Skip to main content

Changes in Soil Solution Chemistry, Seepage Losses, and Input–Output Budgets at Three Beech Forests in Response to Atmospheric Depositions

  • Chapter
  • First Online:
Functioning and Management of European Beech Ecosystems

Part of the book series: Ecological Studies ((ECOLSTUD,volume 208))

Abstract

Atmospheric depositions have increased substantially since industrialisation and have affected many forest properties. Forest soils of low buffering to the acid load as those of sandy or silty texture significantly declined in soil pH and some essential nutrients during the last decades (see Chap. 21) causing a controversial discussion about the stability of such forest ecosystems (Ulrich 1981, 1987, 1992, 1994b). Of 1,700 soils studied in the forest soil survey programme of Germany, 60% of all soils have pH(H2O) <4.2 (Wolff and Riek 1997a, b). N deficiency, which has been a common feature of forest stands in the temperate region (Tamm 1991), does not occur any more due to high N deposition rates in Europe (except of north and east Europe). On the contrary, the N supply has increased as indicated by high N contents of the tree foliage and surface organic layer samples (Tietema and Beier 1995; Alewell et al. 2000b; McNulty et al. 1991; Wolff and Riek 1997a). Nitrate losses with seepage water have increased at some locations (Dise and Wright 1995; Bredemeier et al. 1998; Matzner et al. 2004; Borken and Matzner 2004), which led to a discussion about the saturation of forests with nitrogen (e.g. Ågren and Bosatta 1988; Tamm 1991; Gundersen et al. 1998; Aber et al. 1998). However, political actions by European countries have led to a noticeable decline in atmospheric depositions of sulphur and nitrogen in the 1980s and 1990s (Ferrier et al. 2001) raising questions about the recovery of forest ecosystems from soil acidification. A general recovery of alkalinity of lakes and streams was observed in all regions of Europe in the 1990s (Stoddard et al. 1999) except at many sites in central Europe where a significant delay in aquatic recovery from acidification (Alewell et al. 2000a) was observed. Recovery of water acidification can take decades, because of the release of previously stored sulphate from soils with a high storage capacity for sulphate continues leading to acidification of aquatic systems (Matzner 2004). Moreover, many of the European forest stands are experiencing changes due to the so-called “climate change” phenomenon. For example, significant changes in the climate at the Solling site with increased air temperature and precipitation have been recorded since the Solling project was established in 1966 (see Chap. 2). All these impacts on forest ecosystems constitute the basis for extensive research for which the most promising tool is the long-term monitoring of element budgets of representative ecosystems. This allows one to follow forest development under changing environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems: hypotheses revisited. BioScience 48:921–934

    Article  Google Scholar 

  • Ågren GI, Bosatta E (1988) Nitrogen saturation of terrestrial ecosystems. Environ Pollut 54:185–197

    Article  PubMed  Google Scholar 

  • Alewell C, Manderscheid B, Meesenburg H, Bittersohl J (2000a) Is acidification still an ecological threat? Nature 407:856–857

    Article  CAS  PubMed  Google Scholar 

  • Alewell C, Manderscheid B, Gerstberger P, Matzner E (2000b) Effects of reduced atmospheric deposition on soil solution chemistry and elemental contents of spruce needles in NE-Bavaria, Germany. J Plant Nutr Soil Sci 163:509–516

    Article  CAS  Google Scholar 

  • Alewell C (2001) Predicting reversibility of acidification: the European sulfur story. Water Air Soil Pollut 130:1271–1276

    Article  Google Scholar 

  • Benecke P (1984) Der Wasserumsatz eines Buchen- und eines Fichtenwaldökosystems im Hochsolling. Schr. Forstl. Fak. Univ. Göttingen u. Nieders. Forstl. Versuchsanst 77

    Google Scholar 

  • Berg B (2003) Sequestration rates for C and N in soil organic matter at four N-polluted temperate forest stands. In: Matzner E (ed) Biogeochemistry of forested Catchments in a Changing Environment, Ecological Studies 172. Springer Berlin, pp 361–376

    Google Scholar 

  • Berg B, McClaugherty C (2003) Plant litter. Springer, Berlin, Germany

    Google Scholar 

  • Blaser P, Klemedson JO (1987) Die Bedeutung von hohen Aluminiumgehalten für die Humusanreicherung in sauren Waldböden. Z Pflanzenern Bodenk 150:334–341

