Skip to main content

Spectroscopic Characterization of Organometallic Centers on Insulator Single Crystal Surfaces:From Metal Carbonyls to Ziegler--Natta Catalysts

  • Chapter
  • First Online:
Surface and Interfacial Organometallic Chemistry and Catalysis

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 16))

Abstract

A detailed knowledge of the microscopic properties is one of the prerequisites for an understanding of heterogeneous catalysts. A strategy which has proven to be valuable in this respect is the use of model systems prepared under well-defined conditions and a subsequent characterization of these systems under both ultrahigh vacuum as well as ambient pressures. In the following review we focus on two systems where organometallic species play an important role. The first class of systems under consideration is metal carbonyls prepared under ultrahigh vacuum conditions. In particular, we will discuss the prospects of these species for use as probes for the environment of the deposited metal atom. In the second part we will discuss experiments on Ziegler--Natta model catalysts. In particular, we will describe how surface science studies of these systems can help to elucidate atomistic properties of surface sites involved in polymerization reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

CESR:

Conduction band electron spin resonance

ESR:

Electron spin resonance

EPR:

Electron paramagnetic resonance

ISS:

Ion scattering spectroscopy

IRAS:

Infrared absorption spectroscopy

1 L:

(Langmuir) = 10-6 Torr s

LEED:

Low energy electron diffraction

LRI:

Laser reflection interferometry

ML:

Monolayer

NMR:

Nuclear magnetic resonance

STM:

Scanning tunneling microscopy

TMA:

Trimethylaluminum

TEA:

Triethylaluminum

TPD:

Temperature programmed desorption

XPS:

