Skip to main content

A modular systems biology analysis of cell cycle entrance into S-phase

  • Chapter
  • First Online:
Systems Biology

Part of the book series: Topics in Current Genetics ((TCG,volume 13))

Abstract

A modular systems biology approach to the study of the cell cycle of the budding yeast Saccharomyces cerevisiae is presented. Literature on the structure of yeast population and its relevance to the study of yeast cell cycle is reviewed. A model for the control of yeast cell cycle, with emphasis on a threshold mechanism controlling entrance into S-phase is presented. The simple model has been used as a framework to derive a molecular blow-up of the major upstream events controlling the G1 to S transition that involves two sequential thresholds cooperating in carbon source modulation of the critical cell size required to enter S-phase, a hallmark response of the cell cycle to changing growth conditions. The model is discussed as an aid to filter and give structure to post-genomic data. The iterative application of this approach allows to obtain more refined models capturing the major regulatory features and the molecular details of the circuits connecting cell growth to cell cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Alberghina L, Martegani E, Mariani L, Bortolan G (1983) A bimolecular mechanism for the cell size control of the cell cycle. Biosystems 16:297-305

    Article  PubMed  Google Scholar 

  • 2. Alberghina L, Porro D (1993) Quantitative flow cytometry: analysis of protein distributions in budding yeast. A mini-review. Yeast 9:815-823

    Article  PubMed  Google Scholar 

  • 3. Alberghina L, Porro D, Cazzador L (2001) Towards a blueprint of the cell cycle. Oncogene 20:1128-1134

    Article  PubMed  Google Scholar 

  • 4. Alberghina L, Rossi RL, Querin L, Wanke V, Vanoni M (2004) A cell sizer network involving Cln3 and Far1 controls entrance into S-phase in the mitotic cycle of budding yeast. J Cell Biol 167:433-443

    Article  PubMed  Google Scholar 

  • 5. Alberghina L, Smeraldi C, Ranzi BM, Porro D (1998) Control by nutrients of growth and cell cycle progression in budding yeast, analyzed by double-tag flow cytometry. J Bacteriol 180:3864-3872

    PubMed  Google Scholar 

  • 6. Barberis M, DeGioia L, Ruzzene M, Sarno S, Marin O, Coccetti P, Fantucci P, Vanoni M, Alberghina L (2005) Ck2 phosphorylation regulates inhibitory activity of the yeast cyclin dependent kinase inhibitor Sic1. Biochem J Immediate Publication, doi:10.1042/BJ20041299

    Google Scholar 

  • 7. Barr MM (2003) Super models. Physiol Genomics 13:15-24

    PubMed  Google Scholar 

  • 8. Begley TJ, Rosenbach AS, Ideker T, Samson LD (2002) Damage recovery pathways in Saccharomyces cerevisiae revealed by genomic phenotyping and interactome mapping. Mol Cancer Res 1:103-112

    PubMed  Google Scholar 

  • 9. Besson A, Gurian-West M, Schmidt A, Hall A, Roberts JM (2004) p27Kip1 modulates cell migration through the regulation of RhoA activation. Genes Dev MISSING DETAILS?

    Google Scholar 

  • 10. Bugrim A, Nikolskaya T, Nikolsky Y (2004) Early prediction of drug metabolism and toxicity: systems biology approach and modeling. Drug Discov Today 9:127-135

    Article  PubMed  Google Scholar 

  • 11. Carter BL, Jagadish MN (1978) The relationship between cell size and cell division in the yeast Saccharomyces cerevisiae. Exp Cell Res 112:15-24

    Article  PubMed  Google Scholar 

  • 12. Castrillo JI, Oliver SG (2004) Yeast as a touchstone in post-genomic research: strategies for integrative analysis in functional genomics. J Biochem Mol Biol 37:93-106

    PubMed  Google Scholar 

  • 13. Chang F, Herskowitz I (1990) Identification of a gene necessary for cell cycle arrest by a negative growth factor of yeast: FAR1 is an inhibitor of a G1 cyclin, CLN2. Cell 63:999-1011

