Skip to main content

Electrochemistry and Electrogenerated Chemiluminescence of Semiconductor Nanocrystals in Solutions and in Films

  • Chapter
  • First Online:
Semiconductor Nanocrystals and Silicate Nanoparticles

Part of the book series: Structure and Bonding ((STRUCTURE,volume 118))

Abstract

A retrospective overview of electrochemical studies of semiconductor nanocrystals (NCs) is given. The electrochemical behavior of monodisperse NCs in a non-aqueous supporting electrolyte can be derived from the electron quasiparticle energy and the electron self-energy. Coulomb blockade can sometimes be observed in Si NCs if the charged NCs are stable. Many NCs, such as Ge, CdS, CdSe, PbS and core-shell CdSe/ZnS undergo some electrochemical and chemical reactions such as the so-called EC reaction mechanism. Electrogenerated chemiluminescence (ECL) processes for elemental and II/VI compound NCs in solution (and their films) are found to follow the general ECL mechanisms of organic compounds. Most NCs emit ECL, which is red-shifted into the photoluminescence (PL) region. ECL studies of NC solid-state films, especially the combination of organic light-emitting diodes (LEDs) and NCs, have suggested the potential for real workable devices. Treated CdSe NC thin films also exhibit stable and fast electrochromic changes and ECL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hodes G (ed) (2001) Wiley-VCH, Weinheim, p 310

    Google Scholar 

  2. O'Regan B, Moser J, Anderson M, Gratzel M (1990) J Phys Chem 94:8720

    Article  Google Scholar 

  3. Frank SN, Bard AJ (1977) J Am Chem Soc 99:303

    Article  Google Scholar 

  4. Dunn W, Aikawa Y, Bard AJ (1981) J Electrochem Soc 128:222

    Google Scholar 

  5. Dunn W, Aikawa Y, Bard AJ (1981) J Am Chem Soc 103:3456

    Article  Google Scholar 

  6. Bard AJ, Pruiksma R, White JR, Dunn W, Ward MD (1982) In: Wallace WL, Nozik AJ, Deb SK, Wilson RH (eds) Photoelectrochemistry: Fundamental processes and measurement techniques, Vol 82-3. The Electrochemical Society, Pennington, NJ p 381

    Google Scholar 

  7. Ward MD, Bard AJ (1982) J Phys Chem 86:3599

    Article  Google Scholar 

  8. Ward MD, White JR, Bard AJ (1983) J Am Chem Soc 105:27

    Article  Google Scholar 

  9. White JR, Bard AJ (1985) J Phys Chem 89:1947

    Article  Google Scholar 

  10. Serpone N, Borgarello E, Pelizzetti E (1988) J Electrochem Soc 135:2760

    Google Scholar 

  11. Chen G, Zen J-M, Fan F-RF, Bard AJ (1991) J Phys Chem 95:3682

    Article  Google Scholar 

  12. Albery WJ, Bartlett PN, Porter JD (1984) J Electrochem Soc 131:2896

    Google Scholar 

  13. Heyrovsky M, Jirkovsky J (1996) Langmuir 11:4288

    Article  Google Scholar 

  14. Ogawa S, Fan F-RF, Bard AJ (1995) J Phys Chem 99:11182

    Article  Google Scholar 

  15. Ogawa S, Hu K, Fan F-RF, Bard AJ (1997) J Phys Chem 29:5707

    Google Scholar 

  16. Hotchandani S, Bedja I, Richard J, Fessenden W, Kamat PV (1994) Langmuir 10:17

    Article  Google Scholar 

  17. Fabregat-Santiago F, Mora-Sero I, Garcia-Belmonte G, Bisquert J (2003) J Phys Chem B 107:758

    Article  Google Scholar 

  18. Holmes JD, Ziegler KJ, Doty RC, Pell LE, Johnston KP, Korgel BA (2001) J Am Chem Soc 123:3743

    Article  PubMed  Google Scholar 

  19. Ziegler KJ (2001) PhD Dissertation. University of Texas, Austin, TX

    Google Scholar 

  20. Murray CB, Norris DJ, Bawendi MG (1993) J Am Chem Soc 115:8706

    Article  Google Scholar 

  21. Chemseddine A, Weller H (1993) Ber Bunsen-Ges 97:636

    Google Scholar 

  22. Vossmeyer T, Katsikas L, Giersig M, Popovic IG, Diesner K, Chemseddine A, Eychmueller A, Weller H (1994) J Phys Chem 98:7665