X-ray photoelectron spectroscopy

References

  1. Ertl G, Knözinger H, Weitkamp J (eds) (1997) Handbook of heterogeneous catalysis. Wiley-VCH, Weinheim

    Google Scholar 

  2. Gunter PLJ, Niemantsverdriet JWH, Ribeiro FH, Somorjai GA (1997) Catal Rev Sci Eng 39:77

    Google Scholar 

  3. Henry CR (1998) Surf Sci Rep 31:235

    Article  Google Scholar 

  4. Campbell CT (1997) Surf Sci Rep 27:1

    Article  Google Scholar 

  5. Freund H-J (2002) Surf Sci 500:271

    Article  Google Scholar 

  6. Libuda J, Freund HJ (2002) J Phys Chem B 106:4901

    Article  Google Scholar 

  7. Diebold U (2003) Surf Sci Rep 48:53

    Article  Google Scholar 

  8. Freund HJ, Libuda J, Bäumer M, Risse T, Carlsson A (2003) Chem Rec 3:181

    Article  PubMed  Google Scholar 

  9. Poppa H (1993) Catal Rev-Sci Eng 35:359

    Google Scholar 

  10. Bäumer M, Freund H-J (1999) Progr Surf Sci 61:127

    Article  Google Scholar 

  11. Heiz U, Vanolli F, Trento L, Schneider WD (1997) Rev Sci Inst 68:1986

    Article  Google Scholar 

  12. Heiz U, Schneider WD (2000) J Phys D 33:R85

    Google Scholar 

  13. Binns C (2001) Surf Sci Rep 44:1

    Article  Google Scholar 

  14. Coperet C, Chabanas M, Petroff Saint-Arroman R, Basset JM (2003) Angew Chem Int Ed 42:156

    Article  Google Scholar 

  15. Frank M, Bäumer M, Kühnemuth R, Freund H-J (2001) J Phys Chem B 105:8569

    Article  Google Scholar 

  16. Frank M, Kühnemuth R, Bäumer M, Freund H-J (2000) Surf Sci 454:968

    Article  Google Scholar 

  17. Magg N, Giorgi JB, Frank MM, Immaraporn B, Schroeder T, Bäumer M, Freund H-J (2004) J Am Chem Soc 126:3616

    Article  PubMed  Google Scholar 

  18. Risse T, Carlsson A, Bäumer M, Klüner T, Freund H-J (2003) Surf Sci 546:L829

    Article  Google Scholar 

  19. Carlsson AF, Bäumer M, Risse T, Freund H-J (2003) J Chem Phys 119:10885

    Article  Google Scholar 

  20. Risse T, Schmidt J, Hamann H, Freund H-J (2002) Angew Chem Intern Ed 41:1517

    Article  Google Scholar 

  21. Schmidt J, Risse T, Hamann H, Freund HJ (2002) J Chem Phys 116:10861

    Article  Google Scholar 

  22. Magni E, Somorjai GA (1995) Catal Lett 35:205

    Article  Google Scholar 

  23. Kim SH, Somorjai GA (2001) Surf Interface Anal 31:701

    Article  Google Scholar 

  24. Cox AJ, Louderback JG, Apsel SE, Bloomfield LA (1994) Phys Rev B 49:12295

    Article  Google Scholar 

  25. Haruta M (1997) Catal Today 36:153

    Article  Google Scholar 

  26. Heiz U, Sanchez A, Abbet S, Schneider W-D (1999) J Am Chem Soc 121:3214

    Article  Google Scholar 

  27. Jaeger RM, Kuhlenbeck H, Freund H-J, Wuttig M, Hoffmann W, Franchy R, Ibach H (1991) Surf Sci 259:235

    Article  Google Scholar 

  28. Kulawik M, Nilius N, Rust HP, Freund HJ (2003) Phys Rev Lett 91:6101

    Article  Google Scholar 

  29. Stierle A, Renner F, Streitel R, Dosch H, Drube W, Cowie BC (2004) Science 303:1652

    Article  PubMed  Google Scholar 

  30. Bäumer M, Frank M, Libuda J, Stempel S, Freund H-J (1997) Surf Sci 391:204

    Article  Google Scholar 

  31. Bäumer M, Libuda J, Sandell A, Freund H-J, Graw G, Bertrams T, Neddermeyer H (1995) Ber Bunsenges Phys Chem 99:1381

    Google Scholar 

  32. Bäumer M, Frank M, Heemeier M, Kühnemuth R, Stempel S, Freund H-J (2000) Surf Sci 454–456:957

    Article  Google Scholar 

  33. Frank M, Bäumer M (2000) Phys Chem Chem Phys 2:3723

    Article  Google Scholar 

  34. Frank M, Kühnemuth R, Bäumer M, Freund HJ (1999) Surf Sci 427–428:88

    Google Scholar 

  35. Yang AC, Garland CW (1957) J Phys Chem 61:1504

    Article  Google Scholar 

  36. Yates JT Jr, Duncan TM, Worley SD, Vaughan RW (1979) J Chem Phys 70:1219

    Article  Google Scholar 

  37. Rice CA, Worley SD, Curtis CW, Guin JA, Tarrer AR (1981) J Chem Phys 74:6487

    Article  Google Scholar 

  38. Solymosi F, Knoezinger H (1990) J Chem Soc Faraday Trans 86:389

    Article  Google Scholar 

  39. Basu P, Panayotov D, Yates JT (1987) J Phys Chem 91:3133

    Article  Google Scholar 

  40. Solymosi F, Bansagi T (1993) J Phys Chem 97:10133

    Article  Google Scholar 

  41. Hayden BE, King A, Newton MA (1998) Surf Sci 397:306

    Article  Google Scholar 