    Article  PubMed  Google Scholar 

  • 14. Chen KC, Csikasz-Nagy A, Gyorffy B, Val J, Novak B, Tyson JJ (2000) Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol Biol Cell 11:369-391

    PubMed  Google Scholar 

  • 15. Chen KC, Calzone L, Csikasz-Nagy A, Cross FR, Novak B, Tyson JJ (2004) Integrative analysis of cell cycle control in budding yeast. Mol Biol Cell 15:3841-3862

    Article  PubMed  Google Scholar 

  • 16. Conzelmann H, Saez-Rodriguez J, Sauter T, Bullinger E, Allgower F, Gilles ED (2004) Reduction of mathematical models of signal transduction networks: simulation-based approach applied to EGF receptor signalling. J Syst Biol 1:159-169

    Article  Google Scholar 

  • 17. Coqueret O (2003) New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol 13:65-70

    Article  PubMed  Google Scholar 

  • 18. Deane CM, Salwinski L, Xenarios I, Eisenberg D (2002) Protein interactions: two methods for assessment of the reliability of high throughput observations. Mol Cell Proteomics 1:349-356

    Article  PubMed  Google Scholar 

  • 19. DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680-686

    Article  PubMed  Google Scholar 

  • 20. Elion EA (2000) Pheromone response, mating and cell biology. Curr Opin Microbiol 3:573-581

    Article  PubMed  Google Scholar 

  • 21. Fu X, Ng C, Feng D, Liang C (2003) Cdc48p is required for the cell cycle commitment point at Start via degradation of the G1-CDK inhibitor Far1p. J Cell Biol 163:21-26

    Article  PubMed  Google Scholar 

  • 22. Futcher B (1996) Cyclins and the wiring of the yeast cell cycle. Yeast 12:1635-1646

    Article  PubMed  Google Scholar 

  • 23. Gallego C, Gari E, Colomina N, Herrero E, Aldea M (1997) The Cln3 cyclin is down-regulated by translational repression and degradation during the G1 arrest caused by nitrogen deprivation in budding yeast. EMBO J 16:7196-7206

    Article  PubMed  Google Scholar 

  • 24. Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141-147

    Article  PubMed  Google Scholar 

  • 25. Hall DD, Markwardt DD, Parviz F, Heideman W (1998) Regulation of the Cln3-Cdc28 kinase by cAMP in Saccharomyces cerevisiae. EMBO J 17:4370-4378

    Article  PubMed  Google Scholar 

  • 26. Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402:C47-C52

    Article  PubMed  Google Scholar 

  • 27. Hartwell LH, Unger MW (1977) Unequal division in Saccharomyces cerevisiae and its implications for the control of cell division. J Cell Biol 75:422-435

    Article  PubMed  Google Scholar 

  • 28. Henry CM (2003) Systems Biology. Chem Eng News 81:45-55

    Google Scholar 

  • 29. Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, Bennett K, Boutilier K, Yang L, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jespersen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Sorensen BD, Matthiesen J, Hendrickson RC, Gleeson F, Pawson T, Moran MF, Durocher D, Mann M, Hogue CW, Figeys D, Tyers M (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415:180-183

    Article  PubMed  Google Scholar 

  • 30. Hubler L, Bradshaw-Rouse J, Heideman W (1993) Connections between the Ras-cyclic AMP pathway and G1 cyclin expression in the budding yeast Saccharomyces cerevisiae. Mol Cell Biol 13:6274-6282

    PubMed  Google Scholar 

  • 31. Ingolia NT Murray AW(2004) The ups and downs of modeling the cell cycle. Curr Biol 14:R771-R777

    Article  PubMed  Google Scholar 

  • 32. Ito T, Ota K, Kubota H, Yamaguchi Y, Chiba T, Sakuraba K, Yoshida M (2002) Roles for the two-hybrid system in exploration of the yeast protein interactome. Mol Cell Proteomics 1:561-566

