Protein Kinases Involved in Mitotic Spindle Checkpoint Regulation

  • Ingrid HoffmannEmail author
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 42)


A number of checkpoint controls function to preserve the genome by restraining cell cycle progression until prerequisite events have been properly completed. Chromosome attachment to the mitotic spindle is monitored by the spindle assembly checkpoint. Sister chromatid separation in anaphase is initiated only once all chromosomes have been attached to both poles of the spindle. Premature separation of sister chromatids leads to the loss or gain of chromosomes in daughter cells (aneuploidy), a prevalent form of genetic instability of human cancer. The spindle assembly checkpoint ensures that cells with misaligned chromosomes do not exit mitosis and divide to form aneuploid cells. A number of protein kinases and checkpoint phosphoproteins are required for the function of the spindle assembly checkpoint. This review discusses the recent progress in understanding the role of protein kinases of the mitotic checkpoint complex in the surveillance pathway of the checkpoint.


Spindle Assembly Checkpoint Mitotic Arrest Spindle Checkpoint Mitotic Checkpoint Checkpoint Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



I thank my coworkers Onur Cizmecioglu and Daniel Spengler for discussions and critical reading of the manuscript.


  1. 1.
    Abrieu A, Kahana JA, Wood KW, Cleveland DW (2000) CENP-E as an essential component of the mitotic checkpoint in vitro. Cell 102:817–826 PubMedCrossRefGoogle Scholar
  2. 2.
    Abrieu A, Magnaghi-Jaulin L, Kahana JA, Peter M, Castro A, Vigneron S, Lorca T, Cleveland DW, Labbe JC (2001) Mps1 is a kinetochore-associated kinase essential for the vertebrate mitotic checkpoint. Cell 106:83–93 PubMedCrossRefGoogle Scholar
  3. 3.
    Adams RR, Wheatley SP, Gouldsworthy AM, Kandels-Lewis SE, Carmena M, Smythe C, Gerloff DL, Earnshaw WC (2000) INCENP binds the Aurora-related kinase AIRK2 and is required to target it to chromosomes, the central spindle and cleavage furrow. Curr Biol 10:1075–1078 PubMedCrossRefGoogle Scholar
  4. 4.
    Andrews PD, Ovechkina Y, Morrice N, Wagenbach M, Duncan K, Wordeman L, Swedlow JR (2004) Aurora B regulates MCAK at the mitotic centromere. Dev Cell 6:253–268 PubMedCrossRefGoogle Scholar
  5. 5.
    Baker DJ, Jeganathan KB, Cameron JD, Thompson M, Juneja S, Kopecka A, Kumar R, Jenkins RB, de Groen PC, Roche P, van Deursen JM (2004) BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nat Genet 36:744–749 PubMedCrossRefGoogle Scholar
  6. 6.
    Bharadwaj R, Yu H (2004) The spindle checkpoint, aneuploidy, and cancer. Oncogene 23:2016–2027 PubMedCrossRefGoogle Scholar
  7. 7.
    Biggins S, Murray AW (2001) The budding yeast protein kinase Ipl1=Aurora allows the absence of tension to activate the spindle checkpoint. Genes Dev 15:3118–3129 PubMedCrossRefGoogle Scholar
  8. 8.
    Brady DM, Hardwick KG (2000) Complex formation between Mad1p, Bub1p and Bub3p is crucial for spindle checkpoint function. Curr Biol 10:675–678 PubMedCrossRefGoogle Scholar
  9. 9.
    Cahill DP, Lengauer C, Yu J, Riggins GJ, Willson JK, Markowitz SD, Kinzler KW, Vogelstein B (1998) Mutations of mitotic checkpoint genes in human cancers. Nature 392:300–303 PubMedCrossRefGoogle Scholar
  10. 10.
    Chan GK, Schaar BT, Yen TJ (1998) Characterization of the kinetochore binding domain of CENP-E reveals interactions with the kinetochore proteins CENP-F and hBUBR1. J Cell Biol 143:49–63 PubMedCrossRefGoogle Scholar
  11. 11.
