenhandbuch Bodenmikrobiologie. Ecomed, Landsberg

    Google Scholar 

  • Alphei J, Bonkowski M, Scheu S (1995) Application of the selective inhibition method to determine bacterial: fungal ratios in three beechwood soils rich in carbon – optimization of inhibitor concentrations. Biol Fertil Soils 19:173–176

    Article  Google Scholar 

  • Anderson JPE, Domsch KH (1973) Quantification of bacterial and fungal contributions to soil respiration. Arch Microbiol 93:113–127

    CAS  Google Scholar 

  • Anderson JPE, Domsch KH (1975) Measurement of bacterial and fungal contributions to respiration of selected agricultural and forest soils. Can J Microbiol 21:315–322

    Article  Google Scholar 

  • Anderson JPE, Domsch KH (1978) A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol Biochem 10:215–221

    Article  CAS  Google Scholar 

  • Anderson JPE, Domsch KH (1980) Quantities of plant nutrients in the microbial biomass of selected soils. Soil Sci 130:211–216

    Article  CAS  Google Scholar 

  • Anderson T-H (2000) Bewertung bodenmikrobiologischer Kenngrößen nach langjähriger Beobachtung von Waldstandorten – Vergleich zu Agrarböden. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 93:120–123

    Google Scholar 

  • Anderson T-H, Domsch KH (1985a) Maintenance carbon requirements of actively-metabolizing microbial populations under in situ conditions. Soil Biol Biochem 17:197–203

    Article  CAS  Google Scholar 

  • Anderson T-H, Domsch KH (1985b) Determination of ecophysiological maintenance carbon requirements of soil microorganisms in a dormant state. Biol Fertil Soils 1:81–89

    Article  CAS  Google Scholar 

  • Anderson T-H, Domsch KH (1986a) Carbon link between microbial biomass and soil organic matter. In: Megusar F, Gantar M (eds) Proceedings of the 4th international symposium on microbial ecology, Slovene Society for Microbiology, Lubljana, pp 467–471

    Google Scholar 

  • Anderson T-H, Domsch KH (1986b) Carbon assimilation and microbial activity in soil. Z Pflanzenernaehr Bodenk 149:457–468

    Article  CAS  Google Scholar 

  • Anderson T-H, Domsch KH (1989) Ratios of microbial biomass carbon to total organic-C in arable soil. Soil Biol Biochem 21:471–479

    Article  Google Scholar 

  • Anderson T-H, Domsch KH (1990) Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories. Soil Biol Biochem 22:251–255

    Article  Google Scholar 

  • Anderson T-H, Domsch KH (1993) The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biol Biochem 25:393–395

    Article  Google Scholar 

  • Bååth E, Anderson T-H (2003) Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol Biochem 35:955–963

    Article  Google Scholar 

  • Bååth E, Berg B, Lohm U, Lundgren B, Lundkvist H, Rosswall T, Söderström B, Wiren A (1980) Effects of experimental acidification and liming on soil organisms and decomposition in a Scots pine forest. Pedobiologia 20:85–100

    Google Scholar 

  • Bewley RJF, Parkinson D (1985) Bacterial and fungal activity in sulphur dioxide polluted soils. Can J Microbiol 31:13–15

    Article  CAS  Google Scholar 

  • Bewley RJF, Stotzky G (1983) Simulated acid rain (H2SO4) and microbial activity in soil. Soil Biol Biochem 15:425–429

    Article  CAS  Google Scholar 

  • Blagodatskaya EV, Anderson T-H (1999) Adaptive responses of soil microbial communities under experimental acid stress in controlled laboratory studies. Appl Soil Ecol 11:207–216

    Article  Google Scholar 

  • Brown MH, Mayes T, Lelieveld HLM (1980) The growth of microbes at low pH values. In: Gould GW, Corry JEL (eds) Microbial growth and survival in extremes of environment. Academic, London, pp 71–98

    Google Scholar 

  • Curtin D, Campbell CA, Jalil A (1998) Effects of acidity on mineralization: pH-dependence of organic matter mineralization in weakly acidic soils. Soil Biol Biochem 30:57–64