    Article  PubMed  Google Scholar 

  • 33. Iyer VR, Horak CE, Scafe CS, Botstein D, Snyder M, Brown PO (2001) Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409:533-538

    Article  PubMed  Google Scholar 

  • 34. Jeoung DI, Oehlen LJ, Cross FR (1998) Cln3-associated kinase activity in Saccharomyces cerevisiae is regulated by the mating factor pathway. Mol Cell Biol 18:433-441

    PubMed  Google Scholar 

  • 35. Jorgensen P, Nishikawa JL, Breitkreutz BJ, Tyers M (2002) Systematic identification of pathways that couple cell growth and division in yeast. Science 297:395-400

    Article  PubMed  Google Scholar 

  • 36. Jorgensen P, Tyers M (2004) How cells coordinate growth and division. Curr Biol 14:R1014-1027

    Article  PubMed  Google Scholar 

  • 37. Kahn D, Westerhoff HV (1991) Control theory of regulatory cascades. J Theor Biol 153:255-85

    PubMed  Google Scholar 

  • 38. Kitano H (2002a) Looking beyond the details: a rise in system-oriented approaches in genetics and molecular biology. Curr Genet 41:1-10

    Article  PubMed  Google Scholar 

  • 39. Kitano H (2002b) Systems biology: a brief overview. Science 295:1662-1664

    Article  PubMed  Google Scholar 

  • 40. Kitano H (2004a) Biological robustness. Nat Rev Genet 5: 826-837

    Article  PubMed  Google Scholar 

  • 41. Kitano H (2004b) Cancer as a robust system: implications for anticancer therapy. Nat Rev Cancer 4:227-235

    Article  PubMed  Google Scholar 

  • 42. Lee MG, Nurse P (1987) Cell cycle genes of the fission yeast. Sci Prog 71:1-14

    PubMed  Google Scholar 

  • 43. Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne JB, Volkert TL, Fraenkel E, Gifford DK, Young RA (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298:799-804

    Article  PubMed  Google Scholar 

  • 44. Li F, Long T, Lu Y, Ouyang Q, Tang C (2004) The yeast cell-cycle network is robustly designed. Proc Natl Acad Sci USA 101:4781-4786

    Article  PubMed  Google Scholar 

  • 45. Lord PG, Wheals AE (1980) Asymmetrical division of Saccharomyces cerevisiae. J Bacteriol 142:808-818

    PubMed  Google Scholar 

  • 46. Martegani E, Vanoni M, Delia D (1984) A computer algorithm for the analysis of protein distribution in budding yeast. Cytometry 5:81-85

    Article  PubMed  Google Scholar 

  • 47. Mendenhall MD (1993) An inhibitor of p34CDC28 protein kinase activity from Saccharomyces cerevisiae. Science 259:216-219

    PubMed  Google Scholar 

  • 48. Mendenhall MD, Hodge AE (1998) Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 62:1191-1243

    PubMed  Google Scholar 

  • 49. Morgan DO (1995) Principles of CDK regulation. Nature 374:131-134

    Article  PubMed  Google Scholar 

  • 50. Morohashi M, Winn AE, Borisuk MT, Bolouri H, Doyle J, Kitano H (2002) Robustness as a measure of plausibility in models of biochemical networks. J Theor Biol 216:19-30

    Article  PubMed  Google Scholar 

  • 51. Murray AW (2004) Recycling the cell cycle: cyclins revisited. Cell 116:221-234

    Article  PubMed  Google Scholar 

  • 52. Newcomb LL, Diderich JA, Slattery MG, Heideman W (2003) Glucose regulation of Saccharomyces cerevisiae cell cycle genes. Eukaryot Cell 2:143-149

    Article  PubMed  Google Scholar 

  • 53. Nise NS (2004) Control Systems Engineering, 4th edn. John Wiley & Son, Inc.

