Skip to main content

Modeling the E. coli cell: The need for computing, cooperation, and consortia

  • Chapter
  • First Online:
Systems Biology

Part of the book series: Topics in Current Genetics ((TCG,volume 13))

Abstract

Escherichia coli K-12 is an ideal test bed for pushing forward the limits of our ability to understand cellular systems through computational modeling. A complete understanding will require arrays of mathematical models, a wealth of data from measurements of various life processes, and readily accessible databases that can be interrogated for testing our understanding. Accomplishing this will require improved approaches for mathematical modeling, unprecedented standardization for experimentation and data collection, completeness of data sets, and improved methods of accessing and linking information. Solving the whole cell problem, even for a simple E. coli model cell, will require the concerted efforts of many scientists with different expertise. In this chapter, we review advances in (i) computing for modeling cells, (ii) creating a common language for representing computational models (the Systems Biology Markup Language), and (iii) developing the International E. coli Alliance, which has been created to tackle the whole cell problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Achard F, Vaysseix G, Barillot E (2001) XML, bioinformatics and data integration. Bioinformatics 17:115-125

    Article  PubMed  Google Scholar 

  • 2. Allen NN, Calzone L, Chen KC, Ciliberto A, Ramakrishnan N, Shaffer CA, Sible JC, Tyson JJ, Vass MT, Watson LT, Zwolak JW (2003) Modeling regulatory networks at Virginia Tech. OMICS 7:285-299

    Article  PubMed  Google Scholar 

  • 3. Alm E, Arkin AP (2003) Biological networks. Curr Opin Struct Biol 13:193-202

    Article  PubMed  Google Scholar 

  • 4. Arkin AP (2001) Simulac and deduce. http://gobi.lbl.gov/ aparkin/Stuff/Software.html.

    Google Scholar 

  • 5. Augen J (2001) Information technology to the rescue! Nat Biotechnol 19:BE39-BE40

    Google Scholar 

  • 6. Baba T, Ara T, Okumura Y, Hasegawa M, Takai Y, Baba M, Oshima T, Datsenko KA, Tomita M, Wanner BL, Mori H (2005) Systematic construction of single gene deletions mutants in Escherichia coli K-12, submitted

    Google Scholar 

  • 7. Bailey JE (1998) Mathematical modeling and analysis in biochemical engineering: Past accomplishments and future opportunities. Biotechnol Prog 14:8-20

    Article  PubMed  Google Scholar 

  • 8. Bialek W, Botstein D (2004) Introductory science and mathematics education for 21st-century biologists. Science 303:788-790

    Article  PubMed  Google Scholar 

  • 9. Blattner FR, Plunkett G III, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453-1462

    Article  PubMed  Google Scholar 

  • 10. Bosak J, Bray T (1999) XML and the second-generation web. Sci Am May

    Google Scholar 

  • 11. Bower JM, Bolouri H (2001a) Computational modeling of genetic and biochemical networks. MIT Press, Cambridge, Mass

    Google Scholar 

  • 12. Bower JM, Bolouri H (2001b) Introduction: understanding living systems. In: Bower, James M and Bolouri H (eds) Computational modeling of genetic and biochemical networks. MIT Press, Cambridge, Mass., p xiii-xx

    Google Scholar 

  • 13. Bray T, Paoli J, Sperberg-McQueen CM, Maler E (2000) Extensible markup language (XML) 1.0 Second Edition: http://www.w3.org/TR/1998/REC-xml-19980210

    Google Scholar 

  • 14. Brown CT, Rust AG, Clarke PJC, Pan Z, Schilstra MJ, De Buysscher T, Griffin G, Wold BJ, Cameron RA, Davidson EH, Bolouri H (2002) New computational approaches for analysis of cis-regulatory networks. Dev Biol 246:86-102

    Article  PubMed  Google Scholar 

  • 15. Burns JA (1971) Studies on complex enzyme systems. University of Edinburgh

    Google Scholar 

  • 16. Butler D (1999) Computing 2010: from black holes to biology. Nature 402:C67-C70

