Skip to main content

Review: Biodegradable Polymeric Scaffolds. Improvements in Bone Tissue Engineering through Controlled Drug Delivery

  • Chapter
  • First Online:
Tissue Engineering I

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 102))

Abstract

Recent advances in biology, medicine, and engineering have led to the discovery of new therapeutic agents and novel materials for the repair of large bone defects caused by trauma, congenital defects, or bone tumors. These repair strategies often utilize degradable polymeric scaffolds for the controlled localized delivery of bioactive molecules to stimulate bone ingrowth as the scaffold degrades. Polymer composition, hydrophobicity, crystallinity, and degradability will affect the rate of drug release from these scaffolds, as well as the rate of tissue ingrowth. Accordingly, this chapter examines the wide range of synthetic degradable polymers utilized for osteogenic drug delivery. Additionally, the therapeutic proteins involved in bone formation and in the stimulation of osteoblasts, osteoclasts, and progenitor cells are reviewed to direct attention to the many critical issues influencing effective scaffold design for bone repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

bFGF:

Basic fibroblastic growth factor

BMP:

Bone morphogenetic protein

BSA:

Bovine serum albumin

IGF-1:

Insulin-like growth factor-1

OPF:

Oligo(poly(ethylene glycol) fumarate)

PCL:

Poly(ε-caprolactone)

PCPP-SA:

Poly(carboxyphenoxy propane--sebacic acid)

PDGF:

Platelet-derived growth factor

PEG:

Poly(ethylene glycol)

PGA:

Poly(glycolic acid)

PLA:

Poly(d,l-lactic acid)

PLGA:

Poly(lactic-co-glycolic acid)

PLLA:

Poly(l-lactic acid)

PMMA:

Poly(methyl methacrylate)

PPF:

Poly(propylene fumarate)

rh:

Recombinant human

ST-NH-PEG x -PLA y :

N-succinimidyl tartrate monoamine poly(ethylene glycol)--poly(d,l-lactic acid)

TGF-β1:

Transforming growth factor-β1

VEGF:

Vascular endothelial growth factor

References

  1. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543

    Article  CAS  Google Scholar 

  2. Beck LS, Deguzman L, Lee WP, Xu Y, McFatridge LA, Gillett NA, Amento EP (1991) Rapid publication. TGF-beta 1 induces bone closure of skull defects. J Bone Miner Res 6:1257–1265

    CAS  Google Scholar 

  3. Ferguson D, Davis WL, Urist MR, Hurt WC, Allen EP (1987) Bovine bone morphogenetic protein (bBMP) fraction-induced repair of craniotomy defects in the rhesus monkey (Macaca speciosa). Clin Orthop 251–258

    Google Scholar 

  4. Mori M, Isobe M, Yamazaki Y, Ishihara K, Nakabayashi N (2000) Restoration of segmental bone defects in rabbit radius by biodegradable capsules containing recombinant human bone morphogenetic protein-2. J Biomed Mater Res 50:191–198

    Article  CAS  Google Scholar 

  5. Lucas PA, Laurencin C, Syftestad GT, Domb A, Goldberg VM, Caplan AI, Langer R (1990) Ectopic induction of cartilage and bone by water-soluble proteins from bovine bone using a polyanhydride delivery vehicle. J Biomed Mater Res 24:901–911

    Article  CAS  Google Scholar 

  6. Winn SR, Schmitt JM, Buck D, Hu Y, Grainger D, Hollinger JO (1999) Tissue-engineered bone biomimetic to regenerate calvarial critical-sized defects in athymic rats. J Biomed Mater Res 45:414–421

    Article  CAS  Google Scholar 

  7. Andriano KP, Tabata Y, Ikada Y, Heller J (1999) In vitro and in vivo comparison of bulk and surface hydrolysis in absorbable polymer scaffolds for tissue engineering. J Biomed Mater Res 48:602–612

    Article  CAS  Google Scholar 

  8. Elisseeff J, Anseth K, Sims D, McIntosh W, Randolph M, Langer R (1999) Transdermal photopolymerization for minimally invasive implantation. Proc Natl Acad Sci USA 96:3104–3107

    Article  CAS  Google Scholar 

  9. Babensee JE, McIntire LV, Mikos AG (2000) Growth factor delivery for tissue engineering. Pharm Res 17:497–504

    Article  CAS  Google Scholar 

  10. Anseth KS, Metters AT, Bryant SJ, Martens PJ, Elisseeff JH, Bowman CN (2002) In situ forming degradable networks and their application in tissue engineering and drug delivery. J Controlled Release 78:199–209

