Skip to main content

Chlorins Programmed for Self-Assembly

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 258))

Abstract

The supramolecular chemistry of chlorins which are the most abundant photosynthetic pigments is reviewed. In chlorophyll-protein complexes, ligation of the central magnesium atom can occur in two diastereomeric configurations. Light-harvesting complexes of purple bacteria are formed by the self-assembly of short polypeptides which bind bacteriochlorophylls into circular structures. The light-harvesting organelle of green photosynthetic bacteria, the so-called “chlorosome”, is the most efficient natural antenna system and is formed by self-assembly of bacteriochlorophylls c, d or e without the help of a protein scaffold. Semisynthetic and fully synthetic mimics of these self-assembling bacteriochlorophylls have been prepared and their self-assemblies have been studied in detail in view of artificial light-harvesting systems. From a single crystal X-ray diffraction analysis, one could put into evidence hierarchic supramolecular interactions within such self-assembling systems. Interestingly, hydrogen bonding which all present models of bacteriochlorophyll self-assemblies contain as one of the important supramolecular interactions is absent in the fully synthetic mimics.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lehn J-M (1995) Supramolecular Chemistry: Principles and Perspectives. VCH, Weinheim

    Google Scholar 

  2. Holzwarth AR (2004) In: Barber J (ed) Molecular to Global Photosynthesis. Imperial College Press, London, pp 43–115

    Google Scholar 

  3. Hedges SB, Chen H, Kumar S, Wang DY-C, Thomson AS, Watanabe H (2001) BMC Evolutionary Biology 1:4

    Google Scholar 

  4. Kadish KM, Smith KM, Guilard R (eds) (2003) The Porphyrin Handbook. Academic Press (Elsevier), Amsterdam, vol 1–20

    Google Scholar 

  5. Chow H-C, Serlin R, Strouse CE (1975) J Am Chem Soc 97:7230

    Google Scholar 

  6. Kratky C, Dunitz JD (1975) Acta Cryst B31:1586

    Google Scholar 

  7. Hunter CA, Sanders JKM (1990) J Am Chem Soc 112:5525

    Google Scholar 

  8. Balaban TS, Leitich, J, Holzwarth AR, Schaffner K (2000) J Phys Chem B 104:1362

    Google Scholar 

  9. Balaban TS, Fromme P, Krauß N, Holzwarth AR, Prokhorenko VI (2002) Biochim Biophys Acta Bioenergetics 1556:197

    Google Scholar 

  10. Oba T, Tamiaki H (2002) Photosynth Res 74:1

    Google Scholar 

  11. Oba T, Tamiaki H (2002) J Photosci 9:362

    Google Scholar 

  12. Sharpless KB, Amberg W, Bennani YL, Crispino GA, Hartung J, Jeong K-S, Kwong H-L, Morikawa K, Wang Z-M, Xu D, Zhang X-L (1992) J Org Chem 57:2768

    Google Scholar 

  13. Kolb HC, Van Nieuwenhze MS, Sharpless KB (1994) Chem Rev 94:2483

    Google Scholar 

  14. van Gammeren AJ, Hulsbergen FB, Erkelens C, de Groot HJM (2004) J Biol Inorg Chem 9:109

    Google Scholar 

  15. Jordan P, Fromme P, Witt H-T, Klukas O, Saenger W, Krauss N (2001) Nature 411:909

    Google Scholar 

  16. Balaban TS (2003) FEBS Lett 545:97; Erratum (2003) FEBS Lett 547:235

    Google Scholar 

  17. Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X, Chang W (2004) Nature 428:287

    Google Scholar 

  18. Balaban TS (2005) Photosynth Res (in press)

    Google Scholar 

  19. Oba T, Tamiaki H (2005) In: van der Est A, Bruce D (eds) Photosynthesis: Fundamental Aspects to Global Perspectives. Proc XIII Photosynth Congr, Montreal, 2004. Allen Press, Lawrence, KS (in press)