    Google Scholar 

  • 54. Nurse P (2000) The incredible life and times of biological cells. Science 289:1711-1716

    Article  PubMed  Google Scholar 

  • 55. Nurse P (2003) Systems biology: understanding cells. Nature 424:883

    Article  PubMed  Google Scholar 

  • 56. Obaya AJ, Sedivy JM (2002) Regulation of cyclin-Cdk activity in mammalian cells. Cell Mol Life Sci 59:126-142

    Article  PubMed  Google Scholar 

  • 57. Peter M, Gartner A, Horecka J, Ammerer G, Herskowitz I (1993) FAR1 links the signal transduction pathway to the cell cycle machinery in yeast. Cell 73:747-760

    Article  PubMed  Google Scholar 

  • 58. Peter M, Herskowitz I (1994) Direct inhibition of the yeast cyclin-dependent kinase Cdc28-Cln by Far1. Science 265:1228-1231

    PubMed  Google Scholar 

  • 59. Porro D, Brambilla L, Alberghina L (2003) Glucose metabolism and cell size in continuous cultures of Saccharomyces cerevisiae. FEMS Microbiol Lett 229:165-171

    Article  PubMed  Google Scholar 

  • 60. Porro D, Ranzi BM, Smeraldi C, Martegani E, Alberghina L (1995) A double flow cytometric tag allows tracking of the dynamics of cell cycle progression of newborn Saccharomyces cerevisiae cells during balanced exponential growth. Yeast 11:1157-1169

    Article  PubMed  Google Scholar 

  • 61. Ranzi BM, Compagno C, Martegani E (1986) Analysis of protein and cell volume distribution in glucose-limited continuous cultures of budding yeast. Biotechnol Bioeng 28:185-190

    Article  Google Scholar 

  • 62. Rossell S, van der Weijden CC, Kruckeberg A, Bakker BM, Westerhoff HV (2002) Loss of fermentative capacity in baker's yeast can partly be explained by reduced glucose uptake capacity. Mol Biol Rep 29:255-257

    Article  PubMed  Google Scholar 

  • 63. Rupes I (2002) Checking cell size in yeast. Trends Genet 18:479-485

    Article  PubMed  Google Scholar 

  • 64. Russell RB (2002) Genomics, proteomics and bioinformatics: all in the same boat. Genome Biol 3:REPORTS4034

    Article  PubMed  Google Scholar 

  • 65. Russo AA, Jeffrey PD, Patten AK, Massague J, Pavletich NP (1996) Crystal structure of the p27Kip1 cyclin-dependent-kinase inhibitor bound to the cyclin A-Cdk2 complex. Nature 382:325-331

    Article  PubMed  Google Scholar 

  • 66. Sauro HM, Hucka M, Finney A, Wellock C, Bolouri H, Doyle J, Kitano H (2003) Next generation simulation tools: the Systems Biology Workbench and BioSPICE integration. Omics 7:355-372

    Article  PubMed  Google Scholar 

  • 67. Schneider BL, Zhang J, Markwardt J, Tokiwa G, Volpe T, Honey S, Futcher B (2004) Growth rate and cell size modulate the synthesis of, and requirement for, G1-phase cyclins at start. Mol Cell Biol 24:10802-10813

    Article  PubMed  Google Scholar 

  • 68. Schuster S, Kahn D, Westerhoff HV (1993) Modular analysis of the control of complex metabolic pathways. Biophys Chem 48:1-17

    Article  PubMed  Google Scholar 

  • 69. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9:3273-3297

    PubMed  Google Scholar 

  • 70. Stelling J, Sauer U, Szallasi Z, Doyle FJ 3rd, Doyle J (2004) Robustness of cellular functions. Cell 118: 675-685

    Article  PubMed  Google Scholar 

  • 71. Tapon N, Moberg KH, Hariharan IK (2001) The coupling of cell growth to the cell cycle. Curr Opin Cell Biol 13:731-737

    Article  PubMed  Google Scholar 

  • 72. Tyson CB, Lord PG, Wheals AE (1979) Dependency of size of Saccharomyces cerevisiae cells on growth rate. J Bacteriol 138:92-98