    Article  CAS  Google Scholar 

  11. Payne RG, McGonigle JS, Yaszemski MJ, Yasko AW, Mikos AG (2002) Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 3. Proliferation and differentiation of encapsulated marrow stromal osteoblasts cultured on crosslinking poly(propylene fumarate). Biomaterials 23:4381–4387

    Article  CAS  Google Scholar 

  12. Payne RG, McGonigle JS, Yaszemski MJ, Yasko AW, Mikos AG (2002) Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 2. Viability of encapsulated marrow stromal osteoblasts cultured on crosslinking poly(propylene fumarate). Biomaterials 23:4373–4380

    Article  CAS  Google Scholar 

  13. Payne RG, Yaszemski MJ, Yasko AW, Mikos AG (2002) Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 1. Encapsulation of marrow stromal osteoblasts in surface crosslinked gelatin microparticles. Biomaterials 23:4359–4371

    Article  CAS  Google Scholar 

  14. Ito Y, Inoue M, Liu SQ, Imanishi Y (1993) Cell growth on immobilized cell growth factor 6. Enhancement of fibroblast cell growth by immobilized insulin and=or fibronectin. J Biomed Mater Res 27:901–907

    Article  CAS  Google Scholar 

  15. Liu SQ, Ito Y, Imanishi Y (1993) Cell growth on immobilized cell growth factor 9. Covalent immobilization of insulin, transferrin, and collagen to enhance growth of bovine endothelial cells. J Biomed Mater Res 27:909–915

    Article  CAS  Google Scholar 

  16. Shin H, Jo S, Mikos AG (2002) Modulation of marrow stromal osteoblast adhesion on biomimetic oligo[poly(ethylene glycol) fumarate] hydrogels modified with Arg-Gly-Asp peptides and a poly(ethylene glycol) spacer. J Biomed Mater Res 61:169–179

    Article  CAS  Google Scholar 

  17. Shin H, Jo S, Mikos AG (2003) Biomimetic materials for tissue engineering. Biomaterials 24:4353–4364

    Article  CAS  Google Scholar 

  18. Shin H, Zygourakis K, Carson-Farach MC, Yaszemski MJ, Mikos AG (2004) Attachment, proliferation, and migration of marrow stromal osteoblasts cultured on biomimetic hydrogels modlified with an osteopontin-derived peptide. Biomaterials 25:895–906

    Article  CAS  Google Scholar 

  19. Rodan GA, Martin TJ (2000) Therapeutic approaches to bone diseases. Science 289:1508–1514

    Article  CAS  Google Scholar 

  20. Wang J, Chow D, Heiati H, Shen WC (2003) Reversible lipidization for the oral delivery of salmon calcitonin. J Controlled Release 88:369–380

    Article  CAS  Google Scholar 

  21. Mestiri M, Benoit JP, Hernigou P, Devissaguet JP, Puisieux F (1995) Cisplatin-loaded poly(methyl methacrylate) implants: a sustained drug delivery system. J Controlled Release 33:107–113

    Article  CAS  Google Scholar 

  22. Downes S (1995) Growth hormone release from biomaterials. In: Wise DL, Trantolo DJ, Altobelli DE, Yaszemski MJ, Gresser JD, Schwartz ER (eds) Encyclopedic handbook of biomaterials and bioengineering, part a: materials. Dekker, New York, pp 1135–1149

    Google Scholar 

  23. Seligson D, Henry SL (1993) Newest knowledge of treatment for bone infection: antibiotic-impregnated beads. Clin Orthop 295:2–118

    Google Scholar 

  24. Thomson RC, Ishaug SL, Mikos AG, Langer R (1995) Polymers for biological systems. In: Meyers RA (ed) Molecular biology and biotechnology, a comprehensive desk reference. VCH, New York, pp 717–724

    Google Scholar 

  25. Burg KJ, Porter S, Kellam JF (2000) Biomaterial developments for bone tissue engineering. Biomaterials 21:2347–2359

    Article  CAS  Google Scholar 

  26. Gittens SA, Uludag H (2001) Growth factor delivery for bone tissue engineering. J Drug Target 9:407–429

    Article  CAS  Google Scholar 

  27. Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504:1508

    Article  CAS  Google Scholar 

  28. Ducy P, Schinke T, Karsenty G (2000) The osteoblast: a sophisticated fibroblast under central surveillance. Science 289:1501–1504

