Skip to main content

Stochastic “Mirror Symmetry Breaking” via Self-Assembly, Reactivity and Amplification of Chirality: Relevance to Abiotic Conditions

  • Chapter
  • First Online:
Prebiotic Chemistry

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 259))

Abstract

Theories of prebiotic life suggest that homochirality emerged in Nature in abiotic times via deterministic or chance scenarios. This chapter deals with experiments demonstrating the feasibility of stochastic mirror symmetry breaking that occurs via autocatalytic processes involving the self-assembly of molecular clusters, 2-D and 3-D crystals, supramolecular organo-metallic catalysts, and polymeric helices and sheets. Once generated spontaneously by chance, chirality can be preserved and propagated to the environment provided that the symmetry breaking step is coupled with a sequential step of efficient amplification via self-replication reactions. Common features for the systems of relevance are that they take into consideration small fluctuations from the racemic state, and they display non-linear kinetic effects induced by diastereoisomeric supramolecular self-assemblies that exhibit different physical or chemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fox S (1957) J Chem Ed 34:472

    Google Scholar 

  2. Wald G (1957) Ann NY Acad Sci 69:352

    PubMed  Google Scholar 

  3. Bada JL, Miller SL (1987) Biosystems 20:21

    Article  Google Scholar 

  4. Joyce GF, Visser GM, van Boeckel CA, van Boom JH, Orgel LE, van Westrenen J (1984) Nature 310:602

    Article  PubMed  Google Scholar 

  5. Avetisov V, Goldanski V (1996) Proc Natl Acad Sci USA 93:11435

    Article  PubMed  Google Scholar 

  6. Quack M (2002) Angew Chem Int Edit 41:4618

    Article  Google Scholar 

  7. Kondepudi DK, Nelson GW (1985) Nature 314:438

    Article  Google Scholar 

  8. Mason SF (1984) Nature 311:19

    Article  PubMed  Google Scholar 

  9. Mason SF (1989) Croat Chem Acta 62:165

    Google Scholar 

  10. Wang W, Min W, Zhu C, Fang Y (2003) Phys Chem Chem Phys 5:4000

    Article  Google Scholar 

  11. Shinitzky M, Nudelman F, Barda Y, Haimovitz R, Chen E, Deamer DW (2002) Origins Life Evol B 32:285

    Article  Google Scholar 

  12. Barron L (2004) Molecular light scattering and optical activity. Cambridge University Press, Cambridge

    Google Scholar 

  13. Rikken GLJ, Raupach E (2000) Nature 405:932

    Article  PubMed  Google Scholar 

  14. Franck P, Bonner WA, Zare RN (2000) In: Keinan E, Schecter I (eds) Chemistry for the 21st century. Wiley-VCH, Weinheim, p 175