    Google Scholar 

  20. Bassi R, Croce R, Cugini C, Santona D (1999) Proc Natl Acad Sci USA 96:10056

    Google Scholar 

  21. Remelli R, Varotto C, Sandonà D, Croce R, Bassi R (1999) Biophys J 47:3351

    Google Scholar 

  22. Kleima FJ, Hobe S, Calkoen F, Urbanus ML, Peterman EJG, van Grondelle R, Paulsen H, van Amerongen H (1999) Biochemistry 38:6587

    Google Scholar 

  23. Freer A, Prince S, Papiz M, Hawthornthwaite-Lawless A, McDermott G, Cogdell RJ, Isaacs NW (1996) Structure 4:449

    Google Scholar 

  24. McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ, Isaacs NW (1995) Nature 374:517

    Google Scholar 

  25. Papiz MZ, Prince SM, Howard T, Cogdell RJ, Isaacs NW (2003) J Mol Biol 326:1523

    Google Scholar 

  26. Koepke J, Hu X, Muenke C, Schulten K, Michel H (1996) Structure 4:581

    Google Scholar 

  27. Förster Th (1948) Ann Phys (Leipzig) 2:55

    Google Scholar 

  28. Hu XC, Ritz T, Damjanovic A, Autenrieth F, Schulten K (2002) Quart Rev Biophys 35:1

    Google Scholar 

  29. Abramavicius D, Valkunas L, van Grondelle R (2004) Phys Chem Chem Phys 6:3097

    Google Scholar 

  30. Jang S, Newton MD, Silbey RJ (2004) Phys Rev Let 92:218301

    Google Scholar 

  31. Roszak AW, Howard TD, Southall J, Gardiner AT, Law CJ, Isaacs NW, Cogdell RJ (2003) Science 302:1969

    Google Scholar 

  32. Kühlbrandt W (1995) Nature 374:497

    Google Scholar 

  33. Hu X, Damjanović A, Ritz T, Schulten K (1998) Proc Natl Acad Sci USA 95:5935

    Google Scholar 

  34. Cogdell RJ, Isaacs NW, Freer AA, Howard, TD, Gardiner AT, Prince SM, Papiz MZ (2003) FEBS Lett 555:35

    Google Scholar 

  35. McLuskey K, Prince SM, Cogdell RJ, Isaacs NW (2001) Biochemistry 40:8783

    Google Scholar 

  36. Oellerich S, Ketelaars M, Segura J-M, Margis G, de Rujiter W, Köhler J, Schmidt J, Aartsma TJ (2002) Single Mol 3:319

    Google Scholar 

  37. Drain CM, Gentemann S, Roberts JA, Nelson NY, Medforth CJ, Jia S, Simpson MC, Smith KM, Fajer J, Shelnutt JA, Holten D (1998) J Am Chem Soc 120:3781

    Google Scholar 

  38. Blankenship RE, Olson JM, Miller M (1995) In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht, pp 399–435

    Google Scholar 

  39. Balaban TS (2004) In: Nalwa HS (ed) Encyclopedia of Nanoscience and Nanotechnology, vol 4. American Scientific Publishers, Los Angeles, pp 505–559

    Google Scholar 

  40. Griebenow K, Holzwarth AR, Schaffner K (1990) Z Naturforsch 45c:823

    Google Scholar 

  41. Griebenow K, Holzwarth AR (1990) Molecular Biology of Membrane-Bound Complexes in Phototrophic Bacteria. Plenum Press, New York, pp 375–381