    Article  PubMed  Google Scholar 

  • 17. Capra F (1996) The Web of Life: A new scientific understanding of living systems. Anchor Books, New York

    Google Scholar 

  • 18. Chance B (1960) Analogue and digital representations of enzyme kinetics. J Biol Chem 235:2440-2443

    PubMed  Google Scholar 

  • 19. Chance B (1943) The kinetics of the enzyme-substrate compound of peroxidase. J Biol Chem 151:553-577

    Google Scholar 

  • 20. Chance B, Brainerd JG, Cajori FA, Millikan GA (1940) The kinetics of the enzyme-substrate compound of peroxidase and their relation to the Michaelis theory. Science 92:455

    Google Scholar 

  • 21. Chance B, Greenstein DS, Higgins J, Yang CC (1952) The mechanism of catalase action. II. Electric analog computer studies. Arch Biochem Biophys 37:322-339

    Article  Google Scholar 

  • 22. Chaudhuri RR, Khan AM, Pallen MJ (2004) coliBASE: an online database for Escherichia coli, Shigella and Salmonella comparative genomics; http://colibase.bham.ac.uk/about/index.cgi?help=about&frame=genomechoose. Nucleic Acids Res 32:D296-D299

    Article  PubMed  Google Scholar 

  • 23. Chen S, Bigner SH, Modrich P (2001) High rate of CAD gene amplification in human cells deficient in MLH1 or MSH6. Proc Natl Acad Sci USA 98:13802-13807

    Article  PubMed  Google Scholar 

  • 24. Corbin RW, Paliy O, Yang F, Shabanowitz J, Platt M, Lyons CE Jr, Root K, McAuliffe J, Jordan MI, Kustu S, Soupene E, Hunt DF (2003) Toward a protein profile of Escherichia coli: comparison to its transcription profile. Proc Natl Acad Sci USA 100:9232-9237

    Article  PubMed  Google Scholar 

  • 25. Crick FHC (1973) Project K: ”The complete solution of E. coli”. Perspect Biol Med 67-70

    Google Scholar 

  • 26. Csete ME, Doyle JC (2002) Reverse engineering of biological complexity. Science 295:1664-1669

    Article  PubMed  Google Scholar 

  • 27. de Jong H (2002) Modeling and simulation of genetic regulatory systems: a literature review. J Computat Biol 9:67-103

    Article  Google Scholar 

  • 28. DiValentin, P SigTran (2004) http://csi.washington.edu/teams/modeling/projects/sigtran/

    Google Scholar 

  • 29. Duncan J, Arnstein L, Li Z (2004) Teranode corporation launches first industrial-strength research design tools for the life sciences at DEMO: http://www.teranode.com/about/pr_2004021601.php

    Google Scholar 

  • 30. Endy D, Brent R (2001) Modelling cellular behaviour. Nature Suppl 409:391-395

    Article  Google Scholar 

  • 31. Fall C, Marland ES, Wagner JM, Tyson JJ (2002) Computational cell biology. Springer-Verlag, New York

    Google Scholar 

  • 32. Fink CC, Slepchenko B, Moraru II, Watras J, Schaff JC, Loew LM (2000) An image-based model of calcium waves in differentiated neuroblastoma cells. Biophys J 79:163-83

    PubMed  Google Scholar 

  • 33. Finney A, Hucka M, Sauro H, Bolouri H, Funahashi A, Bornstein B, Kovitz B, Matthews J, Shapiro BE, Keating S, Doyle J, Kitano H (2003) The systems biology workbench (SBW) Version 1.0: Framework and modules. Hawaii, USA. Pacific symposium on biocomputing 2003

    Google Scholar 

  • 34. Finney AM, Hucka M (2003) Systems Biology Markup Language: Level 2 and beyond. Biochem Soc Trans 31:1472-1473

    PubMed  Google Scholar 

  • 35. Fraser SE, Harland RM (2000) The molecular metamorphosis of experimental embryology. Cell 100:41-55