    Google Scholar 

  15. Bailey J, Chrystospomou A, Hough JH, Glendhill TM, McCall A, Clark S, Menard F, Tamura M (1998) Science 281:672

    Article  Google Scholar 

  16. Cronin JR, Pizzarello S (1997) Science 275:951

    Article  PubMed  Google Scholar 

  17. Pizzarello S, Zolensky M, Turk KA (2003) Geochim Cosmochim Acta 67:1589

    Article  Google Scholar 

  18. Balavoine G, Moradpour A, Kagan HB (1974) J Am Chem Soc 96:5152

    Article  Google Scholar 

  19. Flores JJ, Bonner WA, Massey GA (1977) J Am Chem Soc 99:3622

    Article  PubMed  Google Scholar 

  20. Pizzarello S, Weber AL (2004) Science 303:1151

    Article  PubMed  Google Scholar 

  21. Crisma M, Moretto A, Formaggio F, Kaptein B, Broxterman QB, Toniolo C (2004) Angew Chem Int Edit 43:6695

    Article  Google Scholar 

  22. Kondepudi DK, Asakura K (2001) Acc Chem Res 34:946

    Article  PubMed  Google Scholar 

  23. Cintas P (2002) Angew Chem Int Edit 41:1139

    Article  Google Scholar 

  24. Podlech J (1999) Angew Chem Int Edit 38:477

    Article  Google Scholar 

  25. Feringa BL, van Delden RA (1999) Angew Chem Int Edit 38:3418

    Article  Google Scholar 

  26. Podlech J (2001) Cell Mol Life Sci 58:44

    PubMed  Google Scholar 

  27. Bonner WA (1999) Origins Life Evol B 29:615

    Article  Google Scholar 

  28. Avalos M, Babiano R, Cintas P, Jimenez J, Palacios J (2000) Chem Commun 11:887

    Article  Google Scholar 

  29. Avalos M, Babiano R, Cintas P, Jimenez J, Palacios J (2004) Origins Life Evol B 34:391

    Article  Google Scholar 

  30. Nicollis G, Prigogine I (1977) Self-organization of nonequilibrium systems. Wiley, New-York

    Google Scholar 

  31. McBride JM, Carter RL (1991) Angew Chem Int Edit 30:293

    Article  Google Scholar 

  32. Frank FC (1953) Biochem Biophys Acta 11:459

    Google Scholar 

  33. Calvin M (1969) Chemical evolution. Oxford University Press, Oxford

    Google Scholar 

  34. Havinga E (1954) Biochem Biophys Acta 13:171

    Google Scholar 

  35. Newman ACD, Powell HM (1952) J Chem Soc :3747

    Google Scholar 

  36. Imai H, Oaki Y (2004) Angew Chem Int Edit 43:1363

    Article  Google Scholar 

  37. Oaki Y, Imai H (2004) J Am Chem Soc 126:9271

    Article  PubMed  Google Scholar 

  38. Oaki Y, Imai H (2005) Langmuir 21:863

    Article  PubMed  Google Scholar 

  39. Yu S-H, Cölfen H, Tauer K, Antonietti M (2002) Nano Lett 2:941

    Article  Google Scholar 

  40. Yu S-H, Cölfen H, Tauer K, Antonietti M (2005) Nature Mat 4:51

    Article  Google Scholar 

  41. Green BS, Lahav M, Rabinovich D (1979) Acc Chem Res 12:191

    Article  Google Scholar 

  42. Farina M, Audisio G, Natta G (1967) J Am Chem Soc 89:5071

    Article  Google Scholar 

  43. Penzien K, Schmidt GMJ (1969) Angew Chem Int Edit 8:608

    Google Scholar 

  44. Elgavi E, Green BS, Schmidt GMJ (1973) J Am Chem Soc 95:2058

    Article  Google Scholar 

  45. Addadi L, Lahav M (1978) J Am Chem Soc 100:2838

    Article  Google Scholar 

  46. Addadi L, Lahav M (1979) J Am Chem Soc 101:2152

    Article  Google Scholar 

  47. Addadi L, Lahav M (1979) Pure Appl Chem 51:1269

    Google Scholar 

  48. Addadi L, Berkowitch-Yellin Z, Weissbuch I, van Mil J, Shimon LJW, Lahav M, Leiserowitz L (1985) Angew Chem Int Edit 24:466