  42. Nilius N, Wallis TM, Ho W (2003) Phys Rev Lett 90:6808

    Google Scholar 

  43. Dulaurent O, Chandes K, Bouly C, Bianchi D (1999) J Catal 188:237

    Article  Google Scholar 

  44. Tessier D, Rakai A, Bozonverduraz F (1992) J Chem Soc Faraday Trans 88:741

    Article  Google Scholar 

  45. Hicks RF, Qi HH, Kooh AB, Fischel LB (1990) J Catal 124:488

    Article  Google Scholar 

  46. Rainer DR, Wu MC, Mahon DI, Goodman DW (1996) J Vac Sci Techn A 14:1184

    Article  Google Scholar 

  47. Wolter K, Seiferth O, Libuda J, Kuhlenbeck H, Bäumer M, Freund HJ (1998) Surf Sci 402–404:428

    Article  Google Scholar 

  48. Wolter K, Seiferth O, Kuhlenbeck H, Bäumer M, Freund H-J (1998) Surf Sci 399:190

    Article  Google Scholar 

  49. Papai I, Goursot A, Stamant A, Salahub DR (1992) Theor Chim Acta 84:217

    Article  Google Scholar 

  50. Zhou MF, Andrews L, Bauschlicher CW (2001) Chem Rev 101:1931

    Article  PubMed  Google Scholar 

  51. Zhou MF, Andrews L (1999) J Am Chem Soc 121:9171

    Article  Google Scholar 

  52. Mineva T, Russo N, Freund HJ (2001) J Phys Chem A 105:10723

    Article  Google Scholar 

  53. Bogicevic A, Jennison DR (1999) Phys Rev Lett 82:4050

    Article  Google Scholar 

  54. Abbet S, Riedo E, Brune H, Heiz U, Ferrari AM, Giordano L, Pacchioni G (2001) J Am Chem Soc 123:6172

    Article  PubMed  Google Scholar 

  55. Abbet S, Ferrari AM, Giordano L, Pacchioni G, Hakkinen H, Landman U, Heiz U (2002) Surf Sci 514:249

    Article  Google Scholar 

  56. Bogicevic A, Jennison DR (2002) Surf Sci 515:L481

    Article  Google Scholar 

  57. Toomes RL, King DA (1996) Surf Sci 349:1

    Article  Google Scholar 

  58. Beitel GA, Laskov A, Oosterbeek H, Kuipers EW (1996) J Phys Chem 100:12494

    Article  Google Scholar 

  59. Bradshaw AM, Pritchard J (1970) Proc Roy Soc Lond A 316:169

    Google Scholar 

  60. Heal MJ, Leisegang EC, Torrington RG (1978) J Catal 51:314

    Article  Google Scholar 

  61. Gardner RA, Petrucci RH (1960) J Am Chem Soc 82:5051

    Article  Google Scholar 

  62. Kavtaradze NN, Sokolova NP (1964) Russ J Phys Chem 38:548

    Google Scholar 

  63. Sheppard N, Nguyen TT (1978) In: Hester RE, Clark RJH (eds) Advances in infrared and Raman spectroscopy, vol 5. Heyden, p 67

    Google Scholar 

  64. Heemeier M, Carlsson AF, Naschitzki M, Schmal M, Bäumer M, Freund H-J (2002) Angew Chem Intern Ed 41:4073

    Article  Google Scholar 

  65. Ziegler K, Holzkamp E, Breil H, Martin H (1955) Angew Chem Int Ed 67:541

    Google Scholar 

  66. Natta G, Pino P, Mazzanti P U.S. Patent 3 715 344

    Google Scholar 

  67. Natta G (1955) J Polym Sci 16:143

    Article  Google Scholar 

  68. Barbé PC, Cecchin G, Noristi L (1987) Adv Polym Sci 81:1

    Google Scholar 

  69. Kaminsky W, Arndt M (1997) In: Ertl G, Knözinger H, Weitkamp J (eds) Handbook of heterogeneous catalysis, vol 5. Wiley-VCH, Weinheim, p 2405

    Google Scholar 

  70. Dusseault JJA, Hsu CC (1993) J Macromol Sci C 33:103

    Google Scholar 

  71. Fink G, Mühlhaupt R, Brintzinger HH (eds) (1995) Ziegler catalysts: recent scientific innovations and technological improvements. Springer, Berlin Heidelberg New York

    Google Scholar 

  72. Boor J (1979) Ziegler–Natta catalysts and polymerization. Academic, New York

    Google Scholar 

  73. Keii T (1982) Kinetics of Ziegler–Natta polymerization. Chapman & Hall, London

    Google Scholar 

  74. Kissin YV (1985) Isospecific polymerization of olefins. Springer, Berlin Heidelberg New York

    Google Scholar 

  75. Sinn H, Kaminsky W (1980) Adv Organomet Chem 18:99

    Google Scholar 

  76. Pasquon I, Giannini U (1984) In: Anderson JR, Boudart M (eds) Catalysis, science and technology. Springer, Berlin Heidelberg New York, p 65

    Google Scholar 

  77. Chien JCW (ed) (1975) Coordination polymerization. Academic, New York

    Google Scholar 

  78. Quirk RP (ed) (1988) Transition metal catalyzed polymerization: Ziegler–Natta and metathesis polymerizations. Cambridge University Press, Cambridge

    Google Scholar 

  79. Kaminsky W, Sinn H (eds) (1988) Transition metals and organometallics as catalysts for olefin polymerization. Springer, Berlin Heidelberg New York