    Article  PubMed  Google Scholar 

  • 36. Funahashi A, Tanimura N, Morohashi M, Kitano H (2003) CellDesigner: a process diagram editor for gene-regulatory and biochemical networks. BioSilico 1:159-162

    Article  Google Scholar 

  • 37. Funahashi A, Tanimura N, Morohashi M, Kitano H (2004) CellDesigner; http://www.systems-biology.org/002/

    Google Scholar 

  • 38. Galperin MY, Koonin EV (1998) Sources of systematic error in functional annotation of genomes: domain rearrangement, non-orthologous gene displacement and operon disruption. In Silico Biol 1:55-67

    PubMed  Google Scholar 

  • 39. Garfinkel D (1965) Simulation of biochemical systems. In: Stacy, Ralph W and Waxman, BD (eds) Computers in biomedical research. Academic Press, New York, pp 111-134

    Google Scholar 

  • 40. Gershenfeld NA (1998) The nature of mathematical modeling. Cambridge University Press, Cambridge

    Google Scholar 

  • 41. Gilks WR, Audit B, De Angelis D, Tsoka S, Ouzounis CA (2002) Modeling the percolation of annotation errors in a database of protein sequences. Bioinformatics 18:1641-9

    Article  PubMed  Google Scholar 

  • 42. Gillespie DT (1977) Exact stochastic simulation of coupled chemical-reactions. J Phys Chem 81:2340-2361

    Article  Google Scholar 

  • 43. Gillespie DT, Petzold LR (2003) Improved leap-size selection for accelerated stochastic simulation. J Chem Phys 119:8229-8234

    Article  Google Scholar 

  • 44. Glasner JD, Liss P, Plunkett G III, Darling A, Prasad T, Rusch M, Byrnes A, Gilson M, Biehl B, Blattner FR, Perna NT (2003) ASAP, a systematic annotation package for community analysis of genomes; https://asap.ahabs.wisc.edu/annotation/php/home.php?formSubmitReturn=1. Nucleic Acids Res 31:147-151

    Article  PubMed  Google Scholar 

  • 45. Goldstein B, Faeber JR, Hlavacek WS, Blinov ML, Redondo A, Wolfsy C (2002) Modeling the early signaling events mediated by FceRI. Mol Immunol137:1-7

    Google Scholar 

  • 46. Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402:C47-C52

    Article  PubMed  Google Scholar 

  • 47. Holden C (2002) Cell biology: Alliance launched to model E. coli. Science 297:1459-1460

    Article  PubMed  Google Scholar 

  • 48. Hood L (1998) Systems biology: New opportunities arising from genomics, proteomics, and beyond. Exp Hematol 26:681

    PubMed  Google Scholar 

  • 49. Hucka M, Finney A, Sauro HM, Bolouri H (2001) Systems Biology Markup Language (SBML) Level 1: Structures and facilities for basic model definitions; http://www.sbml.org/

    Google Scholar 

  • 50. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman TC, Hofmeyr JH, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Le Novere N, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, Nakayama Y, Nelson MR, Nielsen PF, Sakurada T, Schaff JC, Shapiro BE, Shimizu TS, Spence HD, Stelling J, Takahashi K, Tomita M, Wagner J, Wang J (2003) The Systems Biology Markup Language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19:524-531

    Article  PubMed  Google Scholar 

  • 51. Ideker T, Galitski T, Hood L (2001) A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet 2:343-372

    Article  PubMed  Google Scholar 

  • 52. Jishage M, Ishihama A (1997) Variation in RNA polymerase sigma subunit composition within different stocks of Escherichia coli W3110. J Bacteriol 179:959-963

    PubMed  Google Scholar 

  • 53. Kacser H (1957) Appendix: Some physico-chemical aspects of biological organisation. In: Waddington CH (ed) The strategy of the genes: A discussion of some aspects of theoretical biology. George Allen and Unwin Ltd, London, pp 191-249

    Google Scholar 

  • 54. Kacser H, Burns JA (1967) Causality, complexity and computers. In: Locker A (ed) Quantitative biology of metabolism. Springer-Verlag, New York, NY, pp 11-23