    Article  CAS  Google Scholar 

  • Borken W, Matzner E (2004) Nitrate leaching in forest soils: an analysis of long-term monitoring sites in Germany. J Plant Nutr Soil Sci 167:277–283

    Article  CAS  Google Scholar 

  • Bredemeier M, Blanck K, Xu YJ, Tietema A, Boxman AW, Emmett B, Moldan F, Gundersen P, Schleppi P, Wright RF (1998) Input-output budgets at the NITRES sites. For Ecol Manage 101:57–64

    Article  Google Scholar 

  • Bredemeier M, Matzner E, Ulrich B (1990) Internal and external proton load to forest soils in northern Germany. J Environ Qual 19:469–477

    Article  CAS  Google Scholar 

  • Cronan CS, Grigal DF (1995) Use of calcium/aluminum ratios as indicators of stress in forest ecosystems. J Environ Qual 24:209–226

    Article  CAS  Google Scholar 

  • de Vries W, Reinds GJ, Vel E (2003) Intensive monitoring of forest ecosystems in Europe 2: atmospheric deposition and its impacts on soil solution chemistry. For Ecol Manage 174:97–115

    Article  Google Scholar 

  • Dietze G, Ulrich B (1992) Aluminium speciation in acid soil water and ground water. In: Mathess G, Frimmel F, Hirsch P, Schulz HD, Usdowski HE (eds) Progress in hydrogeochemistry. Springer, Berlin, pp 269–281

    Google Scholar 

  • Dise NB, Wright RF (1995) Nitrogen leaching from European forests in relation to nitrogen deposition. For Ecol Manage 71:153–161

    Article  Google Scholar 

  • DVWK Deutscher Verband für Wasserwirtschaft und Kulturbau e.V. (1996) Ermittlung der Verdunstung von Land- und Wasserflächen. DVWK-Merkblätter zur Wasserwirtschaft 238

    Google Scholar 

  • Eichhorn J, Hüttermann A (1994) Humusdisintegration and N-mineralisation. In: Godbold DL, Hüttermann A (eds) Effects of acid rain on forest processes. Wiley, New York, USA, pp 129–162

    Google Scholar 

  • Eichhorn J (1995) Stickstoffsättigung und ihre Auswirkungen auf das Buchenwaldökosystem der Fallstudie Zierenberg. Ber Forschungszentrum Waldökosysteme A 124

    Google Scholar 

  • Eichhorn J, Hüttermann A (1999) Mechanisms of humus dynamics and nitrogen mobilisation. In: Rastin N, Bauhus J (eds) Going underground, ecological studies in forest soils. Research Signpost, Trivandrum, India, pp 239–277

    Google Scholar 

  • Fassbender HW, Ahrens E (1977) Laborvorschriften und Praktikumsanleitung: Zur chemischen Untersuchung von Vegetations-, Boden- und Wasserproben im Institut für Bodenkunde und Waldernährung der Universität Göttingen. Göttinger Bodenkundliche Berichte 47

    Google Scholar 

  • Ferrier RC, Jenkins A, Wright RF, Schöpp W, Barth H (2001) Assessment of recovery of European surface waters from acidification 1970–2000: an introduction to the Special Issue. Hydrol Earth Syst Sci 5:274–282

    Article  Google Scholar 

  • Fried R, Eichhorn J, Paar U (2001) Exploratory analysis and a stochastic model for humusdisintegration. Environ Monit Assess 68:273–295

    Article  CAS  PubMed  Google Scholar 

  • Glugla G (1969) Berechnungsverfahren zur Ermittlung des aktuellen Wassergehalts und Gravitationswasserabflusses im Boden. Albrecht-Thaer-Arch 13:371–376

    Google Scholar 

  • Godbold DL, Jentschke G (1998) Aluminum accumulation in root cell walls coincides with inhibition of root growth but not with inhibition of magnesium uptake in Norway spruce. Physiol Plant 102:553–560

    Article  CAS  Google Scholar 

  • Gundersen P, Emmett BA, Kjǿnaas OJ, Koopmans CJ, Tietema A (1998) Impact of nitrogen deposition on nitrogen cycling in forests: synthesis of NITREX data. For Ecol Manage 101:37–55

    Article  Google Scholar 

  • Haars A, Karazipour H, Zanker B, Hüttermann A (1989) Room-temperature curing adhesives based on lignin and phenoloxidases. In: Hemingway RW, Conner AH, Branhams SJ (eds) Adhesives from renewable resources. ACS-Symposium Series No 385. American Chemical Society, Washington DC, pp 126–134