    Article  CAS  Google Scholar 

  • Domsch KH, Anderson T-H (1993) Stoffwechselkoeffizienten mikrobieller Sekundärproduzenten – Verhalten und Entwicklung der mikrobiellen Biomasse in Waldstandorten. In: Forschungszentrum Waldökosysteme der Universität Göttingen; Abschlussbericht 1989–1993 zum BMFT-Forschungsvorhaben Stabilitätsbedingungen von Waldökosystemen, Teil B, pp 146–160

    Google Scholar 

  • Domsch KH, Gams W, Anderson T-H (1980) Compendium of soil fungi, vo1 l. Academic, London

    Google Scholar 

  • Dilly O, Winter K, Lang A, Munch J-C (2001) Energetic eco-physiology of the soil microbiota in two landscapes of southern and northern Germany. J Plant Nutr Sci 164:407–413

    Article  CAS  Google Scholar 

  • Ding Ming Mao, Yi Wie Min, Liao Lan Yu, Martens R, Insam H (1992) Effect of afforestation on microbial biomass and activity in soils of tropical China. Soil Biol Biochem 24:865–872

    Article  Google Scholar 

  • Gams W (1992) The analysis of communities of saprophytic microfungi with special reference to soil fungi. In: Winterhoff W (ed) Fungi in vegetation science. Kluwer, Netherlands, pp 183–223

    Google Scholar 

  • Hooper DU, Bignell DE, Brown VK, Brussard L, Dangerfield JM, Wall DH, Wardle DA, Coleman DC, Giller KE, Lavelle P, van der Putten H, de Ruiter PC, Rusek J, Silver WL, Tiedje KM, Wolters V (2000) Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks. BioScience 50:1049–1061

    Article  Google Scholar 

  • Höper H, Kleefisch B (2001) Untersuchung bodenbiologischer Parameter im Rahmen der Boden-Dauerbeobachtung in Niedersachsen. Bodenbiologische Referenzwerte und Zeitreihen. Arbeitshefte – Boden, Heft 4, E. Schweizerbart, Stuttgart, p 94

    Google Scholar 

  • Hunt HW (1977) A simulation model for decomposition in grasslands. Ecology 58:469–484

    Article  CAS  Google Scholar 

  • Insam H, Haselwandter K (1989) Metabolic quotient of the soil microflora in relation to plant succession. Oecologia 79:171–178

    Article  Google Scholar 

  • Insam H, Parkinson D, Domsch KH (1989) Influence of macroclimate on soil microbial biomass. Soil Biol Biochem 21:211–221

    Article  Google Scholar 

  • Jenkinson DS, Ladd JN (1981) Microbial biomass in soil: measurement and turnover. In: Paul EA, Ladd JN (eds) Soil biochemistry, vol 5. Marcel Dekker, New York, pp 415–471

    Google Scholar 

  • Jenkinson DS, Powlson DS (1976) The effect of biocidal treatments on metabolism in soil. V. A method for measuring soil biomass. Soil Biol Biochem 8:189–202

    CAS  Google Scholar 

  • Jenkinson DS, Rayner JH (1977) The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Sci 123:298–305

    Article  CAS  Google Scholar 

  • Kaiser EA, Mueller T, Joergensen RG, Insam H, Heinemeyer O (1992) Evaluation of methods for soil microbial biomass estimations and their relation to soil texture and soil organic matter. Soil Biol Biochem 24:675–683

    Article  CAS  Google Scholar 

  • Knapp EB, Elliott LF, Campbell GS (1983) Carbon, nitrogen and microbial biomass interrelationships during the decomposition of wheat straw: a mechanistic simulation model. Soil Biol Biochem 15:455–461

    Article  Google Scholar 

  • Kreitz S, Anderson T-H (1997) Substrate utilization patterns of extractable and non-extractable bacterial fractions in neutral and acidic beech forest soils. In: Insam H, Rangger A (eds) Microbial communities. Functional versus structural approaches. Springer, Berlin, pp 149–160

    Google Scholar 

  • Langworthy TA (1978) Microbial life in extreme pH values. In: Kushner DJ (ed) Microbial life in extreme environments. Academic, London, pp 279–315

    Google Scholar 

  • Lynch JM, Panting LM (1980) Variations in the size of the soil biomass. Soil Biol Biochem 12:547–550