    Article  Google Scholar 

  23. Peng ZA, Peng X (2001) J Am Chem Soc 123:183

    Article  PubMed  Google Scholar 

  24. Qu L, Peng ZA, Peng X (2001) Nano Lett 1:333

    Article  Google Scholar 

  25. Peng X (2002) Chem Eur J 8:334

    Google Scholar 

  26. Chen S, Truax LA, Sommers JM (2000) Chem Mater 12:3864

    Article  Google Scholar 

  27. Hikmet RAM, Talapin DV, Weller H (2003) J Appl Phys 93:3509

    Article  Google Scholar 

  28. Wehrenberg BL, Wang C, Guyot-Sionnest P (2002) J Phys Chem B 106:10634

    Article  Google Scholar 

  29. Talapin DV, Rogach AL, Kornowski A, Haase M, Weller H (2001) Nano Lett 1:207

    Article  Google Scholar 

  30. Murray CB, Kagan CR, Bawendi MG (2000) Annu Rev Mater Sci 30:545

    Article  Google Scholar 

  31. Girault HH (2001) Electrochimie physique et analytique. PPUR, Lausanne

    Google Scholar 

  32. Bard AJ, Faulkner LR (2001) Electrochemical methods, fundamentals and applications. Wiley, New York

    Google Scholar 

  33. Franceschetti A, Zunger A (2000) Phys Rev B 62:2614

    Article  Google Scholar 

  34. Chen S, Ingrma RS, Hostetler MJ, Pietron JJ, Murray RW, Schaaff TG, Khoury JT, Alvarez MM, Whetten RL (1998) Science 280:2098

    Article  PubMed  Google Scholar 

  35. Hanna AE, Tuominen MT, Tinkham M (1992) Phys Rev Lett 68:3228

    Article  PubMed  Google Scholar 

  36. Fan F-RF, Bard AJ (1997) Science 277:1791

    Article  Google Scholar 

  37. Andres RP, Bein T, Dorogi M, Feng S, Henderson JI, Kubiak CP, Mahoney W, Osifchin RG, Reifenberger R (1996) Science 272:1323