    Google Scholar 

  80. Sinn H (1995) Marcomol Symp 97:27

    Google Scholar 

  81. Weiss H, Boero M, Parrinello M (2001) Marcomol Symp 173:137

    Article  Google Scholar 

  82. Boero M, Parrinello M, Weiss H, Hüffer S (2001) J Phys Chem 105:5096

    Google Scholar 

  83. Martinsky C, Minot C, Ricart JM (2001) Surf Sci 490:237

    Article  Google Scholar 

  84. Seth M, Margl PM, Ziegler T (2002) Macromolecules 35:7815

    Article  Google Scholar 

  85. Hemmerich I, Rohr F, Seiferth O, Dillmann B, Freund H-J (1997) Z Phys Chem 202:31

    Google Scholar 

  86. Thüne PC, Loos J Lemstra PJ, Niemantsverdriet JW (1999) J Catal 183:1

    Article  Google Scholar 

  87. Magni E, Somorjai GA (1996) Surf Sci 345:1

    Article  Google Scholar 

  88. Magni E, Somorjai GA (1995) Appl Surf Sci 89:187

    Article  Google Scholar 

  89. Koranyi TI, Magni E, Somorjai GA (1999) Topics Catal 7:179

    Article  Google Scholar 

  90. Magni E, Somorjai GA (1996) J Phys Chem 100:14786

    Article  Google Scholar 

  91. Kim SH, Somorjai GA (2000) J Phys Chem B 104:5519

    Article  Google Scholar 

  92. Fairbrother DH, Roberts JG, Rizzi S, Somorjai GA (1997) Langmuir 13:2090

    Article  Google Scholar 

  93. Fairbrother DH, Roberts JG, Somorjai GA (1998) Surf Sci 399:109

    Article  Google Scholar 

  94. Roberts JG, Gierer M, Fairbrother DH, van Hove MA, Somorjai GA (1998) Surf Sci 399:123

    Article  Google Scholar 

  95. Rous PJ (1992) Prog Surf Sci 39:3

    Article  Google Scholar 

  96. van Hove MA (1997) Surf Rev Lett 4:479

    Article  Google Scholar 

  97. Heinz K, Hammer L (1998) Z Kristall 213:615

    Google Scholar 

  98. Tasker PW (1984) Adv Ceram 10:176

    Google Scholar 

  99. Pankratz LB (1984) Thermodynamic properties of halides. US Dept. of Interior Bureau of Mines, Washington DC

    Google Scholar 

  100. Lin JS, Catlow CRA (1993) J Mater Chem 3:1217

    Article  Google Scholar 

  101. Guo XC, Hoffman A, Yates JT (1989) J Chem Phys 90:5787

    Article  Google Scholar 

  102. Galli P, Barbe P, Guidetti G, Zannetti R, Martorana A, Marigo A, Bergozza M, Fichera A (1983) Eur Polym J 19:19

    Article  Google Scholar 

  103. Gerbasi R, Marigo A, Martorana A, Zannetti R, Guidetti GP, Baruzzi G (1984) Eur Polym J 20:967

    Article  Google Scholar 

  104. Corradini P, Barone V, Fusco R, Guerra G (1979) Eur Polym J 15:1133

    Article  Google Scholar 

  105. Costuas K, Parrinello M (2002) J Phys Chem B 106:4477

    Article  Google Scholar 

  106. Magni E, Somorjai GA (1995) Surf Sci 341:L1078

    Article  Google Scholar 

  107. Magni E, Somorjai GA (1997) Surf Sci 377:824

    Article  Google Scholar 

  108. Schmidt J (2001) Charakterisierung eines Ziegler–Natta-Modellkatalysators für die Polyethylen-Herstellung – Untersuchung mit ESR und IRAS bei der Präparation und Ethylen-Polymerisierung. PhD, Ruhr-Universität Bochum