    Google Scholar 

  • Högberg P, Jensén P (1994) Aluminium and uptake of base cations by tree roots: a critique of the model proposed by Sverdrup et al. Water Air Soil Pollut 75:121–125

    Article  Google Scholar 

  • Hörmann G (1997) SIMPEL – Ein einfaches, benutzerfreundliches Bodenwassermodell zum Einsatz in der Ausbildung. Dtsch Gewässerkundl Mitt 41:67–72

    Google Scholar 

  • Hörmann G (1998) SIMPEL – Speichermodelle zum Bodenwasserhaushalt. User reference, unpubl

    Google Scholar 

  • Hörmann G, Meesenburg H (2000) Die Erfassung und Modellierung des Wasserhaushaltes im Rahmen des Level II-Programmes in Deutschland. Forstarchiv 71:70–75

    Google Scholar 

  • Hörmann G, Schmidt J (1995) Dokumentation von Wasserhaushaltsmodellen. Ber Forschungsz Waldökosysteme B 42

    Google Scholar 

  • Hüttermann A, Haars A, Trojanowski J, Milstein O, Kharazipour A (1989) Enzymatic modification of lignin for its technical use – strategies and results. In: Glasser WG, Sarkanen S (eds) New polymeric materials from lignin. ACS-Symposium Series No 397. American Chemical Society, Washington DC, pp 361–371

    Google Scholar 

  • Jentschke G (1984) Untersuchungen zum biochemischen Mechanismus der Humusdisintegration – Versuch einer Falsifizierung. Ber d Forschz Waldökosysteme Göttingen 5:175–256

    Google Scholar 

  • Jacobsen C, Rademacher P, Meesenburg H, Meiwes KJ (2003) Gehalte und chemische Elemente in Baumkompartimenten – Literaturstudie und Datensammlung. Studie im Auftrage des BMELF, FZW Reihe B, Bd 69

    Google Scholar 

  • Jochheim H (1992) Raum/zeitliche Variabilität des chemischen Bodenzustandes in der Phase des Stickstoff-Vorratsabbaus. Abschlussbericht des Teilprojektes P 6.3.2.2 im BMFT-Projekt Stabilitätsbedingungen von Waldökosystemen. GH Kassel

    Google Scholar 

  • Kaiser K, Zech W (2000) Sorption of dissolved organic nitrogen by acid subsoil horizons and individual mineral phases. Eur J Soil Sci 51:403–411

    Article  CAS  Google Scholar 

  • Khanna PK, Prenzel J, Meiwes KJ, Ulrich B, Matzner E (1987) Dynamics of sulfate retention by acid forest soils in an acidic deposition environment. Soil Sci Soc Am J 51:446–452

    Article  CAS  Google Scholar 

  • König N, Fortmann H (1996a) Probenvorbereitungs-, Untersuchungs- und Elementbestimmungs-Methoden des Umweltanalytik-Labors der Niedersächsischen Forstlichen Versuchsanstalt und des Zentrallabors II des Forschungszentrums Waldökosysteme. Teil 1: Elementbestimmungsmethoden A-M. Ber Forschungszentrum Waldökosysteme B 46

    Google Scholar 

  • König N, Fortmann H (1996b) Probenvorbereitungs-, Untersuchungs- und Elementbestimmungs-Methoden des Umweltanalytik-Labors der Niedersächsischen Forstlichen Versuchsanstalt und des Zentrallabors II des Forschungszentrums Waldökosysteme. Teil 2: Elementbestimmungsmethoden N-Z und Sammelanhänge. Ber Forschungszentrum Waldökosysteme B 47

    Google Scholar 

  • König N, Fortmann H (1996c) Probenvorbereitungs-, Untersuchungs- und Elementbestimmungs-Methoden des Umweltanalytik-Labors der Niedersächsischen Forstlichen Versuchsanstalt und des Zentrallabors II des Forschungszentrums Waldökosysteme. Teil 3: Gerätekurzanleitungen und Gerätekurzanleitungen Datenverarbeitung. Ber Forschungszentrum Waldökosysteme B 48

    Google Scholar 

  • König N, Fortmann H (1996d) Probenvorbereitungs-, Untersuchungs- und Elementbestimmungs-Methoden des Umweltanalytik-Labors der Niedersächsischen Forstlichen Versuchsanstalt und des Zentrallabors II des Forschungszentrums Waldökosysteme. Teil 4: Probenvorbereitungs- und Untersuchungsmethoden, Qualitätskontrolle und Datenverarbeitung. Ber Forschungszentrum Waldökosysteme B 49