    PubMed  Google Scholar 

  38. Murphy CJ (2002) Anal Chem 74:520A

    PubMed  Google Scholar 

  39. Quinn BM, Liljeroth P, Ruiz V, Laaksonen T, Kontturi K (2003) J Am Chem Soc 125:6644

    Article  PubMed  Google Scholar 

  40. Banin U, Cao Y, Katz D, Millo O (1999) Nature 400:542

    Article  Google Scholar 

  41. Sokol WF, Evans DH (1981) Anal Chem 53:578

    Google Scholar 

  42. Faulkner LR, Bard AJ (1977) In: Bard AJ (ed) Electroanalytical chemistry, Vol 10. Dekker, New York, p 1

    Google Scholar 

  43. Knight AW, Greenway GM (1994) Analyst 119:879

    Article  Google Scholar 

  44. Ding Z, Buda M, Pell LE, Korgel BA, Bard AJ (unpublished results)

    Google Scholar 

  45. Kalyuzhny G, Buda M, McNeill J, Barbara P, Bard AJ (2003) J Am Chem Soc 125:6272

    Article  PubMed  Google Scholar 

  46. Gao FG, Bard AJ (2002) Chem Mater 14:3465

    Article  Google Scholar 

  47. English DS, Pell LE, Yu Z, Barbara PF, Korgel BA (2002) Nano Lett 2:681

    Article  Google Scholar 

  48. Lin C-W, Lin S-Y, Lee S-C, Chia C-T (2002) J Appl Phys 91:1525

    Article  Google Scholar 

  49. Wu Y, Yang P (2001) Adv Mater 13:520

    Article  Google Scholar 

  50. Wilcoxon JP, Provencio PP, Samara GA (2001) Phys Rev B 64:035417=1

    Article  Google Scholar 

  51. Niquet YM, Allan G, Delerue C, Lannoo M (2000) Appl Phys Lett 77:1182

    Article  Google Scholar 

  52. Ding Z, Quinn BM, Haram SK, Pell LE, Korgel BA, Bard AJ (2002) Science 296:1293

    Article  PubMed  Google Scholar 

  53. Chen S, Murray RW, Feldberg SW (1998) J Phys Chem B 102:9898

    Article  Google Scholar 

  54. Haram SK, Quinn BM, Bard AJ (2001) J Am Chem Soc 123:8860

    Article  PubMed  Google Scholar 

  55. Puzder A, Williamson AJ, Grossman JC, Galli G (2002) Phys Rev Lett 88:097401=1

    Article  PubMed  Google Scholar 

  56. Wilcoxon JP, Samara GA, Provencio PN (1999) Phys Rev B 60:2704

    Article  Google Scholar 

  57. Nirmal M, Brus L (1999) Acc Chem Res 32:407

    Article  Google Scholar 

  58. Kovalev D, Heckler H, Ben-Chorin M, Polisski G, Schwartzkopff M, Koch F (1998) Phys Rev Lett 81:2803

    Article  Google Scholar 

  59. Iyer SS, Xie YH (1993) Science 260:40

    Google Scholar 

  60. Holmes JD, Johnston KP, Doty RC, Korgel BA (2000) Science 287:1471

    Article  PubMed  Google Scholar 

  61. McCord P, Yau SL, Bard AJ (1992) Science 257:68

    Google Scholar 

  62. Shim M, Guyot-Sionnest P (2000) Nature 407:981

    Article  PubMed  Google Scholar 

  63. Wang C, Shim M, Guyot-Sionnest P (2001) Science 291:2390

    Article  PubMed  Google Scholar 

  64. Makimura T, Kunii Y, Ono N, Murakami K (1998) Appl Surf Sci 127–129:388

    Article  Google Scholar 

  65. Choi HC, Buriak JM (2000) Chem Mater 12:2151

    Article  Google Scholar 

  66. Myung N, Lu X, Johnston KP, Bard AJ (2004) Nano Lett 4:183

    Article  Google Scholar 

  67. Myung N, Ding Z, Bard AJ (2002) Nano Lett 2:1315

    Article  Google Scholar 

  68. Ren T, Xu J-Z, Tu Y-F, Xu S, Zhu J-J (2005) Electrochem Comm 7:5

    Article  Google Scholar 

  69. Guyot-Sionnest P, Wang C (2003) J Phys Chem 107:7355

    Google Scholar 

  70. Hines MA, Guyot-Sionnest P (1996) J Phys Chem 100:468

    Article  Google Scholar 

  71. Danek M, Jensen KF, Murray CB, Bawendi MG (1996) Chem Mater 8:173

    Article  Google Scholar 

  72. Zhou J, Zhu J, Brzezinski J, Ding Z (submitted) J Phys Chem B

    Google Scholar 

  73. Alperson B, Rubinstein I, Hodes G, Porath D, Millo O (1999) Appl Phys Lett 75:1751

    Article  Google Scholar 

  74. Bae Y, Myung N, Bard AJ (2004) Nano Lett 4:1153

    Article  Google Scholar 

  75. Zhou J, Zhu J, Ding Z (2005) In: Chang PC, Shiojima K, Kopf RE, Buckley DN, Etcheberry A, Marsen B (eds) 207th Meeting of the ECS, Vol 2005-04, The ECS, Quebec City, p 129

    Google Scholar 

  76. Wu XC, Bittner AM, Kern K (2005) J Phys Chem B 109:230

    Article  Google Scholar 

  77. Myung N, Bae Y, Bard AJ (2003) Nano Lett 3:1053

    Article  Google Scholar 

  78. Reiss P, Bleuse J, Pron A (2002) Nano Lett 2:781

    Article  Google Scholar 

  79. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos APS (1998) Science 281:2013