    Google Scholar 

  42. Holzwarth AR, Griebenow K, Schaffner K (1992) J Photochem Photobiol A 65:61

    Google Scholar 

  43. Hildebrandt P, Griebenow K, Holzwarth AR, Schaffner K (1991) Z Naturforsch 46c:228

    Google Scholar 

  44. Hildebrandt P, Tamiaki H, Holzwarth AR, Schaffner K (1994) J Phys Chem 98:2192

    Google Scholar 

  45. Balaban TS, Holzwarth AR, Schaffner K (1995) J Molec Struct 349:183

    Google Scholar 

  46. Chiefari J, Griebenow K, Fages F, Griebenow N, Balaban TS, Holzwarth AR, Schaffner K (1995) J Phys Chem 99:1357

    Google Scholar 

  47. Balaban TS, Holzwarth AR, Schaffner K, Boender G-J, de Groot HJM (1995) Biochemistry 34:15259

    Google Scholar 

  48. Boender G-J, Balaban TS, Holzwarth AR, Schaffner K, Raap J, Prytulla S, Oschkinat H, de Groot HJM (1995) In: Mathis P (ed) Photosynthesis from Light to Biosphere. Kluwer Academic Publishers, Dordrecht, p 347

    Google Scholar 

  49. Van Rossum BJ, van Duyl BY, Steensgaard DB, Balaban TS, Holzwarth AR, Schaffner K, de Groot HJM (1998) In: Garab G (ed) Photosynthesis: Mechanisms and Effects. Kluwer Academic Publishers, Dordrecht, p 117

    Google Scholar 

  50. Nozawa T, Ohtomo K, Suzuki M, Nakagawa H, Shikama Y, Konami H, Wang Z-Y (1994) Photosynth Res 41:21

    Google Scholar 

  51. van Rossum BJ, Steensgaard DB, Mulder FM, Boender G-J, Schaffner K, Holzwarth AR, de Groot HJM (2001) Biochemistry 40:1587

    Google Scholar 

  52. van Rossum BJ, Schulten EAM, Raap J, Oschkinat H, de Groot HJM (2002) J Magn Reson 155:1

    Google Scholar 

  53. de Boer I, Matysik J, Amakawa M, Yagai S, Tamiaki H, Holzwarth AR, de Groot HJM (2003) J Am Chem Soc 125:13374

    Google Scholar 

  54. Frigaard N-U, Gomez MCA, Li H, Maresca JA, Bryant DA (2003) Photosynth Res 78:93

    Google Scholar 

  55. Schaffner K, Holzwarth AR (1997) Leopoldina 42:205

    Google Scholar 

  56. Holzwarth AR, Schaffner K (1994) Photosynth Res 41:225

    Google Scholar 

  57. Wang Z-Y, Umetsu M, Kobayashi M, Nozawa T (1999) J Am Chem Soc 121:9363

    Google Scholar 

  58. Pšenčik J, Ikonen TP, Laurinmäki P, Merckel MC, Butcher SJ, Serimaa RE, Tuma R (2004) Biophys J 87:1165

    Google Scholar 

  59. Staehelin LA, Golecki JR, Fuller RC, Drews G (1978) Arch Mikrobiol 119:269

    Google Scholar 

  60. Staehelin LA, Golecki JR, Drews G (1980) Biochim Biophys Acta 589:30

    Google Scholar 

  61. Huber V, Katterle M, Lysetzka M, Würthner F (2005) Angew Chem Int Ed 44:3147; Angew Chem 117:3208

    Google Scholar 

  62. Tamiaki H, Miyatake T, Tanikaga R, Holzwarth AR, Schaffner K (1996) Angew Chem Int Ed 35:772; Angew Chem 108:810

    Google Scholar 

  63. Miyatake, T, Tamiaki H, Holzwarth AR, Schaffner K (1999) Helv Chim Acta 82:797

    Google Scholar 

  64. Prokhorenko VI, Holzwarth AR, Müller MG, Schaffner K, Miyatake T, Tamiaki H (2002) J Phys Chem B 106:5761

    Google Scholar 

  65. Balaban TS, Eichhöfer A, Lehn J-M (2000) Eur J Org Chem 4047

    Google Scholar 

  66. Redman JE, Feeder N, Teat SJ, Sanders KM (2001) Inorg Chem 40:2486

    Google Scholar 

  67. Bond AD, Feeder N, Redman JE, Teat SJ, Sanders JKM (2002) Crystal Growth Design 2:27

    Google Scholar 

  68. Wasielewski MR, Studier MH, Katz JJ (1976) Proc Natl Acad Sci USA 73:4282

    Google Scholar 

  69. Boxer SG, Closs GL (1976) J Am Chem Soc 98:5406

    Google Scholar 

  70. Katz JJ, Bowman MK, Michalski TJ, Worcester DL (1991) In: Scheer H (ed) Chlorophylls. CRC Press, Boca Raton, FL, pp 211–235