    Google Scholar 

  • Martinson L, Lamersdorf N, Warfvinge P (2005) The Solling roof revisited – slow recovery from acidification observed and modeled despite a decade of ‘clean-rain’ treatment. Environ Pollut 135:293–302

    Article  CAS  PubMed  Google Scholar 

  • Matzner E (1989) Acidic precipitation: case study Solling. In: Adriano DC, Havas M (eds) Advances in environmental science, acidic precipitations, Volume I Case studies. Springer, Berlin, pp 39–84

    Google Scholar 

  • Matzner E (2004) Biogeochemistry of forested catchments in a changing environment. Ecological Studies 172. Springer, Berlin

    Google Scholar 

  • Matzner E, Grosholz C (1997) Beziehung zwischen NO3-Austrägen, C/N Verhältnissen der Auflage und N-Einträgen in Fichtenwald (Picea abies Karst.)-Ökosystemen Mitteleuropas. Forstwissenschaftliches Centralblatt 116:39–44

    Article  Google Scholar 

  • Matzner E, Zuber T, Lischeid G (2004) Response of soil solution chemistry and solute fluxes to changing deposition rates. In: Matzner (ed) Biogeochemistry of forested catchments in a changing environment, Ecological Studies 172. pp 339–360

    Google Scholar 

  • MacDonald JA, Dise NB, Matzner E, Armbruster M, Gundersen P, Forsius M (2002) Nitrogen input together with ecosystem nitrogen enrichment predict nitrate leaching from European forests. Global Change Biol 8:1028–1033

    Article  Google Scholar 

  • McNulty SG, Aber JD, Boone RD (1991) Spatial changes in forest floor and foliar chemistry of spruce-fir forests across New England. Biogeochemistry 14:13–29

    Article  CAS  Google Scholar 

  • Meesenburg H, Meiwes KJ, Rademacher P (1995) Long term trends in atmospheric deposition and seepage output in northwest German forest ecosystems. Water Air Soil Pollut 85:611–616

    Article  CAS  Google Scholar 

  • Meesenburg H, Meiwes KJ, Schulze A, Rademacher P (1997) Bodendauerbeobachtungsflächen auf forstlich genutzten Böden (BDF-F). Arb-H Boden 2/1997:77–94

    Google Scholar 

  • Meiwes KJ, Khanna PK, Ulrich B (1980) Retention of sulphate by an acid brown earth and its relationship with the atmospheric input of sulphur to forest vegetation. Z Pflanzenernaehr Bodenkd 143:402–411

    Article  CAS  Google Scholar 

  • Meiwes KJ, Hauhs M, Gerke H, Asche N, Matzner E, Lamersdorf N (1984) Die Erfassung des Stoffkreislaufes in Waldökosystemen: Konzept und Methodik. Ber Forschungszentrum Waldökosysteme/Waldsterben 7:68–142

    Google Scholar 

  • Michalzik B, Kalbitz K, Park JH, Solinger S, Matzner E (2001) Fluxes and concentrations of dissolved organic carbon and nitrogen: a synthesis for temperate forests. Biogeochemistry 52:173–205

    Article  Google Scholar 

  • Montheith JL (1965) Evaporation and Environment. In: Fogg GE (ed) The state and movement of water in living organisms. Sypm Soc Experimental Biol 19. The University Press, Cambridge, pp 205–234

    Google Scholar 

  • Odum EP (1969) The strategy of ecosystem development. Science 164:262–370

    Article  CAS  PubMed  Google Scholar 

  • Odum EP (1983) Grundlagen der Ökologie. Georg Thieme, Stuttgart, Germany

    Google Scholar 

  • Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proc Roy Soc Lond A 193:120–145

    Article  CAS  Google Scholar 

  • Persson T, Wirén A (1993) Effects of experimental acidification on C and N mineralization in forest soils. Agric Ecosyst Environ 47:159–174

    Article  Google Scholar 

  • Prechtel A, Alewell C, Armbruster M, Bittersohl J, Cullen J, Evans C, Helliwell R, Kopacek J, Marchetto A, Matzner E, Meesenburg H, Moldan F, Moritz K, Vesely J, Wright RF (2001) Response of sulfur dynamics in European catchments to decreasing sulfate deposition. Hydrol Earth System Sci 5:311–325