    Chan GK, Jablonski SA, Sudakin V, Hittle JC, Yen TJ (1999) Human BUBR1 is a mitotic checkpoint kinase that monitors CENP-E functions at kinetochores and binds the cyclosome=APC. J Cell Biol 146:941–954 PubMedCrossRefGoogle Scholar
  12. 12.
    Chan GK, Jablonski SA, Starr DA, Goldberg ML, Yen TJ (2000) Human Zw10 and ROD are mitotic checkpoint proteins that bind to kinetochores. Nat Cell Biol 2:944–947 PubMedCrossRefGoogle Scholar
  13. 13.
    Chen RH (2002) BubR1 is essential for kinetochore localization of other spindle checkpoint proteins and its phosphorylation requires Mad1. J Cell Biol 158:487–496 PubMedCrossRefGoogle Scholar
  14. 14.
    Chen RH (2004) Phosphorylation and activation of Bub1 on unattached chromosomes facilitate the spindle checkpoint. EMBO J 23:3113–3121 PubMedCrossRefGoogle Scholar
  15. 15.
    Chen RH, Brady DM, Smith D, Murray AW, Hardwick KG (1999) The spindle checkpoint of budding yeast depends on a tight complex between the Mad1 and Mad2 proteins. Mol Biol Cell 10:2607–2618 PubMedGoogle Scholar
  16. 16.
    Chung E, Chen RH (2003) Phosphorylation of Cdc20 is required for its inhibition by the spindle checkpoint. Nat Cell Biol 5:748–753 PubMedCrossRefGoogle Scholar
  17. 17.
    Cooke CA, Heck MM, Earnshaw WC (1987) The inner centromere protein (INCENP) antigens: movement from inner centromere to midbody during mitosis. J Cell Biol 105:2053–2067 PubMedCrossRefGoogle Scholar
  18. 18.
    Dai W, Wang Q, Liu T, Swamy M, Fang Y, Xie S, Mahmood R, Yang YM, Xu M, Rao CV (2004) Slippage of mitotic arrest and enhanced tumor development in mice with BubR1 haploinsufficiency. Cancer Res 64:440–445 PubMedCrossRefGoogle Scholar
  19. 19.
    Delaval B, Ferrand A, Conte N, Larroque C, Hernandez-Verdun D, Prigent C, Birnbaum D (2004) Aurora B-TACC1 protein complex in cytokinesis. Oncogene 23:4516–4522 PubMedCrossRefGoogle Scholar
  20. 20.
    Ditchfield C, Johnson VL, Tighe A, Ellston R, Haworth C, Johnson T, Mortlock A, Keen N, Taylor SS (2003) Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. J Cell Biol 161:267–280 PubMedCrossRefGoogle Scholar
  21. 21.
    Dobles M, Liberal V, Scott ML, Benezra R, Sorger PK (2000) Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2. Cell 101:635–645 PubMedCrossRefGoogle Scholar
  22. 22.
    Fang G (2002) Checkpoint protein BubR1 acts synergistically with Mad2 to inhibit anaphase-promoting complex. Mol Biol Cell 13:755–766 PubMedCrossRefGoogle Scholar
  23. 23.
    Farr KA, Hoyt MA (1998) Bub1p kinase activates the Saccharomyces cerevisiae spindle assembly checkpoint. Mol Cell Biol 18:2738–2747 PubMedGoogle Scholar
  24. 24.
    Fischer MG, Heeger S, Hacker U, Lehner CF (2004) The mitotic arrest in response to hypoxia and of polar bodies during early embryogenesis requires Drosophila Mps1. Curr Biol 14:2019–2024 PubMedCrossRefGoogle Scholar
  25. 25.
    Francisco L, Chan CS (1994) Regulation of yeast chromosome segregation by Ipl1 protein kinase and type 1 protein phosphatase. Cell Mol Biol Res 40:207–213 Google Scholar
  26. 26.