    Google Scholar 

  109. Kinno S, Onaka R (1983) J Phys Soc Jpn 52:267

    Article  Google Scholar 

  110. Fryburg GC, Lad RA (1975) Surf Sci 48:353

    Article  Google Scholar 

  111. Den Hartog HW, Mollema P, Schaafsma TJ (1973) Phys Status Solidi B 55:721

    Google Scholar 

  112. Peyroche J, Girard Y, Laputte R, Guyot A (1969) Makromol Chem 129:215

    Article  Google Scholar 

  113. Soga K, Terano M (1981) Macromol Chem Phys 182:2439

    Article  Google Scholar 

  114. Zakharov VA, Makhtarulin SI, Poluboyarov VA, Anufrienko VF (1984) Macromol Chem Phys 185:1781

    Article  Google Scholar 

  115. Chien JCW, Wu JC (1982) J Polym Sci, Polym Chem Ed 20:2461

    Google Scholar 

  116. Fuhrmann H, Herrmann W (1994) Macromol Chem Phys 195:3509

    Article  Google Scholar 

  117. Magni E, Somorjai GA (1998) J Phys Chem B 102:8788

    Article  Google Scholar 

  118. Kim SH, Tewell CR, Somorjai GA (2000) Langmuir 16:9414

    Article  Google Scholar 

  119. Kvisle S, Rytter E (1984) Spectroc Acta Pt A-Molec Biomolec Spectr 40:939

    Google Scholar 

  120. Kim SH, Somorjai GA (2001) J Phys Chem B 105:3922

    Article  Google Scholar 

  121. Ayscough PB, Thomson C (1962) Trans Faraday Soc 58:1477

    Article  Google Scholar 

  122. Morehouse RL, Christiansen JJ, Gordy W (1966) J Chem Phys 45(5):1751

    Article  Google Scholar 

  123. Tebbe FN, Parshall GW, Reddy GS (1978) J Am Chem Soc 100:3611

    Article  Google Scholar 

  124. Toriyama K, Iwasaki M, Nunome K (1979) J Chem Phys 71(4):1698

    Article  Google Scholar 

  125. Schlienz H, Beckendorf M, Katter UJ, Risse T, Freund H-J (1995) Phys Rev Lett 74:761

    Article  PubMed  Google Scholar 

  126. Beermann C, Bestian H (1959) Angew Chem Int Ed 71:618

    Google Scholar 

  127. D'yachowvskii FS, Khrushch NE, Shilov AE (1968) Kin Catal (USSR) 9:831

    Google Scholar 

  128. de Vries H (1961) Recl Trav Chim Pays-Bas 80:866

    Google Scholar 

  129. Negishi E, Kondakov DY, VanHorn DE (1997) Organometallics 16:951

    Article  Google Scholar 

  130. Painter PC, Runt J, Coleman MM, Harrison IR (1977) J Polym Sci – Polym Phys Ed 15:1647

    Google Scholar 

  131. Seshadri K, Atre SV, Tao Y-T, Lee M-T, Allara DL (1997) J Am Chem Soc 119

    Google Scholar 

  132. Snyder RG, Strauss HL, Elliger CA (1982) J Phys Chem 86:5145

    Article  Google Scholar 

  133. Yamamoto M, Sakurai Y, Hosoi Y, Ishii H, Kajikawa K, Ouchi Y, Seki K (2000) J Phys Chem B 104:7363

    Article  Google Scholar 

  134. Hagemann H, Snyder RG, Peacock AJ, Mandelkern L (1989) Macromolecules 22:3600

    Article  Google Scholar 

  135. Snyder RG (1961) J Mol Spec 7:116

    Article  Google Scholar 

  136. Tasumi M, Shimanouchi T (1965) J Chem Phys 43(4):1245

    Article  Google Scholar 

  137. Tobin MC, Carrano MJ (1956) J Chem Phys 25(5)

    Google Scholar 

  138. Krimm S, Liang CY, Sutherland GBB (1956) J Chem Phys 25(3)

    Google Scholar 

  139. Snyder RG (1992) J Chem Soc, Faraday Trans 88(13):1823

    Article  Google Scholar 

  140. Nielsen JR, Holland RF (1961) J Mol Spec 6:394

    Article  Google Scholar 

  141. Kim SH, Somorjai GA (2000) Catal Lett 68:7

    Article  Google Scholar 

  142. Bartelink HJM, Bos H, Smidt J, Vrinssen CH, Adema EH (1962) Recl Trav Chim Pays-Bas 81:225

    Google Scholar 

  143. Sergeev SA, Poluboyarov VA, Zakharov VA, Anufrienko VF, Bukatov GD (1985) Makromol Chem 186:243

    Google Scholar 

  144. Paukkeri R, Lehtinen A (1993) Polymer 34:4075

    Article  Google Scholar 

  145. Kim SH, Vurens G, Somorjai GA (2000) J Catal 193:171

    Article  Google Scholar 

  146. Zielinski P, Dalla Lana IG (1992) J Catal 137:368

    Article  Google Scholar 

  147. Scarano D, Spoto G, Bordiga S, Carnelli L, Ricchiardi G, Zecchina A (1994) Langmuir 10:3094

    Article  Google Scholar 

  148. Rebenstorf B (1988) J Mol Catal 45:263

    Article  Google Scholar 

  149. Zerbi G, Gallino G (1989) Polym 30:2324

    Article  Google Scholar 

  150. Snyder RG, Schachtschneider JH (1963) Spectrochim Acta 19:85

    Article  Google Scholar 

  151. Shiga T, Yamaoka H, Lund A (1974) Z Naturforsch A 29:653

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Risse .

Editor information

Christophe Copéret Bruno Chaudret

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Risse, T., Freund, HJ. Spectroscopic Characterization of Organometallic Centers on Insulator Single Crystal Surfaces:From Metal Carbonyls to Ziegler--Natta Catalysts. In: Copéret, C., Chaudret, B. (eds) Surface and Interfacial Organometallic Chemistry and Catalysis. Topics in Organometallic Chemistry, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b138075

Download citation

Publish with us

Policies and ethics