    Google Scholar 

  • 55. Kang Y, Durfee T, Glasner JD, Qiu Y, Frisch D, Winterberg KM, Blattner FR (2004) Systematic mutagenesis of the Escherichia coli genome. J Bacteriol 186:4921-4930

    Article  PubMed  Google Scholar 

  • 56. Karp PD, Riley M, Saier M, Paulsen IT, Collado-Vides J, Paley SM, Pellegrini-Toole A, Bonavides C, Gama-Castro S (2002) The EcoCyc database; http://ecocyc.org/. Nucleic Acids Res 30:56-58

    Article  PubMed  Google Scholar 

  • 57. Kihara D, Skolnick J (2004) Microbial genomes have over 72% structure assignment by the threading algorithm PROSPECTOR_Q. Proteins 55:464-473

    Article  PubMed  Google Scholar 

  • 58. Kirkwood TBL, Boys R, Wilkinson D, Gillespie C, Proctor C, Hanley D (2003a) BASIS; http://www.basis.ncl.ac.uk/. 3-19-2004a

    Google Scholar 

  • 59. Kirkwood TBL, Boys RJ, Gillespie CS, Proctor CJ, Shanley DP, Wilkinson DJ (2003b) Towards an e-biology of ageing: integrating theory and data. Nature Reviews Molecular Cell Biology 4:243-249

    Article  PubMed  Google Scholar 

  • 60. Kitano H (2002) Computational systems biology. Nature 420:206-210

    Article  PubMed  Google Scholar 

  • 61. Kitano H (2001) Foundations of systems biology. MIT Press, Cambridge, MA

    Google Scholar 

  • 62. Kornberg A (2003) Ten commandments of enzymology, amended. Trends Biochem Sci 28:515-517

    Article  PubMed  Google Scholar 

  • 63. Kornberg A, Baker TA (1992) DNA replication. WH Freeman and Company, San Francisco, California

    Google Scholar 

  • 64. Le Novere N, Shimizu TS (2001) STOCHSIM: modelling of stochastic biomolecular processes. Bioinformatics 17:575-576

    Article  PubMed  Google Scholar 

  • 65. May RM (2004) Uses and abuses of mathematics in biology. Science 303:790-793

    Article  PubMed  Google Scholar 

  • 66. McAdams HH, Arkin A (1999) It's a noisy business! Genetic regulation at the nanomolar scale. Trends Genet 15:65-69

    Article  PubMed  Google Scholar 

  • 67. Medigue C, Viari A, Henaut A, Danchin A (1993) Colibri: a functional data base for the Escherichia coli genome. Microbiol Rev 57:623-654

    PubMed  Google Scholar 

  • 68. Mendes P (2001) Gepasi 3.21; http://www.gepasi.org

    Google Scholar 

  • 69. Mendes P (2003) COPASI: Complex pathway simulator; http://mendes.vbi.vt.edu/tiki-index.php?page=COPASI

    Google Scholar 

  • 70. Mendes P (1993) Gepasi - a software package for modeling the dynamics, steady-states and control of biochemical and other systems. Comput Appl Biosci 9:563-571

    PubMed  Google Scholar 

  • 71. Mendes P, Kell DB (2001) MEG (Model Extender for Gepasi): a program for the modelling of complex, heterogeneous, cellular systems. Bioinformatics 17:288-289

    Article  PubMed  Google Scholar 

  • 72. Mesarovic MD (1968) Systems theory and biology. Proceedings of the 3rd Systems Symposium at Case Institute of Technology. Springer-Verlag, Berlin, New York

    Google Scholar 

  • 73. Mori H, Isono K, Horiuchi T, Miki T (2000) Functional genomics of Escherichia coli in Japan. Res Microbiol 151:121-128

    Article  PubMed  Google Scholar 

  • 74. Morton-Firth CJ, Bray D (1998) Predicting temporal fluctuations in an intracellular signalling pathway. J Theor Biol 192:117-128

    Article  PubMed  Google Scholar 

  • 75. Noble D (2002) The rise of computational biology. Nat Rev Mol Cell Biol 3:460-463

