Skip to main content

Systems biology of the yeast cell cycle engine

  • Chapter
  • First Online:
Systems Biology

Part of the book series: Topics in Current Genetics ((TCG,volume 13))

Abstract

One goal of systems biology is to obtain an integrated understanding of the physiological properties of cells from the detailed molecular machinery (the genes, proteins, and metabolites) that carry out these functions. Cell cycle regulation in yeast is an appropriate test case for this ambition, because the scientific community has amassed much information about the molecular components and functional properties of the control system. We propose a general mechanism for the regulation of cyclin-dependent kinases, the enzymes that control the major events of the cell cycle (DNA synthesis, mitosis and cell division). We translate the mechanism into differential-algebraic equations, and study solutions of these equations by numerical simulations and one-parameter bifurcation diagrams. We present results for wild type cells and a mutant that undergoes repeated rounds of DNA replication without intervening mitoses. We use bifurcation diagrams to reveal the general principles by which a cell controls its progression through the cell cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Alberghina L, Rossi R, Querin L, Wanke V, Vanoni M (2004) A cell sizer network involving Cln3 and Far1 controls entrance into S phase in the mitotic cycle of budding yeast. J Cell Biol 167:433-443

    Article  PubMed  Google Scholar 

  • 2. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1994) Molecular Biology of the Cell, 3rd edn. Garland Publishing, Inc., New York

    Google Scholar 

  • 3. Aligue R, Wu L, Russell P (1997) Regulation of Schizosaccharomyces pombe Wee1 tyrosine kinase. J Biol Chem 272:13320-13325

    Article  PubMed  Google Scholar 

  • 4. Amon A, Surana U, Muroff I, Nasmyth K (1992) Regulation of p34CDC28 tyrosine phosphorylation is not required for entry into mitosis in S. cerevisiae. Nature 355:368-371

    Article  PubMed  Google Scholar 

  • 5. Amon A, Tyers M, Futcher B, Nasmyth K (1993) Mechanisms that help the yeast cell cycle clock tick: G2 cyclins transcriptionally activate G2 cyclins and repress G1 cyclins. Cell 74:993-1007

    Article  PubMed  Google Scholar 

  • 6. Ayte J, Schweitzer C, Zarzov P, Nurse P, DeCaprio JA (2001) Feedback regulation of the MBF transcription factor by cyclin Cig2. Nat Cell Biol 3:1043-1050

    Article  PubMed  Google Scholar 

  • 7. Bai S, Goodrich D, Thron CD, Tecarro E, Obeyesekere M (2003) Theoretical and experimental evidence for hysteresis in cell proliferation. Cell Cycle 2:46-52

    PubMed  Google Scholar 

  • 8. Benito J, Martin-Castellanos C, Moreno S (1998) Regulation of the G1 phase of the cell cycle by periodic stabilization and degradation of the p25rum1 CDK inhibitor. EMBO J 17:482-497

    Article  PubMed  Google Scholar 

  • 9. Blanco MA, Sanchez-Diaz A, de Prada JM, Moreno S (2000) APC(ste9/srw1) promotes degradation of mitotic cyclins in G(1) and is inhibited by cdc2 phosphorylation. EMBO J 19:3945-3955

    Article  PubMed  Google Scholar 

  • 10. Botchan M (1996) Coordinating DNA replication with cell division: Current status of the licensing concept. Proc Natl Acad Sci USA 93:9997-10000

    Article  PubMed  Google Scholar 

  • 11. Bray D (1995) Protein molecules as computational elements in living cells. Nature 376:307-312

    Article  PubMed  Google Scholar 

  • 12. Ciliberto A, Petrus MJ, Tyson JJ, Sible JC (2003) A kinetic model of the cyclin E/Cdk2 developmental timer in Xenopus laevis embryos. Biophys Chem 104:573-589

    Article  PubMed  Google Scholar 

  • 13. Correa-Bordes J, Nurse P (1995) p25rum1 orders S-phase and mitosis by acting as an inhibitor of the p34cdc2 mitotic kinase. Cell 83:1001-1009

    Article  PubMed  Google Scholar 

  • 14. Cross FR, Archambault V, Miller M, Klovstad M (2002) Testing a mathematical model of the yeast cell cycle. Mol Biol Cell 13:52-70