    Article  Google Scholar 

  • Prenzel J (1983) A mechanism for storage and retrieval of acid in acid soils. In: Ulrich B, Pankrath J (eds) Effects of Accumulation of air pollutants in forest ecosystems. D. Reidel, Dordrecht, The Netherlands, pp 157–170

    Google Scholar 

  • Reuss JO, Johnson DW (1986) Acidic deposition and the acidification of soils and waters. Springer, New York

    Google Scholar 

  • Stoddard JL, Jeffries DS, Lükewille A, Clair TA, Dillon PJ, Driscoll CT, Forsius M, Johannessen M, Kahl JS, Kellogg JH, Kemp A, Mannio J, Monteith DT, Murdoch PS, Patrick S, Rebsdorf A, Skjelkvåle BL, Stainton MP, Traaen T, van Dam H, Webster KE, Wieting J, Wilander A (1999) Regional trends in aquatic recovery from acidification in North America and Europe. Nature 401:575–578

    Article  CAS  Google Scholar 

  • Sverdrup H, Warfvinge P (1992) A model for the impact of soil solution Ca:Al ratio, soil moisture and temperature on tree base cation uptake. Water Air Soil Pollut 61:365–383

    Article  CAS  Google Scholar 

  • Tamm CO (1991) Nitrogen in terrestrial ecosystems. Ecological Studies 81. Springer, Berlin

    Google Scholar 

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94

    Article  Google Scholar 

  • Tietema A, Beier C (1995) A correlative evaluation of nitrogen cycling in the forest ecosystems of the EC projects NITREX and EXMAN. For Ecol Manage 71:143–151

    Article  Google Scholar 

  • Tiktak A, van Grinsven HJM (1995) Review of sixteen forest-soil-atmosphere models. Ecol Model 83:35–53

    Article  CAS  Google Scholar 

  • Ulrich B, Mayer R, Khanna PK (1980) Chemical changes due to acid precipitation in a loess-derived soil in Central Europe. Soil Sci 130:193–199

    Article  CAS  Google Scholar 

  • Ulrich B (1981) Theoretische Betrachtung des Ionenkreislaufs in Waldökosystemen. Z Pflanzenernährung Bodenkunde 144:647–659

    Article  CAS  Google Scholar 

  • Ulrich B (1987) Stability, elasticity and resilience of terrestrial ecosystems with respect to matter balance. In: Schulze ED, Zwölfer H (eds) Ecological Studies 61. Springer, Berlin, pp 11–49

    Google Scholar 

  • Ulrich B (1992) Forest ecosystem theory based on material balance. Ecol Model 63:163–183

    Article  CAS  Google Scholar 

  • Ulrich B (1994a) Nutrient and acid/base budget of central European forest ecosystems. In: Godbold DL, Hüttermann A (eds) Effects of acid rain on forest processes. Wiley, New York, pp 1–43

    Google Scholar 

  • Ulrich B (1994b) Process hierarchy in forest ecosystems: an integrative Ecosystem theory. In: Godbold DL, Hüttermann A (eds) Effects of acid rain on forest processes. Wiley, New York, pp 343–398

    Google Scholar 

  • Wesselink LG, van Grinsven JJM, Grosskurth G (1994) Measuring and modeling mineral weathering in an acid forest soil, Solling, Germany. In: Bryant RB, Arnold RW (eds) Quantitative modeling of soil forming processes. Soil Science Society of America Special Publication Number 39, pp 91–110

    Google Scholar 

  • Wolff B, Riek W (1997a) Deutscher Waldbodenbericht 1996, Band 1. Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz, Bonn, Germany

    Google Scholar 

  • Wolff B, Riek W (1997b) Deutscher Waldbodenbericht 1996, Band 2. Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz, Bonn, Germany

    Google Scholar 

  • Wright RF, Alewell C, Cullen JM, Evans CD, Marchetto A, Moldan F, Prechtel A, Rogora M (2001) Trends in nitrogen deposition and leaching in acid-sensitive streams in Europe. Hydrol Earth System Sci 5:299–310

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Brumme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brumme, R. et al. (2009). Changes in Soil Solution Chemistry, Seepage Losses, and Input–Output Budgets at Three Beech Forests in Response to Atmospheric Depositions. In: Brumme, R., Khanna, P.K. (eds) Functioning and Management of European Beech Ecosystems. Ecological Studies, vol 208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b82392_17

Download citation

Publish with us

Policies and ethics