    Article  CAS  Google Scholar 

  29. Nimni ME (1997) Polypeptide growth factors: targeted delivery systems. Biomaterials 18:1201–1225

    Article  CAS  Google Scholar 

  30. Lee SJ (2000) Cytokine delivery and tissue engineering. Yonsei Med J 41:704–719

    CAS  Google Scholar 

  31. Kim HD, Valentini RF (1997) Human osteoblast response in vitro to platelet-derived growth factor and transforming growth factor-beta delivered from controlled-release polymer rods. Biomaterials 18:1175–1184

    Article  CAS  Google Scholar 

  32. Wozney JM (2002) Overview of bone morphogenetic proteins. Spine 27:S2–S8

    Article  Google Scholar 

  33. Solchaga LA, Cassiede P, Caplan AI (1998) Different response to osteo-inductive agents in bone marrow- and periosteum-derived cell preparations. Acta Orthop Scand 69:426–432

    Article  CAS  Google Scholar 

  34. Bonewald LF, Mundy GR (1990) Role of transforming growth factor-beta in bone remodeling. Clin Orthop 261–276

    Google Scholar 

  35. Border WA, Noble NA (1994) Transforming growth factor beta in tissue fibrosis. N Engl J Med 331:1286–1292

    Article  CAS  Google Scholar 

  36. Busch O, Solheim E, Bang G, Tornes K (1996) Guided tissue regeneration and local delivery of insulinlike growth factor I by bioerodible polyorthoester membranes in rat calvarial defects. Int J Oral Maxillofac Implants 11:498–505

    CAS  Google Scholar 

  37. Anusaksathien O, Giannobile WV (2002) Growth factor delivery to re-engineer periodontal tissues. Curr Pharm Biotechnol 3:129–139

    Article  CAS  Google Scholar 

  38. Thomson RC, Shung AK, Yaszemski MJ, Mikos AG (2000) Polymer scaffold processing. In: Lanza RP, Vacanti LRJ (eds) Principles of tissue engineering. Academic, San Diego, pp 251–262

    Google Scholar 

  39. Ratner BD (2002) Reducing capsular thickness and enhancing angiogenesis around implant drug release systems. J Controlled Release 78:211–218

    Article  CAS  Google Scholar 

  40. Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21:2335–2346

    Article  CAS  Google Scholar 

  41. Bulpitt P, Aeschlimann D (1999) New strategy for chemical modification of hyaluronic acid: preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels. J Biomed Mater Res 47:152–169

    Article  CAS  Google Scholar 

  42. DeBlois C, Cote MF, Doillon CJ (1994) Heparin-fibroblast growth factor-fibrin complex: in vitro and in vivo applications to collagen-based materials. Biomaterials 15:665–672

    Article  CAS  Google Scholar 

  43. Yamamoto M, Takahashi J, Tabata Y (2003) Controlled release by biodegradable hydrogels enhances the ectopic bone formation of bone morphogenetic protein. Biomaterials 24:4375–4383

    Article  CAS  Google Scholar 

  44. Edelman ER, Mathiowitz E, Langer R, Klagsbrun M (1991) Controlled and modulated release of basic fibroblast growth factor. Biomaterials 12:619–626

    Article  CAS  Google Scholar 

  45. Sakiyama-Elbert SE, Hubbell JA (2000) Development of fibrin derivatives for controlled release of heparin-binding growth factors. J Controlled Release 65:389–402

    Article  CAS  Google Scholar 

  46. Park YJ, Lee YM, Lee JY, Seol YJ, Chung CP, Lee SJ (2000) Controlled release of platelet-derived growth factor-BB from chondroitin sulfate-chitosan sponge for guided bone regeneration. J Controlled Release 67:385–394

    Article  CAS  Google Scholar 

  47. Mattioli-Belmonte M, Gigante A, Muzzarelli RA, Politano R, DeBenedittis A, Specchia N, Buffa A, Biagini G, Greco F (1999) N,N-Dicarboxymethyl chitosan as delivery agent for bone morphogenetic protein in the repair of articular cartilage. Med Biol Eng Comp 37:130–134

    CAS  Google Scholar 

  48. Urist MR, Silverman BF, Buring K, Dubuc FL, Rosenberg JM (1967) The bone induction principle. Clin Orthop 53:243–283

    CAS  Google Scholar 

  49. Urist MR (1995) Experimental delivery systems for bone morphogenetic protein. In: Wise DL, Trantolo DJ, Altobelli DE, Yaszemski MJ, Gresser JD, Schwartz ER (eds) Encyclopedic handbook of biomaterials and bioengineering, part a: materials. Dekker, New York, pp 1093–1133