    Article  Google Scholar 

  49. Scheffer JR, Xia W (2005) Top Curr Chem 254:233 (and references cited therein)

    Google Scholar 

  50. Toda F (2005) Top Curr Chem 254:1 (and references cited therein)

    Google Scholar 

  51. Sakamoto M (2005) Top Curr Chem 254:207 (and references cited therein)

    Google Scholar 

  52. Hashizume D, Ohashi Y (2000) J Phys Org Chem 13:415 (and references cited therein)

    Article  Google Scholar 

  53. Koshima H (2000) J Mol Struct 552:111 (and references cited therein)

    Article  Google Scholar 

  54. Vestergren M, Eriksson J, Hakansson M (2003) Chem Eur J 9:4678

    Article  Google Scholar 

  55. Hakansson M (2004) J Organomet Chem 689:1723

    Article  Google Scholar 

  56. Sato I, Kadowaki K, Urabe H, Jung JH, Ono Y, Shinkai S, Soai K (2003) Tetrahedron Lett 44:721

    Article  Google Scholar 

  57. Addadi L, Berkovitch-Yellin Z, Domb N, Gati E, Lahav M, Leiserowitz L (1982) Nature 296:21

    Article  Google Scholar 

  58. Weisinger-Lewin Y, Frolow F, McMullan RK, Koetzle TF, Lahav M, Leiserowitz L (1989) J Am Chem Soc 111:1035

    Article  Google Scholar 

  59. Vaida M, Shimon LJW, Weisinger-Lewin Y, Frolow F, Lahav M, Leiserowitz L, McMullan R (1988) Science 241:1475

    Google Scholar 

  60. Vaida M, Shimon LJW, van Mil J, Ernst-Cabrera K, Addadi L, Leiserowitz L, Lahav M (1989) J Am Chem Soc 111:1029

    Article  Google Scholar 

  61. Weissbuch I, Addadi L, Lahav M, Leiserowitz L (1991) Science 253:637

    Google Scholar 

  62. Chenchaiah PC, Holland HL, Munoz B, Richardson MF (1986) J Chem Soc Perkin T 2:1775

    Google Scholar 

  63. Weissbuch I, Lahav M, Leiserowitz L, Meredith GR, Vanherzeele H (1989) Chem Mater 1:14

    Article  Google Scholar 

  64. Gervais C, Wust T, Behrnd NR, Wubbenhorst M, Hulliger J (2005) Chem Mat 17:85

    Article  Google Scholar 

  65. Kahr B, Gurney RW (2001) Chem Rev 101:893

    Article  PubMed  Google Scholar 

  66. McBride JM, Bertman SB (1989) Angew Chem Int Edit 28:330

    Article  Google Scholar 

  67. McBride JM (1989) Angew Chem Int Edit 28:377

    Article  Google Scholar 

  68. Welch C (2001) Chirality 13:425

    Article  PubMed  Google Scholar 

  69. Weissbuch I, Popovitz-Biro R, Lahav M, Leiserowitz L (2000) In: Mersmann A (ed) Handbook of crystallization. Marcel Dekker, New York, p 401

    Google Scholar 

  70. Weissbuch I, Berkovitch-Yellin Z, Leiserowitz L, Lahav M (1985) Israel J Chem 25:362

    Google Scholar 

  71. Hazen RM, Filley TR, Goodfriend GA (2001) Proc Natl Acad Sci USA 98:5487

    Article  PubMed  Google Scholar 

  72. Hazen RM, Sholl DS (2003) Nature Mat 2:367

    Article  Google Scholar 

  73. Cody AM, Cody RD (1991) J Cryst Growth 113:508

    Article  Google Scholar 

  74. Orme CA, Noy A, Wierzbicki A, McBride MT, Grantham M, Teng HH, Dove PM, DeYoreo JJ (2001) Nature 411:775

    Article  PubMed  Google Scholar 

  75. McFadden CF, Cremer PS, Gellman AJ (1996) Langmuir 12:2483

    Article  Google Scholar 

  76. Attard GA, Ahmadi A, Feliu JM, Rodes A, Herrero E, Blais S, Jerkiewcz J (1999) J Phys Chem B 103:1381

    Article  Google Scholar 

  77. Horvath JD, Gellman AJ, Sholl DS, Power TD (2002) In: Hicks JM (ed) Chirality: Physical chemistry (ACS Symp Ser 810), Ch 19. Oxford University Press, Oxford, p 269