    Gadea BB, Ruderman JV (2005) Aurora kinase inhibitor ZM447439 blocks chromosome-induced spindle assembly, the completion of chromosome condensation, and the establishment of the spindle integrity checkpoint in Xenopus egg extracts. Mol Biol Cell 16:1305–1318 PubMedCrossRefGoogle Scholar
  27. 27.
    Gorbsky GJ (2001) The mitotic spindle checkpoint. Curr Biol 11:R1001–1004 PubMedCrossRefGoogle Scholar
  28. 28.
    Gorbsky GJ, Chen RH, Murray AW (1998) Microinjection of antibody to Mad2 protein into mammalian cells in mitosis induces premature anaphase. J Cell Biol 141:1193–1205 PubMedCrossRefGoogle Scholar
  29. 29.
    Hanks S, Coleman K, Reid S, Plaja A, Firth H, Fitzpatrick D, Kidd A, Mehes K, Nash R, Robin N, Shannon N, Tolmie J, Swansbury J, Irrthum A, Douglas J, Rahman N (2004) Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat Genet 36:1159–1161 PubMedCrossRefGoogle Scholar
  30. 30.
    Hardwick KG, Weiss E, Luca FC, Winey M, Murray AW (1996) Activation of the budding yeast spindle assembly checkpoint without mitotic spindle disruption. Science 273:953–956 PubMedGoogle Scholar
  31. 31.
    Harper JW, Burton JL, Solomon MJ (2002) The anaphase-promoting complex: it's not just for mitosis any more. Genes Dev 16:2179–2206 PubMedCrossRefGoogle Scholar
  32. 32.
    Harrington EA, Bebbington D, Moore J, Rasmussen RK, Ajose-Adeogun AO, Nakayama T, Graham JA, Demur C, Hercend T, Diu-Hercend A, Su M, Golec JM, Miller KM (2004) VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat Med 10:262–267 PubMedCrossRefGoogle Scholar
  33. 33.
    Hauf S, Cole RW, LaTerra S, Zimmer C, Schnapp G, Walter R, Heckel A, van Meel J, Rieder CL, Peters JM (2003) The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J Cell Biol 161:281–294 PubMedCrossRefGoogle Scholar
  34. 34.
    Hoyt MA, Totis L, Roberts BT (1991) S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 66:507–517 PubMedCrossRefGoogle Scholar
  35. 35.
    Ikui AE, Furuya K, Yanagida M, Matsumoto T (2002) Control of localization of a spindle checkpoint protein, Mad2, in fission yeast. J Cell Sci 115:1603–1610 PubMedGoogle Scholar
  36. 36.
    Johnson VL, Scott MI, Holt SV, Hussein D, Taylor SS (2004) Bub1 is required for kinetochore localization of BubR1, Cenp-E, Cenp-F and Mad2, and chromosome congression. J Cell Sci 117:1577–1589 PubMedCrossRefGoogle Scholar
  37. 37.
    Kallio MJ, McCleland ML, Stukenberg PT, Gorbsky GJ (2002) Inhibition of aurora B kinase blocks chromosome segregation, overrides the spindle checkpoint, and perturbs microtubule dynamics in mitosis. Curr Biol 12:900–905 PubMedCrossRefGoogle Scholar
  38. 38.
    Keen N, Taylor S (2004) Aurora-kinase inhibitors as anticancer agents. Nat Rev Cancer 4:927–936 PubMedCrossRefGoogle Scholar
  39. 39.
    Kimura M, Matsuda Y, Yoshioka T, Okano Y (1999) Cell cycle-dependent expression and centrosome localization of a third human aurora=Ipl1-related protein kinase, AIK3. J Biol Chem 274:7334–7340 PubMedCrossRefGoogle Scholar
  40. 40.
    L'Allemain G (1994) Deciphering the MAP kinase pathway. Prog Growth Factor Res 5:291–334 PubMedCrossRefGoogle Scholar
  41. 41.