    Google Scholar 

  50. Gombotz WR, Pankey SC, Bouchard LS, Ranchalis J, Puolakkainen P (1993) Controlled release of TGF-beta 1 from a biodegradable matrix for bone regeneration. J Biomater Sci Polym Ed 5:49–63

    CAS  Google Scholar 

  51. Appel LE, Balena R, Cortese M, Opas E, Rodan G, Seedor G, Zentner GM (1993) In vitro characterization and in vivo efficacy of a prostaglandin E2=poly(orthoester) implant for bone growth production. J Controlled Release 26:77–85

    Article  CAS  Google Scholar 

  52. Deschamps AA, Claase MB, Sleijster WJ, de Bruijn JD, Grijpma DW, Feijen J (2002) Design of segmented poly(ether ester) materials and structures for the tissue engineering of bone. J Controlled Release 78:175–186

    Article  CAS  Google Scholar 

  53. Gopferich A (1996) Mechanisms of polymer degradation and erosion. Biomaterials 17:103–114

    Article  CAS  Google Scholar 

  54. Kohn J, Langer R (1996) Bioresorbable and bioerodible materials. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science: an introduction to materials in medicine. Academic, New York,pp 64–72

    Google Scholar 

  55. Barrows TH (1986) Degradable implant materials: a review of synthetic absorbable polymers and their applications. Clin Mater 1:233–257

    Article  Google Scholar 

  56. Domb AJ, Amselem S, Langer R, Maniar M (1994) Polyanhydride Carriers of Drugs. In: Shalably SW (ed) Biomedical polymers, designed-to-degrade systems. Hanser, New York, pp 69–96

    Google Scholar 

  57. Schmidt C, Wenz R, Nies B, Moll F (1995) Antiobiotic in vivo=in vitro release, histocompatibility and biodegradation of gentamicin implants based on lactic acid polymers and copolymers. J Controlled Release 37:83–94

    Article  CAS  Google Scholar 

  58. Soriano I, Evora C (2000) Formulation of calcium phosphates=poly (d,l-lactide) blends containing gentamicin for bone implantation. J Controlled Release 68:121–134

    Article  CAS  Google Scholar 

  59. Ramchandani M, Robinson D (1998) In vitro and in vivo release of ciprofloxacin from PLGA 50:50 implants. J Controlled Release 54:167–175

    Article  CAS  Google Scholar 

  60. Baro M, Sanchez E, Delgado A, Perera A, Evora C (2002) In vitro–in vivo characterization of gentamicin bone implants. J Controlled Release 83:353–364

    Article  CAS  Google Scholar 

  61. Smith JL, Jin L, Parsons T, Turek T, Ron E, Philibrook CM, Kenley RA, Marden L, Hollinger J, Bostrom MPG, Tomin E, Lane JM (1995) Osseous regeneration in preclinical models using bioabsorbable delivery technology for recominbant human bone morphogenetic protein 2 (rhBMP-2). J Controlled Release 36:183–195

    Article  CAS  Google Scholar 

  62. Zellin G, Linde A (1997) Importance of delivery systems for growth-stimulatory factors in combination with osteopromotive membranes. An experimental study using rhBMP-2 in rat mandibular defects. J Biomed Mater Res 35:181–190

    Article  CAS  Google Scholar 

  63. Boyan BD, Lohmann CH, Somers A, Niederauer GG, Wozney JM, Dean DD, Carnes DL Jr, Schwartz Z (1999) Potential of porous poly-d,l-lactide-co-glycolide particles as a carrier for recombinant human bone morphogenetic protein-2 during osteoinduction in vivo. J Biomed Mater Res 46:51–59

    Article  CAS  Google Scholar 

  64. Isobe M, Yamazaki Y, Mori M, Amagasa T (1999) Bone regeneration produced in rat femur defects by polymer capsules containing recombinant human bone morphogenetic protein-2. J Oral Maxillofac Surg 57:695–698; discussion 699

    CAS  Google Scholar 

  65. Mayer M, Hollinger J, Ron E, Wozney J (1996) Maxillary alveolar cleft repair in dogs using recombinant human bone morphogenetic protein-2 and a polymer carrier. Plast Reconstr Surg 98:247–259