    Article  PubMed  Google Scholar 

  80. Schlamp MC, Peng X, Alivisatos AP (1997) J Appl Phys 82:5837

    Article  Google Scholar 

  81. Peng X, Schlamp MC, Kadavanich AV, Alivisatos AP (1997) J Am Chem Soc 119:7019

    Article  Google Scholar 

  82. Gao M, Sun J, Dulkeith E, Gaponik N, Lemmer U, Feldmann J (2002) Langmuir 18:4098

    Article  Google Scholar 

  83. Greene IA, Wu F, Zhang JZ, Chen S (2003) J Phys Chem B 107:5733

    Article  Google Scholar 

  84. Ushida K, Yoshida Y, Kozawa T, Tagawa S, Kira A (1999) J Phys Chem A 103:4680

    Article  Google Scholar 

  85. Nicol MJ, Paul RL, Diggle JW (1978) Electrochim Acta 23:635

    Article  Google Scholar 

  86. Paul RL, Nicol MJ, Diggle JW, Saunders AP (1978) Electrochim Acta 23:625

    Article  Google Scholar 

  87. Gao FG, Bard AJ (2000) J Am Chem Soc 122:7426

    Article  Google Scholar 

  88. Buda M, Kalyuzhny G, Bard AJ (2002) J Am Chem Soc 124:6090

    Article  PubMed  Google Scholar 

  89. Nishimura K, Nagao Y (2000) J Porous Mater 7:119

    Article  Google Scholar 

  90. Gudiksen MS, Lauhon UJ, Wang J, Smith DC, Lieber CM (2002) Nature 415:617

    Article  PubMed  Google Scholar 

  91. Haneman D, Yuan J (1997) Appl Surf Sci 113:103

    Article  Google Scholar 

  92. Wehrenberg BL, Guyot-Sionnest P (2003) J Am Chem Soc 125:7806

    Article  PubMed  Google Scholar 

  93. Coe S, Woo W-K, Bawendi M, Bulovic V (2002) Nature 420:800

    Article  PubMed  Google Scholar 

  94. Wang C, Shim M, Guyot-Sionnest P (2002) Appl Phys Lett 80:4

    Article  Google Scholar 

  95. Woo W-K, Shimizu KT, Jarosz MV, Neuhauser RG, Leatherdale CA, Rubner MA, Bawendi MG (2002) Adv Mater 14:1068

    Article  Google Scholar 

  96. Kucur E, Riegler J, Urban GA, Nann T (2003) J Chem Phys 119:2333

    Article  Google Scholar 

  97. Poznyak SK, Talapin DV, Shevchenko EV, Weller H (2004) Nano Lett 4:693

    Article  Google Scholar 

Download references

Acknowledgments

The contributions of Bernadette M. Quinn, Santosh K. Haram, Brian A. Korgel, Lindsay E. Pell, Mihai Buda, Gregory Kalyuzhny and Yoonjung Bae are greatly acknowledged. We thank Paul Barbara, F.-R. F. Fan, Rebecca Y. Lai, Zhonghua Yu, Janine Mauzeroll, Ilwhan Oh, and Jai-Pil Choi for their valuable discussions.

Financial support of this project by the National Science Foundation (CHE 0202136) and the Robert A. Welch Foundation is greatly appreciated. ZFD wishes to thank the National Sciences and Engineering Research Council of Canada, the Canada Foundation for Innovation (CFI), the Ontario Innovation Trust (OIT), the Premier's Research Excellence Award (PREA) and the University of Western Ontario (Academic Development Fund (ADF) and a Start-up Fund) for their financial support. He would also thank the Swiss Federal Institute of Technology (EPFL) for a visiting professorship in 2003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allen J. Bard .

Editor information

X. Peng D. M. P. Mingos

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Bard, A.J., Ding, Z., Myung, N. Electrochemistry and Electrogenerated Chemiluminescence of Semiconductor Nanocrystals in Solutions and in Films . In: Peng, X., Mingos, D.M.P. (eds) Semiconductor Nanocrystals and Silicate Nanoparticles. Structure and Bonding, vol 118. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b137239

Download citation

Publish with us

Policies and ethics