    Lengauer C, Wang Z (2004) From spindle checkpoint to cancer. Nat Genet 36:1144–1145 PubMedCrossRefGoogle Scholar
  42. 42.
    Lew DJ, Burke DJ (2003) The spindle assembly and spindle position checkpoints. Annu Rev Genet 37:251–282 PubMedCrossRefGoogle Scholar
  43. 43.
    Li R, Murray AW (1991) Feedback control of mitosis in budding yeast. Cell 66:519–531 PubMedCrossRefGoogle Scholar
  44. 44.
    Li X, Sakashita G, Matsuzaki H, Sugimoto K, Kimura K, Hanaoka F, Taniguchi H, Furukawa K, Urano T (2004) Direct association with inner centromere protein (INCENP) activates the novel chromosomal passenger protein, Aurora-C. J Biol Chem 279:47201–47211 PubMedCrossRefGoogle Scholar
  45. 45.
    Liu ST, Chan GK, Hittle JC, Fujii G, Lees E, Yen TJ (2003) Human MPS1 kinase is required for mitotic arrest induced by the loss of CENP-E from kinetochores. Mol Biol Cell 14:1638–1651 PubMedCrossRefGoogle Scholar
  46. 46.
    Mao Y, Abrieu A, Cleveland DW (2003) Activating and silencing the mitotic checkpoint through CENP-E-dependent activation=inactivation of BubR1. Cell 114:87–98 PubMedCrossRefGoogle Scholar
  47. 47.
    Meraldi P, Draviam VM, Sorger PK (2004a) Timing and checkpoints in the regulation of mitotic progression. Dev Cell 7:45–60 Google Scholar
  48. 48.
    Meraldi P, Honda R, Nigg EA (2004b) Aurora kinases link chromosome segregation and cell division to cancer susceptibility. Curr Opin Genet Dev 14:29–36 Google Scholar
  49. 49.
    Minoshima Y, Kawashima T, Hirose K, Tonozuka Y, Kawajiri A, Bao YC, Deng X, Tatsuka M, Narumiya S, May WS Jr, Nosaka T, Semba K, Inoue T, Satoh T, Inagaki M, Kitamura T (2003) Phosphorylation by aurora B converts MgcRacGAP to a RhoGAP during cytokinesis. Dev Cell 4:549–560 PubMedCrossRefGoogle Scholar
  50. 50.
    Murata-Hori M, Wang YL (2002) The kinase activity of aurora B is required for kinetochore-microtubule interactions during mitosis. Curr Biol 12:894–899 PubMedCrossRefGoogle Scholar
  51. 51.
    Nasmyth K (2002) Segregating sister genomes: the molecular biology of chromosome separation. Science 297:559–565 PubMedCrossRefGoogle Scholar
  52. 52.
    Peters JM (2002) The anaphase-promoting complex: proteolysis in mitosis and beyond. Mol Cell 9:931–943 PubMedCrossRefGoogle Scholar
  53. 53.
    Roberts BT, Farr KA, Hoyt MA (1994) The Saccharomyces cerevisiae checkpoint gene BUB1 encodes a novel protein kinase. Mol Cell Biol 14:8282–8291 PubMedGoogle Scholar
  54. 54.
    Romano A, Guse A, Krascenicova I, Schnabel H, Schnabel R, Glotzer M (2003) CSC-1: a subunit of the Aurora B kinase complex that binds to the survivin-like protein BIR-1 and the incenp-like protein ICP-1. J Cell Biol 161:229–236 PubMedCrossRefGoogle Scholar
  55. 55.
    Salic A, Waters JC, Mitchison TJ (2004) Vertebrate shugoshin links sister centromere cohesion and kinetochore microtubule stability in mitosis. Cell 118:567–578 PubMedCrossRefGoogle Scholar
  56. 56.
    Sasai K, Katayama H, Stenoien DL, Fujii S, Honda R, Kimura M, Okano Y, Tatsuka M, Suzuki F, Nigg EA, Earnshaw WC, Brinkley WR, Sen S (2004) Aurora-C kinase is a novel chromosomal passenger protein that can complement Aurora-B kinase function in mitotic cells. Cell Motil Cytoskel 59:249–263 Google Scholar
  57. 57.