    CAS  Google Scholar 

  66. Kirker-Head CA, Gerhart TN, Armstrong R, Schelling SH, Carmel LA (1998) Healing bone using recombinant human bone morphogenetic protein 2 and copolymer. Clin Orthop 205–217

    Google Scholar 

  67. Miyamoto S, Takaoka K, Okada T, Yoshikawa H, Hashimoto J, Suzuki S, Ono K (1992) Evaluation of polylactic acid homopolymers as carriers for bone morphogenetic protein. Clin Orthop 274–285

    Google Scholar 

  68. Park YJ, Ku Y, Chung CP, Lee SJ (1998) Controlled release of platelet-derived growth factor from porous poly(l-lactide) membranes for guided tissue regeneration. J Controlled Release 51:201–211

    Article  CAS  Google Scholar 

  69. Lee JY, Nam SH, Im SY, Park YJ, Lee YM, Seol YJ, Chung CP, Lee SJ (2002) Enhanced bone formation by controlled growth factor delivery from chitosan-based biomaterials. J Controlled Release 78:187–197

    Article  CAS  Google Scholar 

  70. Peter SJ, Miller MJ, Yasko AW, Yaszemski MJ, Mikos AG (1998) Polymer concepts in tissue engineering. J Biomed Mater Res 43:422–427

    Article  CAS  Google Scholar 

  71. Ishaug SL, Payne RG, Yaszemski MJ, Aufdemorte TB, Bizios R, Mikos AG (1996) Osteoblast migration on poly(alpha-hydroxy esters). Biotechnol Bioeng 50:443–451

    Article  CAS  Google Scholar 

  72. Ishaug-Riley SL, Crane GM, Gurlek A, Miller MJ, Yasko AW, Yaszemski MJ, Mikos AG (1997) Ectopic bone formation by marrow stromal osteoblast transplantation using poly(dl-lactic-co-glycolic acid) foams implanted into the rat mesentery. J Biomed Mater Res 36:1–8

    Article  CAS  Google Scholar 

  73. Whang K, Tsai DC, Nam EK, Aitken M, Sprague SM, Patel PK, Healy KE (1998) Ectopic bone formation via rhBMP-2 delivery from porous bioabsorbable polymer scaffolds. J Biomed Mater Res 42:491–499

    Article  CAS  Google Scholar 

  74. Whang K, Goldstick TK, Healy KE (2000) A biodegradable polymer scaffold for delivery of osteotropic factors. Biomaterials 21:2545–2551

    Article  CAS  Google Scholar 

  75. Wu XS (1995) Preparation, characterization, and drug delivery applications of microspheres based on biodegradable lactic=glycolic acid polymers. In: Wise DL, Trantolo DJ, Altobelli DE, Yaszemski MJ, Gresser JD, Schwartz ER (eds) Encyclopedic handbook of biomaterials and bioengineering, part a: materials. Dekker, New York, pp 1151–1199

    Google Scholar 

  76. Peter SJ, Lu L, Kim DJ, Stamatas GN, Miller MJ, Yaszemski MJ, Mikos AG (2000) Effects of transforming growth factor beta1 released from biodegradable polymer microparticles on marrow stromal osteoblasts cultured on poly(propylene fumarate) substrates. J Biomed Mater Res 50:452–462

    Article  CAS  Google Scholar 

  77. Oldham JB, Lu L, Zhu X, Porter BD, Hefferan TE, Larson DR, Currier BL, Mikos AG, Yaszemski MJ (2000) Biological activity of rhBMP-2 released from PLGA microspheres. J Biomech Eng 122:289–292

    Article  CAS  Google Scholar 

  78. Meinel L, Illi OE, Zapf J, Malfanti M, Peter Merkle P, Gander B (2001) Stabilizing insulin-like growth factor-I in poly(d,l-lactide-co-glycolide) microspheres. J Controlled Release 70:193–202

    Article  CAS  Google Scholar 

  79. Lu L, Stamatas GN, Mikos AG (2000) Controlled release of transforming growth factor beta1 from biodegradable polymer microparticles. J Biomed Mater Res 50:440–451

    Article  CAS  Google Scholar 

  80. Richardson TP, Peters MC, Ennett AB, Mooney DJ (2001) Polymeric system for dual growth factor delivery. Nat Biotechnol 19:1029–1034