    Article  Google Scholar 

  • McGill WB, Hunt WH, Woodmansee RG, Reuss JO (1981) Phoenix – a model of the dynamics of carbon and nitrogen in grassland soils. In: Clark FE, Rosswall T (eds) Terrestrial nitrogen cycling, vol 33. Ecological Bulletin, Stockholm, pp 49–115

    Google Scholar 

  • Miltner A, Zech W (1998) Carbohydrate decomposition in beech litter as influenced by aluminium, iron and manganese oxides. Soil Biol Biochem 30:1–7

    Article  CAS  Google Scholar 

  • Moscatelli MC, Lagomarsino A, Marinari S, De Angelis S, Grego S (2005) Soil microbial indices as bioindicators of environmental changes in a poplar plantation. Ecol Ind 5:171–179

    Article  CAS  Google Scholar 

  • Odum EP (1969) The strategy of ecosystem development. Science 164:262–270

    Article  CAS  PubMed  Google Scholar 

  • Odum EP (1985) Trends expected in stressed ecosystems. BioScience 35:419–422

    Article  Google Scholar 

  • Odum EP (1990) Field experimental tests of ecosystem-level hypotheses. Tree 5:204–205

    Google Scholar 

  • Ohtonen R, Aikio S, Väre H (1997) Ecological theories in soil biology. Soil Biol Biochem 29:1613–1619

    Article  CAS  Google Scholar 

  • Parkinson D, Domsch KH, Anderson JPE (1978) Die Entwicklung mikrobieller Biomassen im organischen Horizont eines Fichtenstandortes. Oecol Plant 13:355–366

    Google Scholar 

  • Paul EA, Voroney RP (1980) Nutrient and energy flows through soil microbial biomass. In: Ellwood DC, Hedger JN, Latham MJ, Lynch JM, Slater JH (eds) Contemporary microbial ecology. Academic, London, pp 215–237

    Google Scholar 

  • Pirt SJ (1965) The maintenance energy of bacteria in growing cultures. Proc R Soc Lond B 163:224–231

    Article  CAS  PubMed  Google Scholar 

  • Pirt SJ (1975) Principles of microbe and cell cultivation. Blackwell, Oxford

    Google Scholar 

  • Raubuch M, Beese F (1995) Pattern of microbial indicators in forest soils along an European transect. Biol Fertil Soils 19:362–368

    Article  Google Scholar 

  • Rosswall T, Schnürer J, Söderlund S (1986) Interaction of acidity, aluminium ions and microorganisms. In: Jensen V, Kjøller A, Sørensen LH (eds) Microbial communities in soil. Elsevier, London, pp 395–410

    Google Scholar 

  • Skujins J, Klubek B (1982) Soil biological properties of a montane forest sere: corroboration of Odum's postulates. Soil Biol Biochem 14:505–513

    Article  CAS  Google Scholar 

  • Ulrich B (1980) Production and consumption of hydrogen ion in the ecosphere. In: Hutchinson TC, Havas M (eds) Effects of acid rain precipitation on terrestrial ecosystems. Plenum, New York, pp 255–282

    Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Van Veen JA, Ladd JN, Amato M (1985) Turnover of carbon and nitrogen through the microbial biomass in a sandy loam and a clay soil incubated with 14C(U)glucose and 15N(NH4)2SO4 under different moisture regimes. Soil Biol Biochem 17:747–756

    Article  CAS  Google Scholar 

  • Verstraten JM, Dopheide JCR, Duysings JJHM, Tietema A, Bouten W (1990) The proton cycle of a deciduous forest ecosystem in the Netherlands and its implication for soil acidification. Plant Soil 127:61–69

    Article  CAS  Google Scholar 

  • Wall DH, Moore JC (1999) Interactions underground. Soil biodiversity, mutualism, and ecosystem processes. BioScience 49:109–118

    Google Scholar 

  • Wardle DA, Giller KE (1996) The quest for a contemporary ecological dimension to soil biology. Soil Biol Biochem 28:1549–1554

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Kurt Steffens, Maria Bota and Kirsten Höpker for reliable technical assistance. We are very much indebted for the help of the many forest officers, who suggested forest stands and supplied maps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.-H. Anderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anderson, TH. (2009). Microbial Biomass in Broad-Leaved Forest Soils. In: Brumme, R., Khanna, P.K. (eds) Functioning and Management of European Beech Ecosystems. Ecological Studies, vol 208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b82392_21

Download citation

Publish with us

Policies and ethics