    Google Scholar 

  71. Bystrova MI, Mal'gosheva IN, Krasnovskii AA (1979) Mol Biol 13:440

    Google Scholar 

  72. Smith KM, Kehres LA, Fajer J (1983) J Am Chem Soc 105:1387

    Google Scholar 

  73. Tamiaki H, Amakawa M, Holzwarth AR, Schaffner K (2002) Photosynth Res 71:59

    Google Scholar 

  74. Tamiaki H (1996) Coord Chem Rev 148:183, and further references cited therein

    Google Scholar 

  75. Tamiaki H, Amakawa M, Shimono Y, Tanikaga R, Holzwarth AR, Schaffner K (1996) Photochem Photobiol 63:92

    Google Scholar 

  76. Yagai S, Miyatake T, Tamiaki H (1999) J Photochem Photobiol B: Biol 52:74

    Google Scholar 

  77. Oba T, Tamiaki H (1998) Photochem Photobiol 67:295

    Google Scholar 

  78. Balaban TS, Tamiaki H, Holzwarth AR, Schaffner K (1997) J Phys Chem B 101:3424

    Google Scholar 

  79. Jesorka A, Balaban TS Holzwarth AR, Schaffner K (1996) Angew Chem Int Ed Engl 35:2861; Angew Chem 108:3019

    Google Scholar 

  80. Tamiaki H, Miyatake T, Tanikaga R (1997) Tetrahedron Lett 38:267

    Google Scholar 

  81. Yagai S, Miyatake T, Tamiaki H (2002) J Org Chem 67:49

    Google Scholar 

  82. Yagai S, Miyatake T, Shimono Y, Tamiaki H (2001) Photochem Photobiol 73:153

    Google Scholar 

  83. Tamiaki H, Kitamoto H, Nishikawa A, Hibino T, Shibata R (2004) Bioorg Med Chem 12:1657

    Google Scholar 

  84. Yagai S, Tamiaki H (2001) J Chem Soc Perkin Trans 1:3135

    Google Scholar 

  85. Oba T, Tamiaki H (1999) Photosynth Res 61:23

    Google Scholar 

  86. Balaban TS, Bhise AD, Fischer M, Linke-Schaetzel M, Roussel C, Vanthuyne N (2003) Angew Chem Int Ed 42:2140; Angew Chem 115:2190

    Google Scholar 

  87. Balaban TS, Linke-Schaetzel, Bhise AD, Vanthuyne N, Roussel C (2004) Eur J Org Chem 3919

    Google Scholar 

  88. Tamiaki H, Kimura S, Kimura T (2003) Tetrahedron 59:7423

    Google Scholar 

  89. Berova N, Nakanishi K (2000) In: Berova N, Nakanishi K, Woody RW (eds) Circular Dichroism. Principles and Applications, 2nd ed. Wiley-VCH, New York, pp 337–382

    Google Scholar 

  90. Balaban TS, Bhise AD, Bringmann G, Eichhöfer A, Fenske D, Mizoguchi T, Reichert M, Schraut M, Tamiaki H, Roussel C, Vanthuyne N (manuscript in preparation)

    Google Scholar 

  91. Balaban TS, Linke-Schaetzel M, Bhise AD, Vanthuyne N, Roussel C, Anson CE, Buth G, Eichhöfer A, Foster K, Garab G, Gliemann H, Goddard R, Javorfi T, Powell AK, Rösner H, Schimmel Th (2005) Chem Eur J 11:2267