    Article  CAS  Google Scholar 

  81. Hedberg EL, Tang A, Crowther RS, Carney DH, Mikos AG (2002) Controlled release of an osteogenic peptide from injectable biodegradable polymeric composites. J Controlled Release 84:137–150

    Article  CAS  Google Scholar 

  82. Marra KG, Szem JW, Kumta PN, DiMilla PA, Weiss LE (1999) In vitro analysis of biodegradable polymer blend=hydroxyapatite composites for bone tissue engineering. J Biomed Mater Res 47:324–335

    Article  CAS  Google Scholar 

  83. Ekholm M, Hietanen J, Lindqvist C, Rautavuori J, Santavirta S, Suuronen R (1999) Histological study of tissue reactions to epsilon-caprolactone-lactide copolymer in paste form. Biomaterials 20:1257–1262

    Article  CAS  Google Scholar 

  84. Kellomaki M, Niiranen H, Puumanen K, Ashammakhi N, Waris T, Tormala P (2000) Bioabsorbable scaffolds for guided bone regeneration and generation. Biomaterials 21:2495–2505

    Article  CAS  Google Scholar 

  85. Jazayeri MA, Nichter LS, Zhou ZY, Wellisz T, Cheung DT (1994) Comparison of various delivery systems for demineralized bone matrix in a rat cranial defect model. J Craniofacial Surg 5:172–178

    CAS  Google Scholar 

  86. Bennett S, Connolly K, Lee DR, Jiang Y, Buck D, Hollinger JO, Gruskin EA (1996) Initial biocompatibility studies of a novel degradable polymeric bone substitute that hardens in situ. Bone 19:101S–107S

    Article  CAS  Google Scholar 

  87. Miyamoto S, Takaoka K, Okada T, Yoshikawa H, Hashimoto J, Suzuki S, Ono K (1993) Polylactic acid-polyethylene glycol block copolymer. A new biodegradable synthetic carrier for bone morphogenetic protein. Clin Orthop 333–343

    Google Scholar 

  88. Saito N, Okada T, Horiuchi H, Murakami N, Takahashi J, Nawata M, Ota H, Miyamoto S, Nozaki K, Takaoka K (2001) Biodegradable poly-d,l-lactic acid-polyethylene glycol block copolymers as a BMP delivery system for inducing bone. J Bone Joint Surg Am 83-A Suppl 1:S92–98

    Google Scholar 

  89. Saito N, Okada T, Horiuchi H, Ota H, Takahashi J, Murakami N, Nawata M, Kojima S, Nozaki K, Takaoka K (2003) Local bone formation by injection of recombinant human bone morphogenetic protein-2 contained in polymer carriers. Bone 32:381–386

    Article  CAS  Google Scholar 

  90. Saito N, Okada T, Horiuchi H, Murakami N, Takahashi J, Nawata M, Ota H, Nozaki K, Takaoka K (2001) A biodegradable polymer as a cytokine delivery system for inducing bone formation. Nat Biotechnol 19:332–335

    Article  CAS  Google Scholar 

  91. Tessmar J, Mikos AG, Gopferich A (2003) The use of poly(ethylene glycol)-block-poly(lactic acid) derived copolymers for the rapid creation of biomimetic surfaces. Biomaterials 24:4475–4486

    Article  CAS  Google Scholar 

  92. Gao TJ, Kousinioris NA, Wozney JM, Winn S, Uludag H (2002)Synthetic thermoreversible polymers are compatible with osteoinductive activity of recombinant human bone morphogenetic protein 2. Tissue Eng 8:429–440

    Article  CAS  Google Scholar 

  93. Uludag H, Norrie B, Kousinioris N, Gao T (2001) Engineering temperature-sensitive poly(N-isopropylacrylamide) polymers as carriers of therapeutic proteins. Biotechnol Bioeng 73:510–521

    Article  CAS  Google Scholar 

  94. Hacker M, Tessmar J, Neubauer M, Blaimer A, Blunk T, Gopferich A, Schulz MB (2003) Towards biomimetic scaffolds: Anhydrous scaffold fabrication from biodegradable amine-reactive diblock copolymers. Biomaterials 24:4459–4473

    Article  CAS  Google Scholar 

  95. West JL, Hubbell JA (1995) Photopolymerizable hydrogel materials for drug delivery applications. React Polym 25:139–147

    Article  CAS  Google Scholar 

  96. Mason MN, Metters AT, Bowman CN, Anseth K (2001) Predicting controlled-release behavior of degradable PLA-b-PEG-b-PLA hydrogels. Macromol 34