    Google Scholar 

  78. Kuzmenko I, Weissbuch I, Gurovitz I, Leiserowitz L, Lahav M (1998) Chirality 10:415

    Article  Google Scholar 

  79. Lahav M, Leiserowitz L (1999) Angew Chem Int Edit 38:2533

    Article  Google Scholar 

  80. Feyter SD, Gesqiere A, Wurst K, Amabilino DB, Veciana J, Schryver FCD (2001) Angew Chem Int Edit 40:3217

    Article  Google Scholar 

  81. Walba DM, Stevens F, Clarck NA, Parks DC (1996) Acc Chem Res 29:591

    Article  Google Scholar 

  82. Ernst KH, Kuster Y, Fasel R, Muller M, Ellerbeck U (2001) Chirality 13:675

    Article  PubMed  Google Scholar 

  83. Böhringer M, Morgenstern W-D, Schneider R, Berndt R (1999) Angew Chem Int Edit 38:821

    Article  Google Scholar 

  84. Bohringer M, Morgenstern K, Schnider W-D, Berndt R, Mauri F, DeVita A, Car R (1999) Phys Rev Lett 83:324

    Article  Google Scholar 

  85. Chen Q, Frenkel DJ, Richardson NV (2002) Langmuir 18:3219

    Article  Google Scholar 

  86. Smith DPE (1991) Vacuum Sci Technol B 9:1119

    Article  Google Scholar 

  87. Sowerby SJ, Heckel WM, Petersen GB (1996) J Mol Evol 43:419

    PubMed  Google Scholar 

  88. Kuhnle A, Linderoth TR, Hammer B, Besenbacher F (2002) Nature 415:891

    Article  PubMed  Google Scholar 

  89. Chen Q, Richardson NV (2003) Nature Mat 2:324

    Article  Google Scholar 

  90. Moffatt DJ, Lopinski GP, Wayner DDM, Wolkow RA (2002) In: Hicks JM (ed) Chirality: Physical chemistry (ACS Symp Ser 810). Oxford University Press, Oxford, p 283

    Google Scholar 

  91. Lundquist M (1978) Prog Chem Fats Other Lipids 16:101

    Article  PubMed  Google Scholar 

  92. Stewart MV, Arnett EM (1982) In: Elliel EL, Wilen SH, Allinger NL (eds) Topics in stereochemistry, vol 13. Wiley, New York, p 195