    Article  PubMed  Google Scholar 

  • 15. Cross FR, Schroeder L, Kruse M, Chen KC (2005) Quantitative characterization of a mitotic cyclin threshold regulating exit from mitosis. Mol Biol Cell 16 (in press)

    Google Scholar 

  • 16. Dahmann C, Diffley JFX, Nasmyth K (1995) S-phase-promoting cyclin-dependent kinases prevent re-replication by inhibiting the transition of replication origins to a pre-replicative state. Curr Biol 5:1257-1269

    Article  PubMed  Google Scholar 

  • 17. Fantes PA, Nurse P (1981) Division timing: controls, models and mechanisms. In: John PCL (ed) The Cell Cycle. Cambridge Univ. Press, Cambridge UK, pp 11-33

    Google Scholar 

  • 18. Fisher D, Nurse P (1995) Cyclins of the fission yeast Schizosaccharomyces pombe. Semin Cell Biol 6:73-78

    Article  PubMed  Google Scholar 

  • 19. Fisher DL, Nurse P (1996) A single fission yeast mitotic cyclin B p34cdc2 kinase promotes both S-phase and mitosis in the absence of G1 cyclins. EMBO J 15:850-860

    PubMed  Google Scholar 

  • 20. Hayles J, Fisher D, Woollard A, Nurse P (1994) Temporal order of S phase and mitosis in fission yeast is determined by the state of the p34cdc2 -mitotic B cyclin complex. Cell 78:813-822

    Article  PubMed  Google Scholar 

  • 21. Jaspersen SL, Charles JF, Morgan DO (1999) Inhibitory phosphorylation of the APC regulator Hct1 is controlled by the kinase Cdc28 and the phosphatase Cdc14. Curr Biol 11:227-236

    Article  Google Scholar 

  • 22. Kaplan D, Glass L (1995) Understanding Nonlinear Dynamics. Springer-Verlag, New York

    Google Scholar 

  • 23. Kitamura K, Maekawa H, Shimoda C (1998) Fission yeast Ste9, a homolog of Hct1/Cdh1 and Fizzy-related, is a novel negative regulator of cell cycle progression during G1-phase. Mol Biol Cell 9:1065-1080

    PubMed  Google Scholar 

  • 24. Koch C, Moll T, Neuberg M, Ahorn H, Nasmyth K (1993) A role for the transcription factors Mbp1 and Swi4 in progression from G1 to S phase. Science 261:1551-1557

    PubMed  Google Scholar 

  • 25. Lew DJ (2003) The morphogenesis checkpoint: how yeast cells watch their figures. Curr Opin Cell Biol 15:648-653

    Article  PubMed  Google Scholar 

  • 26. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000) Molecular Cell Biology, 4th edn. W.H. Freeman, New York

    Google Scholar 

  • 27. Mendenhall MD, Hodge AE (1998) Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 62:1191-1243

    PubMed  Google Scholar 

  • 28. Millar JBA, Russell P (1992) The cdc25 M-phase inducer: an unconventional protein phosphatase. Cell 68:407-410

    Article  PubMed  Google Scholar 

  • 29. Mondesert O, McGowan CH, Russell P (1996) Cig2, a B-type cyclin, promotes the onset of S in Schizosaccharomyces pombe. Mol Cell Biol 16:1527-1533

    PubMed  Google Scholar 

  • 30. Morgan DO (1999) Regulation of the APC and the exit from mitosis. Nature Cell Biol 1:E47-E53

    Article  PubMed  Google Scholar 

  • 31. Nasmyth K (1996a) At the heart of the budding yeast cell cycle. Trends Genet 12:405-412

    Article  PubMed  Google Scholar 

  • 32. Nasmyth K (1996b) Viewpoint: putting the cell cycle in order. Science 274:1643-1645

    Article  PubMed  Google Scholar 

  • 33. Novak B, Csikasz-Nagy A, Gyorffy B, Nasmyth K, Tyson JJ (1998) Model scenarios for evolution of the eukaryotic cell cycle. Phil Trans Royal Soc London. Series B: Biol Sci 353:2063-2076

    Google Scholar 

  • 34. Nurse P (1990) Universal control mechanism regulating onset of M-phase. Nature 344:503-508

    Article  PubMed  Google Scholar 

  • 35. Nurse P (1999) Cyclin dependent kinases and regulation of the fission yeast cell cycle. Biol Chem 380:729-733