    Google Scholar 

  92. Van Amerongen H, Valkunas L, van Grondelle R (2000) Photosynthetic Excitons. World Scientific, Singapore, pp 1–590

    Google Scholar 

  93. Van Amerongen H, Vasmel H, van Grondelle R (1988) Biophys J 54:65

    Google Scholar 

  94. Brune DC, Gerola PD, Olson JM (1990) Photosynth Res 24:253

    Google Scholar 

  95. van Mourik F, Griebenow K, van Haeringen B, Holzwarth AR, van Grondelle R (1990) In: Current Research in Photosynthesis II. Kluwer Academic Publishers, Dordrecht, pp 141–144

    Google Scholar 

  96. Ma Y-Z, Cox RP, Gillbro T, Miller M (1996) Photosynth Res 47:157

    Google Scholar 

  97. Alden RG, Lin SH, Blankenship RE (1992) J Luminesc 51:51

    Google Scholar 

  98. Somsen OJG, van Grondelle R, Van Amerongen H (1996) Biophys J 71:1934

    Google Scholar 

  99. Pšenčik J, Ma Y-Z, Arellano JB, Hala J, Gillbro T (2003) Biophys J 84:1161

    Google Scholar 

  100. Prokhorenko VI, Steensgaard DB, Holzwarth AR (2003) Biophys J 85:3173

    Google Scholar 

  101. Prokhorenko VI, Steensgaard DB, Holzwarth AR (2000) Biophys J 79:2105

    Google Scholar 

  102. Griebenow K, Holzwarth AR, van Mourik F, van Grondelle R (1991) Biochim Biophys Acta 1058:194

    Google Scholar 

  103. de Boer I, Matysik J, Erkelens K, Sasaki S, Miyatake T, Yagai S, Tamiaki H, Holzwarth AR, de Groot HJM (2004) J Phys Chem B 108:16556

    Google Scholar 

  104. Didraga C, Klugkist JA, Knoester J (2002) J Phys Chem B 106:11474

    Google Scholar 

  105. Mishra A, Beherea RK, Behera B, Mishra K, Behera GM (2000) Chem Rev 100:1973

    Google Scholar 

  106. Potma EO, Wiersma DA (1998) J Chem Phys 108:4894

    Google Scholar 

  107. Fidder H, Wiersma DA (1995) Physica Status Solidi B 188:285

    Google Scholar 

  108. Didraga C, Pugzlys A, Hania PR, von Berlepsch H, Duppen K, Knoester J (2004) J Phys Chem B 108:14976

    Google Scholar 

  109. Knoester J (1995) Adv Mater 7:500

    Google Scholar 

  110. Prokhorenko VI, Holzwarth AR, Müller MG, Schaffner K, Miyatake T, Tamiaki H (2002) J Phys Chem 106:5761

    Google Scholar 

  111. Prokhorenko VI, Katterle M, Holzwarth AR, Schaffner K, Miyatake T, Tamiaki H (2002) In: Femtochemistry and Femtobiology: Ultrafast Dynamics in Molecular Science. World Scientific, New Jersey, pp 782–788

    Google Scholar 

  112. Möltgen H, Kleinermanns K, Jesorka A, Schaffner K, Holzwarth AR (2002) Photochem Photobiol 75:619

    Google Scholar 

  113. Linke-Schaetzel M, Bhise AD, Gliemann H, Koch Th, Schimmel Th, Balaban TS (2004) Thin Solid Films 124–125:16

    Google Scholar 

  114. Kureishi Y, Shiraishi H, Tamiaki H (2001) J Electroanal Chem 496:13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teodor Silviu Balaban .

Editor information

Frank Würthner

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Balaban, T.S., Tamiaki, H., Holzwarth, A.R. Chlorins Programmed for Self-Assembly . In: Würthner, F. (eds) Supermolecular Dye Chemistry. Topics in Current Chemistry, vol 258. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b137480

Download citation

Publish with us

Policies and ethics