    Google Scholar 

  97. Burdick JA, Mason MN, Hinman AD, Thorne K, Anseth KS (2002) Delivery of osteoinductive growth factors from degradable PEG hydrogels influences osteoblast differentiation and mineralization. J Controlled Release 83:53–63

    Article  CAS  Google Scholar 

  98. Jo S, Shin H, Shung AK, Fisher JP, Mikos AG (2001) Synthesis and characterization of oligo(poly(ethylene glycol) fumarate) macromer. Macromolecules 34:2839–2844

    Article  CAS  Google Scholar 

  99. Shin H, Ruhe PQ, Mikos AG, Jansen JA (2003) In vivo bone and soft tissue response to injectable biodegradable oligo(poly(ethylene glycol) fumarate) hydrogels. Biomaterials 24:3201–3211

    Article  CAS  Google Scholar 

  100. Temenoff JS, Athanasiou KA, LeBaron RG, Mikos AG (2002) Effect of poly(ethylene glycol) molecular weight on tensile and swelling properties of oligo(poly(ethylene glycol) fumarate) hydrogels for cartilage tissue engineering. J Biomed Mater Res 59:429–437

    Article  CAS  Google Scholar 

  101. Holland TA, Tabata Y, Mikos AG (2003) In vitro release of transforming growth factor-β1 from gelatin microparticles encapsulated in biodegradable, injectable oligo(poly(ethylene glycol) fumarate) hydrogels. J Controlled Release 91:299–313

    Article  CAS  Google Scholar 

  102. Mathiowitz E, Langer R (1987) Polyanhydride microspheres as drug carriers I Hot-melt microencapsulation. J Controlled Release 5:13–22

    Article  CAS  Google Scholar 

  103. Ron E, Turek T, Mathiowitz E, Chasin M, Hageman M, Langer R (1993) Controlled release of polypeptides from polyanhydrides. Proc Natl Acad Sci USA 90:4176–4180

    Article  CAS  Google Scholar 

  104. Nelson CL, Hickmon SG, Skinner RA (1992) The treatment of experimental osteomyelitis by a local biodegradable antibiotic delivery system. Orthopaedic Research Society 38th Annual Meeting, p 431

    Google Scholar 

  105. Mathiowitz E, Kline D, Langer R (1990) Morphology of polyanhydride microsphere delivery systems. Scanning Microsc 4:329–340

    CAS  Google Scholar 

  106. Anseth KS, Shastri VR, Langer R (1999) Photopolymerizable degradable polyanhydrides with osteocompatibility. Nat Biotechnol 17:156–159

    Article  CAS  Google Scholar 

  107. Timmer MD, Ambrose CG, Mikos AG (2003) Evaluation of thermal- and photo-crosslinked biodegradable poly(propylene fumarate)-based networks. J Biomed Mater Res 66A:811–818

    Article  CAS  Google Scholar 

  108. Fisher JP, Timmer MD, Holland TA, Dean D, Engel PS, Mikos AG (2003) Photoinitiated cross-linking of the biodegradable polyester poly(propylene fumarate) Part I: determination of network structure. Biomacromolecules 4:1327–1334

    Article  CAS  Google Scholar 

  109. Fisher JP, Holland TA, Dean D, Engel PS, Mikos AG (2001) Synthesis and properties of photocross-linked poly(propylene fumarate) scaffolds. J Biomater Sci Polym Ed 12:673–687

    Article  CAS  Google Scholar 

  110. Fisher JP, Vehof JW, Dean D, van der Waerden JP, Holland TA, Mikos AG, Jansen JA (2002) Soft and hard tissue response to photocrosslinked poly(propylene fumarate) scaffolds in a rabbit model. J Biomed Mater Res 59:547–556

    Article  CAS  Google Scholar 

  111. Vehof JW, Fisher JP, Dean D, van der Waerden JP, Spauwen PH, Mikos AG, Jansen JA (2002) Bone formation in transforming growth factor beta-1-coated porous poly(propylene fumarate) scaffolds. J Biomed Mater Res 60:241–251

    Article  CAS  Google Scholar 

  112. Hedberg E, Kroese-Deutman H, Lemoine J, Shih C, Crowther R, Carney D, Liebschner M, Mikos A, Jansen J (2003) In vivo osteogenesis in response to the controlled release of TP508 from biodegradable polymeric scaffolds. Controlled Release Society 30th Annual Meeting Proceedings, p 90