    Google Scholar 

  93. Weiss RM, McConnell HM (1984) Nature 310:47

    Article  PubMed  Google Scholar 

  94. Rietz R, Brezesinski G, Mohwald H (1993) Ber Bunsenges Phys Chem 97:1394

    Google Scholar 

  95. Nandi N, Volhardt D (2003) Chem Rev 103:4033

    Article  PubMed  Google Scholar 

  96. Gruniger H, Möbius D, Meyer H (1983) J Chem Phys 79:3701

    Article  Google Scholar 

  97. Orrit M, Möbius D (1986) J Chem Phys 85:4966

    Article  Google Scholar 

  98. Loschek R, Möbius D (1988) Chem Phys Lett 151:176

    Article  Google Scholar 

  99. Hönig D, Möbius D (1991) J Phys Chem 95:4590

    Article  Google Scholar 

  100. Hoffmann F, Stine KJ, Huhnerfuss H (2005) J Phys Chem B 109:240

    Article  Google Scholar 

  101. Kuzmenko I, Rapaport H, Kjaer K, Als-Nielsen J, Weissbuch I, Lahav M, Leiserowitz L (2001) Chem Rev 101:1659

    Article  PubMed  Google Scholar 

  102. Weissbuch I, Berfeld M, Bouwman WG, Kjaer K, Als-Nielsen J, Lahav M, Leiserowitz L (1997) J Am Chem Soc 119:933

    Article  Google Scholar 

  103. Weissbuch I, Rubinstein I, Weygand MJ, Kjaer K, Leiserowitz L, Lahav M (2003) Helv Chim Acta 86:3867

    Article  Google Scholar 

  104. Nassoy P, Goldmann M, Bouloussa O, Rondelez F (1995) Phys Rev Lett 75:457

    Article  PubMed  Google Scholar 

  105. Leveiller F, Jacquemain D, Lahav M, Leiserowitz L, Deutsch M, Kjaer K, Als-Nielsen J (1991) Science 252:1532

    Google Scholar 

  106. Leveiller F, Böhm C, Jacquemain D, Möhwald H, Leiserowitz L, Kjaer K, Als-Nielsen J (1994) Langmuir 10:819

    Article  Google Scholar 

  107. Viswanathan R, Zadadzinski JA, Schwartz DK (1994) Nature 368:440

    Article  Google Scholar 

  108. Jiao T, Liu M (2005) J Phys Chem B 109:2532

    Article  Google Scholar 

  109. Yuan J, Liu M (2003) J Am Chem Soc 125:5051

    Article  PubMed  Google Scholar 

  110. Zhang L, Lu Q, Liu M (2003) J Phys Chem B 107:2565

    Article  Google Scholar 

  111. Huang X, Li C, Jiang S, Wang X, Zhang B, Liu M (2004) J Am Chem Soc 126:1322

    Article  PubMed  Google Scholar 

  112. Huang X, Liu M (2003) Chem Commun :66

    Google Scholar 

  113. Huang X, Jiang S, Liu M (2004) J Phys Chem B 109:114

    Article  Google Scholar 

  114. Cornelissen JJLM, Rowan AE, Nolte RJM, Sommerdijk NAJM (2001) Chem Rev 101:4039

    Article  PubMed  Google Scholar 

  115. Mateos-Timoneda MA, Crego-Calama M, Reinhoudt DN (2005) Supramol Chem 17:67

    Article  Google Scholar 

  116. Hanan GS, Lehn J-M, Krytsakas N, Fisher J (1995) Chem Commun :765

    Google Scholar 

  117. Bassani DM, Lehn J-M, Baum G, Fenske D (1997) Angew Chem Int Edit 36:1845

    Article  Google Scholar 

  118. van Esch J, De Feyter S, Kellogg RM, De Schrijver F, Feringa BL (1997) Chem Eur J 3:1238

    Google Scholar 

  119. Kirstein S, von Berlepsch H, Bottecher C, Ouart A, Reck G, Dahne S (2003) ChemPhysChem 3:146

    Google Scholar 

  120. Ribo JM, Crusats J, Sagues F, Claret J, Rubires R (2001) Science 292:2063

    Article  PubMed  Google Scholar 

  121. Rubires R, Farrera J-A, Ribo JM (2001) Chem Eur J 7:436

    Article  Google Scholar 

  122. Crusats J, Claret J, Diez-Perez I, El-Hachemi Z, Garcia-Ortega H, Rubires R, Sagues F, Ribo JM (2003) J Chem Soc Chem Commun 1588

    Google Scholar 

  123. Yamaguchi T, Kimura T, Matsuda H, Aida T (2004) Angew Chem Int Edit 43:6350

    Article  Google Scholar 

  124. Lauceri R, Raudino A, Scolaro LM, Mical N, Purrello R (2002) J Am Chem Soc 124:894

    Article  PubMed  Google Scholar 

  125. Takats Z, Nanita SC, Cooks RG (2003) Angew Chem Int Edit 42:3521

    Article  Google Scholar 

  126. Julian R, Hodyss R, Kinnear B, Jarrold M, Beauchamp JL (2002) J Phys Chem B 106:1219

    Article  Google Scholar 

  127. Julian RR, Myung S, Clemmer DE (2004) J Phys Chem B 108:6105

    Article  Google Scholar 

  128. Myung S, Julian RR, Nanita SC, Cooks RG, Clemmer DE (2004) J Am Chem Soc 126:4110

    Article  PubMed  Google Scholar 

  129. Green BS, Heller L (1974) Science 185:525

    Google Scholar 

  130. van Mil J, Gati E, Addadi L, Lahav M (1981) J Am Chem Soc 103:1248

    Article  Google Scholar 

  131. van Mil J, Addadi L, Lahav M, Boyle WJ, Sifniades S (1987) Tetrahedron 43:1281