    Article  PubMed  Google Scholar 

  • 36. Peters JM (2002) The anaphase-promoting complex: proteolysis in mitosis and beyond. Mol Cell 9:931-943

    Article  PubMed  Google Scholar 

  • 37. Pomerening JR, Sontag ED, Ferrell JE Jr (2003) Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nat Cell Biol 5:346-351

    Article  PubMed  Google Scholar 

  • 38. Russell P, Nurse P (1986) cdc25+ functions as an inducer in the mitotic control of fission yeast. Cell 45:145-153

    Article  PubMed  Google Scholar 

  • 39. Russell P, Nurse P (1987) Negative regulation of mitosis by wee1+, a gene encoding a protein kinase homolog. Cell 49:559-567

    Article  PubMed  Google Scholar 

  • 40. Schwob E, Bohm T, Mendenhall MD, Nasmyth K (1994) The B-type cyclin kinase inhibitor p40sic1 controls the G1 to S transition in S. cerevisiae. Cell 79:233-244

    Article  PubMed  Google Scholar 

  • 41. Schwob E, Nasmyth K (1993) CLB5 and CLB6, a new pair of B cyclins involved in DNA replication in Saccharomyces cerevisiae. Genes Dev 7:1160-1175

    PubMed  Google Scholar 

  • 42. Sha W, Moore J, Chen K, Lassaletta AD, Yi CS, Tyson JJ, Sible JC (2003) Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts. Proc Natl Acad Sci USA 100:975-980

    Article  PubMed  Google Scholar 

  • 43. Simanis V (2003) Events at the end of mitosis in the budding and fission yeasts. J Cell Sci 116:4263-4275

    Article  PubMed  Google Scholar 

  • 44. Sorger PK, Murray AW (1992) S-phase feedback control in budding yeast independent of tyrosine phosphorylation of p34cdc28. Nature 355:365-368

    Article  PubMed  Google Scholar 

  • 45. Strogatz SH (1994) Nonlinear Dynamics and Chaos. Addison-Wesley Co., Reading, MA

    Google Scholar 

  • 46. Thornton BR, Chen KC, Cross FR, Tyson JJ, Toczyski DP (2004) Cycling without the cyclosome: modeling a yeast strain lacking the APC. Cell Cycle 3:629-633. Epub 2004 May 2003

    PubMed  Google Scholar 

  • 47. Tyson JJ, Chen K, Novak B (2001) Network dynamics and cell physiology. Nature Rev Mol Cell Biol 2:908-916

    Article  Google Scholar 

  • 48. Tyson JJ, Csikasz-Nagy A, Novak B (2002) The dynamics of cell cycle regulation. BioEssays 24:1095-1109

    Article  PubMed  Google Scholar 

  • 49. Verma R, Feldman RMR, Deshaies RJ (1997) Sic1 is ubiquitinated in vitro by a pathway that requires CDC4, CDC34 and Cyclin/CDK activities. Mol Biol Cell 8:1427-1437

    PubMed  Google Scholar 

  • 50. Wuarin J, Nurse P (1996) Regulating S phase: CDKs, licensing and proteolysis. Cell 85:785-787

    Article  PubMed  Google Scholar 

  • 51. Yamaguchi S, Okayama H, Nurse P (2000) Fission yeast Fizzy-related protein srw1p is a G(1)-specific promoter of mitotic cyclin B degradation. EMBO J 19:3968-3977

    Article  PubMed  Google Scholar 

  • 52. Zachariae W, Nasmyth K (1999) Whose end is destruction: cell division and the anaphase-promoting complex. Genes Devel 13:2039-2058

    PubMed  Google Scholar 

  • 53. Zachariae W, Schwab M, Nasmyth K, Seufert W (1998) Control of cyclin ubiquitination by CDK-regulated binding of Hct1 to the anaphase promoting complex. Science 282:1721-1724

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Béla Novák .

Editor information

Lila Alberghina H.V. Westerhoff

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Novák, B., Chen, K.C., Tyson, J.J. Systems biology of the yeast cell cycle engine. In: Alberghina, L., Westerhoff, H. (eds) Systems Biology. Topics in Current Genetics, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b137123

Download citation

Publish with us

Policies and ethics