    Google Scholar 

  113. Uludag H, Fan XD (2000) Controlled drug delivery: designing technologies for the future. In: Park K, Mrsny R (eds) Drug delivery in the 21st century. American Chemical Sociey, Washington, DC, pp 253–262

    Google Scholar 

  114. Hahn M, Gornitz E, Dautzenberg H (1998) Synthesis and properties of ionically modified polymers with LCST behavior. Macromol 31:5616–5623

    CAS  Google Scholar 

  115. Cordoba F, Dong SS, Robinson M, Strates BS, Nimni ME (1993) Effect of microcrystalline hydroxyapatite on bone marrow stromal cell osteogenesis. Orthopaedic Research Society 39th Annual Meeting, p 102

    Google Scholar 

  116. McGill JJ, Strates BS, McGuire MH (1991) Stimulation of osteogenesis by PDGF and TGF-beta adsorbed on microcrystalline hydroxyapatite. J Bone Miner Res 6:503

    Google Scholar 

  117. Strates BS, Kilaghbian V, Nimni ME, McGuire MH, Petty RW (1992) Enhanced periosteal osteogenesis induced by rTGF-beta1 absorbed on microcrystals of hydroxyapatite. Orthopaedic Research Society 38th Annual Meeting, p 591

    Google Scholar 

  118. Holland TA, Tessmar J, Tabata Y, Mikos AG (2004) Transforming growth factor-beta1 release from oligo(poly(ethylene gylcol) fumarate) hydrogels in conditions that model the cartilage wound healing environment. J Controlled Release 94:101–114

    Article  CAS  Google Scholar 

  119. Zhang R, Ma PX (1999) Poly(alpha-hydroxyl acids)=hydroxyapatite porous composites for bone-tissue engineering I Preparation and morphology. J Biomed Mater Res 44:446–455

    Article  CAS  Google Scholar 

  120. Peter SJ, Kim P, Yasko AW, Yaszemski MJ, Mikos AG (1999) Crosslinking characteristics of an injectable poly(propylene fumarate)=beta-tricalcium phosphate paste and mechanical properties of the crosslinked composite for use as a biodegradable bone cement. J Biomed Mater Res 44:314–321

    Article  CAS  Google Scholar 

  121. Vogelson C, Koide Y, Barron A (2000) Fiber reinforced epoxy resin composite materials using carboxylate-alumoxanes as cross-linking agents. Mater Res Soc Symp Proc 581:369–374

    CAS  Google Scholar 

  122. Vogelson C, Koide Y, Alemany L, Barron A (2000) Inorganic-organic hybrid and composite resin materials using carboxylate-alumoxanes as functionalized cross-linking agents. Chem Mater 12:795–904

    Article  CAS  Google Scholar 

  123. Illi OE, Feldmann CP (1998) Stimulation of fracture healing by local application of humoral factors integrated in biodegradable implants. Eur J Pediatr Surg 8:251–255

    Article  CAS  Google Scholar 

  124. Barratt G, Couarraze G, Couvreur P, Dubernet C, Fattal E, Gref R, Labarre D, Legrand P, Ponchel G, Vauthier C (2002) Polymeric micro- and nanoparticles as drug carriers. In: Dumitriu S (ed) Polymeric biomaterials. Dekker, New York, pp 753–781

    Google Scholar 

  125. Gibaud S, Rousseau C, Weingarten C, Favier R, Douay L, Andreux JP, Couvreur P (1998) Polyalkylcyanoacrylate nanoparticles as carriers for granulocyte-colony stimulating factor (G-CSF). J Controlled Release 52:131–139

    Article  CAS  Google Scholar 

  126. Cooke MN, Fisher JP, Dean D, Rimnac C, Mikos AG (2003) Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth. J Biomed Mater Res 64B:65–69

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work on drug delivery for bone tissue engineering was supported by the National Institutes of Health (R01 AR48756). T.A.H. also acknowledges financial support from a Whitaker Foundation Graduate Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonios G. Mikos .

Editor information

Kyongbum Lee David Kaplan

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Holland, T.A., Mikos, A.G. (2005). Review: Biodegradable Polymeric Scaffolds. Improvements in Bone Tissue Engineering through Controlled Drug Delivery. In: Lee, K., Kaplan, D. (eds) Tissue Engineering I. Advances in Biochemical Engineering/Biotechnology, vol 102. Springer, Berlin, Heidelberg . https://doi.org/10.1007/b137205

Download citation

Publish with us

Policies and ethics