    Sassoon I, Severin FF, Andrews PD, Taba MR, Kaplan KB, Ashford AJ, Stark MJ, Sorger PK, Hyman AA (1999) Regulation of Saccharomyces cerevisiae kinetochores by the type 1 phosphatase Glc7p. Genes Dev 13:545–555 PubMedGoogle Scholar
  58. 58.
    Sato M, Sekido Y, Horio Y, Takahashi M, Saito H, Minna JD, Shimokata K, Hasegawa Y (2000) Infrequent mutation of the hBUB1 and hBUBR1 genes in human lung cancer. Jpn J Cancer Res 91:504–509 PubMedGoogle Scholar
  59. 59.
    Schwab MS, Roberts BT, Gross SD, Tunquist BJ, Taieb FE, Lewellyn AL, Maller JL (2001) Bub1 is activated by the protein kinase p90Rsk during Xenopus oocyte maturation. Curr Biol 11:141–150 PubMedCrossRefGoogle Scholar
  60. 60.
    Scrittori L, Skoufias DA, Hans F, Gerson V, Sassone-Corsi P, Dimitrov S, Margolis RL (2005) A small C-terminal sequence of Aurora B is responsible for localization and function. Mol Biol Cell 16:292–305 PubMedCrossRefGoogle Scholar
  61. 61.
    Sen S, Zhou H, Zhang RD, Yoon DS, Vakar-Lopez F, Ito S, Jiang F, Johnston D, Grossman HB, Ruifrok AC, Katz RL, Brinkley W, Czerniak B (2002) Amplification=overexpression of a mitotic kinase gene in human bladder cancer. J Natl Cancer Inst 94:1320–1329 PubMedGoogle Scholar
  62. 62.
    Shah JV, Cleveland DW (2000) Waiting for anaphase: Mad2 and the spindle assembly checkpoint. Cell 103:997–1000 PubMedCrossRefGoogle Scholar
  63. 63.
    Shannon KB, Canman JC, Salmon ED (2002) Mad2 and BubR1 function in a single checkpoint pathway that responds to a loss of tension. Mol Biol Cell 13:3706–3719 PubMedCrossRefGoogle Scholar
  64. 64.
    Shapiro PS, Vaisberg E, Hunt AJ, Tolwinski NS, Whalen AM, McIntosh JR, Ahn NG (1998) Activation of the MKK=ERK pathway during somatic cell mitosis: direct interactions of active ERK with kinetochores and regulation of the mitotic 3F3=2 phosphoantigen. J Cell Biol 142:1533–1545 PubMedCrossRefGoogle Scholar
  65. 65.
    Sharp-Baker H, Chen RH (2001) Spindle checkpoint protein Bub1 is required for kinetochore localization of Mad1, Mad2, Bub3, and CENP-E, independently of its kinase activity. J Cell Biol 153:1239–1250 PubMedCrossRefGoogle Scholar
  66. 66.
    Shin HJ, Baek KH, Jeon AH, Park MT, Lee SJ, Kang CM, Lee HS, Yoo SH, Chung DH, Sung YC, McKeon F, Lee CW (2003) Dual roles of human BubR1, a mitotic checkpoint kinase, in the monitoring of chromosomal instability. Cancer Cell 4:483–497 PubMedCrossRefGoogle Scholar
  67. 67.
    Stucke VM, Sillje HH, Arnaud L, Nigg EA (2002) Human Mps1 kinase is required for the spindle assembly checkpoint but not for centrosome duplication. EMBO J 21:1723–1732 PubMedCrossRefGoogle Scholar
  68. 68.
    Sudakin V, Chan GK, Yen TJ (2001) Checkpoint inhibition of the APC=C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J Cell Biol 154:925–936 PubMedCrossRefGoogle Scholar
  69. 69.