    PubMed  Google Scholar 

  • 73. Tyson JJ (1989) Effects of asymmetric division on a stochastic model of the cell division cycle. Math Biosci 96:165-184

    Article  PubMed  Google Scholar 

  • 74. Tyson JJ, Chen KC, Novak B (2003) Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15:221-231

    Article  PubMed  Google Scholar 

  • 75. Tyers M, Tokiwa G, Futcher B (1993) Comparison of the Saccharomyces cerevisiae G1 cyclins: Cln3 may be an upstream activator of Cln1, Cln2 and other cyclins. EMBO J 12:1955-1968

    PubMed  Google Scholar 

  • 76. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623-627

    Article  PubMed  Google Scholar 

  • 77. Valtz N, Peter M, Herskowitz I (1995) FAR1 is required for oriented polarization of yeast cells in response to mating pheromones. J Cell Biol 131:863-873

    Article  PubMed  Google Scholar 

  • 78. Vander Heiden MG, Plas DR, Rathmell JC, Fox CJ, Harris MH, Thompson CB (2001) Growth factors can influence cell growth and survival through effects on glucose metabolism. Mol Cell Biol 21:5899-5912

    Article  PubMed  Google Scholar 

  • 79. Vanoni M, Vai M, Popolo L, Alberghina L (1983) Structural heterogeneity in populations of the budding yeast Saccharomyces cerevisiae. J Bacteriol 156:1282-1291

    PubMed  Google Scholar 

  • 80. Vermeulen K, Van Bockstaele DR, Berneman ZN (2003) The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif 36:131-149

    Article  PubMed  Google Scholar 

  • 81. Wells WA (2002) Does size matter? J Cell Biol 158:1156-1159

    Article  PubMed  Google Scholar 

  • 82. Werner T (2004) Proteomics and regulomics: the yin and yang of functional genomics. Mass Spectrom Rev 23:25-33

    Article  PubMed  Google Scholar 

  • 83. Werner T, Fessele S, Maier H, Nelson PJ (2003) Computer modeling of promoter organization as a tool to study transcriptional coregulation. FASEB J 17:1228-1237

    Article  PubMed  Google Scholar 

  • 84. Westerhoff HV Palsson BO (2004) The evolution of molecular biology into systems biology. Nat Biotechnol 22:1249-1252

    Article  PubMed  Google Scholar 

  • 85. Vidal M (2001) A biological atlas of functional maps. Cell 104:333-339

    Article  PubMed  Google Scholar 

  • 86. Wiley HS, Shvartsman SY, Lauffenburger DA (2003) Computational modeling of the EGF-receptor system: a paradigm for systems biology. Trends Cell Biol 13:43-50

    Article  PubMed  Google Scholar 

  • 87. Willett JD (2002) Genomics, proteomics: What's next? Pharmacogenomics 3:727-728

    Article  PubMed  Google Scholar 

  • 88. Woldringh CL, Huls PG, Vischer NO (1993) Volume growth of daughter and parent cells during the cell cycle of Saccharomyces cerevisiae a/alpha as determined by image cytometry. J Bacteriol 175:3174-3181

    PubMed  Google Scholar 

  • 89. Yarmush ML, Banta S (2003) Metabolic engineering: advances in modeling and intervention in health and disease. Annu Rev Biomed Eng 5:349-381

    Article  PubMed  Google Scholar 

  • 90. Yi TM, Kitano H, Simon MI (2003) A quantitative characterization of the yeast heterotrimeric G protein cycle. Proc Natl Acad Sci USA 100:10764-10769

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lilia Alberghina .

Editor information

Lila Alberghina H.V. Westerhoff

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Alberghina, L., Rossi, R.L., Porro, D., Vanoni, M. A modular systems biology analysis of cell cycle entrance into S-phase. In: Alberghina, L., Westerhoff, H. (eds) Systems Biology. Topics in Current Genetics, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b138746

Download citation

Publish with us

Policies and ethics