    Article  Google Scholar 

  • 76. Phair RD, Misteli T (2001) Kinetic modelling approaches to in vivo imaging. Nat Rev Mol Cell Biol 2:898-907

    Article  PubMed  Google Scholar 

  • 77. Ramsey S, Bolouri H (2004) Dizzy; http://labs.systemsbiology.net/bolouri/software/Dizzy/

    Google Scholar 

  • 78. Rudd KE (2000) EcoGene: a genome sequence database for Escherichia coli K-12. Nucleic Acids Res 28:60-64

    Article  PubMed  Google Scholar 

  • 79. Salgado H, Gama-Castro S, Martinez-Antonio A, Diaz-Peredo E, Sanchez-Solano F, Peralta-Gil M, Garcia-Alonso D, Jimenez-Jacinto V, Santos-Zavaleta A, Bonavides-Martinez C, Collado-Vides J (2004) RegulonDB (version 4.0): transcriptional regulation, operon organization and growth conditions in Escherichia coli K-12; http://www.cifn.unam.mx/Computational_Genomics/regulondb/. Nucleic Acids Res 32:D303-D306

    Article  PubMed  Google Scholar 

  • 80. Sauro HM (2003) WinScamp; http://www.cds.caltech.edu/ hsauro/Scamp/scamp.htm

    Google Scholar 

  • 81. Sauro HM (2000b) Jarnac; http://www.cds.caltech.edu/ hsauro

    Google Scholar 

  • 82. Sauro HM (2000a) Jarnac: A system for interactive metabolic analysis. Snoep JL, Hofmeyr JH, and Roywer JM; Animating the Cellular Map: Proceedings of the 9th International Meeting on BioThermoKinetics. Stellenbosch University Press

    Google Scholar 

  • 83. Sauro HM, Fell DA (1991) SCAMP: A metabolic simulator and control analysis program. Mathl Comput Modelling 15:15-28

    Article  Google Scholar 

  • 84. Sauro HM, Hucka M, Finney A, Wellock C, Bolouri H, Doyle J, Kitano H (2003) Next generation simulation tools: The systems biology workbench and BioSPICE integration. OMICS 7:355-372

    Article  PubMed  Google Scholar 

  • 85. Sauro HS (2001) JDesigner: A simple biochemical network designer; http://members.tripod.co.uk/sauro/biotech.htm

    Google Scholar 

  • 86. Savageau MA (1969) Biochemical systems analysis.1. Some mathematical properties of rate law for component enzymatic reactions. J Theor Biol 25:365-366

    PubMed  Google Scholar 

  • 87. Savageau MA (1970) Biochemical systems analysis .3. Dynamic solutions using a power-law approximation. J Theor Biol 26:215

    PubMed  Google Scholar 

  • 88. Schaff J, Fink CC, Slepchenko B, Carson JH, Loew LM (1997) A general computational framework for modeling cellular structure and function. Biophys J 73:1135-1146

    PubMed  Google Scholar 

  • 89. Schaff J, Slepchenko B, Morgan F, Wagner J, Resasco D, Shin D, Choi YS, Loew L, Carson J, Cowan A, Moraru I, Watras J, Teraski M, Fink C (2001) Virtual Cell; http://www.nrcam.uchc.edu

    Google Scholar 

  • 90. Schilstra M, Bolouri H (2002) NetBuilder; http://strc.herts.ac.uk/bio/maria/NetBuilder/index.html

    Google Scholar 

  • 91. Serres MH, Goswami S, Riley M (2004) GenProtEC: an updated and improved analysis of functions of Escherichia coli K-12 proteins; http://www.genprotec.mbl.edu/. Nucleic Acids Res 32:D300-D302

    Article  PubMed  Google Scholar 

  • 92. Shapiro BE (2004) MathSBML; http://sbml.org/mathsbml.html

    Google Scholar 

  • 93. Shapiro BE, Hucka M, Finney A, Doyle JC (2004a) MathSBML: A package for manipulating SBML-based biological models. Bioinformatics 20:2829-2831