    Tanaka TU, Rachidi N, Janke C, Pereira G, Galova M, Schiebel E, Stark MJ, Nasmyth K (2002) Evidence that the Ipl1-Sli15 (Aurora kinase-INCENP) complex promotes chromosome bi-orientation by altering kinetochore-spindle pole connections. Cell 108:317–329 PubMedCrossRefGoogle Scholar
  70. 70.
    Tang Z, Bharadwaj R, Li B, Yu H (2001) Mad2-Independent inhibition of APCCdc20 by the mitotic checkpoint protein BubR1. Dev Cell 1:227–237 PubMedCrossRefGoogle Scholar
  71. 71.
    Tang Z, Shu H, Oncel D, Chen S, Yu H (2004) Phosphorylation of Cdc20 by Bub1 provides a catalytic mechanism for APC=C inhibition by the spindle checkpoint. Mol Cell 16:387–397 PubMedCrossRefGoogle Scholar
  72. 72.
    Tatsuka M, Katayama H, Ota T, Tanaka T, Odashima S, Suzuki F, Terada Y (1998) Multinuclearity and increased ploidy caused by overexpression of the aurora- and Ipl1-like midbody-associated protein mitotic kinase in human cancer cells. Cancer Res 58:4811–4816 PubMedGoogle Scholar
  73. 73.
    Taylor SS, Ha E, McKeon F (1998) The human homologue of Bub3 is required for kinetochore localization of Bub1 and a Mad3=Bub1-related protein kinase. J Cell Biol 142:1–11 PubMedCrossRefGoogle Scholar
  74. 74.
    Vigneron S, Prieto S, Bernis C, Labbe JC, Castro A, Lorca T (2004) Kinetochore localization of spindle checkpoint proteins: who controls whom? Mol Biol Cell 15:4584–4596 PubMedCrossRefGoogle Scholar
  75. 75.
    Warner SL, Bearss DJ, Han H, Von Hoff DD (2003) Targeting Aurora-2 kinase in cancer. Mol Cancer Ther 2:589–595 PubMedGoogle Scholar
  76. 76.
    Wassmann K, Liberal V, Benezra R (2003) Mad2 phosphorylation regulates its association with Mad1 and the APC=C. EMBO J 22:797–806 PubMedCrossRefGoogle Scholar
  77. 77.
    Weiss E, Winey M (1996) The Saccharomyces cerevisiae spindle pole body duplication gene MPS1 is part of a mitotic checkpoint. J Cell Biol 132:111–123 PubMedCrossRefGoogle Scholar
  78. 78.
    Winey M, Goetsch L, Baum P, Byers B (1991) MPS1 and MPS2: novel yeast genes defining distinct steps of spindle pole body duplication. J Cell Biol 114:745–754 PubMedCrossRefGoogle Scholar
  79. 79.
    Yamaguchi S, Decottignies A, Nurse P (2003) Function of Cdc2p-dependent Bub1p phosphorylation and Bub1p kinase activity in the mitotic and meiotic spindle checkpoint. EMBO J 22:1075–1087 PubMedCrossRefGoogle Scholar
  80. 80.
    Yao X, Abrieu A, Zheng Y, Sullivan KF, Cleveland DW (2000) CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint. Nat Cell Biol 2:484–491 PubMedCrossRefGoogle Scholar
  81. 81.
    Yu H (2002) Regulation of APC-Cdc20 by the spindle checkpoint. Curr Opin Cell Biol 14:706–714 PubMedCrossRefGoogle Scholar
  82. 82.
    Zecevic M, Catling AD, Eblen ST, Renzi L, Hittle JC, Yen TJ, Gorbsky GJ, Weber MJ (1998) Active MAP kinase in mitosis: localization at kinetochores and association with the motor protein CENP-E. J Cell Biol 142:1547–1558 PubMedCrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Cell Cycle Control and Carcinogenesis (F045)German Cancer Research Center (DKFZ)HeidelbergGermany

Personalised recommendations