    Article  PubMed  Google Scholar 

  • 94. Shapiro BE, Levchenko A, Meyerowitz EM, Wold BJ, Mjolsness ED (2003) Cellerator: extending a computer algebra system to include biochemical arrows for signal transduction simulations. Bioinformatics 19:677-678

    Article  PubMed  Google Scholar 

  • 95. Shapiro BE, Mjolsness E, Levchenko A (2004b) Cellerator; http://www-aig.jpl.nasa.gov/public/mls/cellerator/

    Google Scholar 

  • 96. Slepchenko BM, Schaff JC, Carson JH, Loew LM (2002) Computational cell biology: Spatiotemporal simulation of cellular events. Annu Rev Biophys Biomol Struct 31:423-441

    Article  PubMed  Google Scholar 

  • 97. Stelling J, Kremling A, Ginkel M, Bettenbrock K, Gilles E (2001) Towards a virtual biological laboratory. In: Kitano H (ed) Foundations of systems biology. MIT Press, Cambridge, MA, pp 189-212

    Google Scholar 

  • 98. Takahashi K, Ishikawa N, Sadamoto Y, Sasamoto H, Ohta S, Shiozawa A, Miyoshi F, Naito Y, Nakayama Y, Tomita M (2003) E-Cell 2: Multi-platform E-Cell simulation system. Bioinformatics 19:1727-1729

    Article  PubMed  Google Scholar 

  • 99. Teranode Inc. (2004)VLX Design Suite

    Google Scholar 

  • 100. Tomita M (2001) Towards computer aided design (CAD) of useful microorganisms. Bioinformatics 17:1091-1092

    Article  PubMed  Google Scholar 

  • 101. Tomita M, Hashimoto K, Takahashi K, Shimizu TS, Matsuzaki Y, Miyoshi F, Saito K, Tanida S, Yugi K, Venter JC, Hutchison CA, III (1999) E-CELL: software environment for whole-cell simulation. Bioinformatics 15:72-84

    Article  PubMed  Google Scholar 

  • 102. Tomita M, Nakayama Y, Naito Y, Shimizu T, Hashimoto K, Takahashi K, Matsuzaki Y, Yugi K, Miyoshi F, Saito Y, Kuroki A, Ishida T, Iwata T, Yoneda M, Kita M, Yamada Y, Wang E, Seno S, Okayama M, Kinoshita A, Fujita Y, Matsuo R, Yanagihara T, Watari D, Ishinabe S, Miyamoto S (2001) E-CELL; http://www.e-cell.org/

    Google Scholar 

  • 103. Tyson JJ, Chen K, Novak B (2001) Network dynamics and cell physiology. Nat Rev Mol Cell Biol 2:908-916

    Article  PubMed  Google Scholar 

  • 104. Vass M, Shaffer CA, Tyson JJ, Ramakrishnan N, Watson LT (2004) The JigCell model builder: a tool for modeling intra-cellular regulatory networks. Bioinformatics 20:3680-3681

    PubMed  Google Scholar 

  • 105. Verma M, Egan JB (1985) Phenotypic variations in strain AB1157 cultivars of Escherichia coli from different sources. J Bacteriol 164:1381-1382

    PubMed  Google Scholar 

  • 106. Wiener N (1961) Cybernetics; or, control and communication in the animal and the machine, 2nd edn. MIT Press, New York

    Google Scholar 

  • 107. Yi TM, Huang Y, Simon MI, Doyle J (2000) Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc Natl Acad Sci USA 97:4649-4653

    Article  PubMed  Google Scholar 

  • 108. Zerhouni E (2003) The NIH roadmap. Science 302:63-64

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry L. Wanner .

Editor information

Lila Alberghina H.V. Westerhoff

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Wanner, B.L., Finney, A., Hucka, M. Modeling the E. coli cell: The need for computing, cooperation, and consortia. In: Alberghina, L., Westerhoff, H. (eds) Systems Biology. Topics in Current Genetics, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b138743

Download citation

Publish with us

Policies and ethics