    Article  Google Scholar 

  132. Weissbuch I, Addadi L, Berkovitch-Yellin Z, Gati E, Lahav M, Leiserowitz L (1984) Nature 310:161

    Article  Google Scholar 

  133. Weissbuch I, Frolow F, Addadi L, Lahav M, Leiserowitz L (1990) J Am Chem Soc 112:7718

    Article  Google Scholar 

  134. Weissbuch I, Popovitz-Biro R, Leiserowitz L, Lahav M (1994) In: Behr J-P (ed) Perspectives in supramolecular chemistry, vol 1: The state of the art – 100 years of the lock-and-key principle. Wiley, New York, p 173

    Google Scholar 

  135. Weissbuch I, Leiserowitz L, Lahav M (2002) In: Hicks JM (ed) Chirality: Physical Chemistry (ACS Symp Ser 810), Ch 17. Oxford University Press, Oxford, p 242

    Google Scholar 

  136. Torbeev V, Weizmann Institute of Science, unpublished results

    Google Scholar 

  137. Weissbuch I, Leiserowitz L, Lahav M (2003) Cryst Growth Des 3:125

    Article  Google Scholar 

  138. Kondepudi DK, Kaufman RJ, Singh N (1990) Science 250:975

    Google Scholar 

  139. McBride JM, Carter RL (1991) Angew Chem Int Edit 30:293

    Article  Google Scholar 

  140. Metcalf G, Ottino JM (1994) Phys Rev Lett 72:2875

    Article  PubMed  Google Scholar 

  141. Martin B, Tharrington A, Wu X-l (1996) Phys Rev Lett 77:2826

    Article  PubMed  Google Scholar 

  142. Viedma C (2004) J Cryst Growth 261:118

    Article  Google Scholar 

  143. Viedma C (2005) Phys Rev Lett 94:065504

    Article  PubMed  Google Scholar 

  144. Wynberg H, Feringa BL (1976) Tetrahedron 32:2831

    Article  Google Scholar 

  145. Girard C, Kagan H (1998) Angew Chem Int Edit 37:2922

    Article  Google Scholar 

  146. Blackmond DC (2000) Acc Chem Res 33:402

    Article  PubMed  Google Scholar 

  147. Blackmond DG, McMillan CR, Ramdeehul S, Schorm A, Brown JM (2001) J Am Chem Soc 123:10103

    Article  PubMed  Google Scholar 

  148. Blackmond DG (2004) Proc Natl Acad Sci USA 101:5732

    Article  PubMed  Google Scholar 

  149. Mathew SP, Iwamura H, Blackmond DG (2004) Angew Chem Int Edit 43:2099

    Article  Google Scholar 

  150. Avalos M, Babiano R, Cintas P, Jimenez JL, Palacios JC (1997) Tetrahedron Asymmetr 8:2997

    Article  Google Scholar 

  151. Soai K, Niwa S, Hori H (1990) J Chem Soc Chem Comm :982

    Google Scholar 

  152. Soai K, Shibata T, Sato I (2000) Acc Chem Res 33:382

    Article  PubMed  Google Scholar 

  153. Sato I, Urabe H, Ishiguro S, Shibata T, Soai K (2003) Angew Chem Int Edit 42:315

    Article  Google Scholar 

  154. Soai K, Shibata T, Kowata Y (1997) Japan Kokai Tokkyo Koho 9,268,179 (application date: February 1, 1996 and April 18, 1996)

    Google Scholar 

  155. Soai K, Sato I, Shibata T, Komiya S, Hayashi M, Matsueda Y, Imamura H, Hayase T, Morioka H, Tabira H, Yamamoto J, Kowata Y (2003) Terahydron Asymmetry 14:185

    Article  Google Scholar 

  156. Kawasaki T, Sato M, Ishiguro S, Saito T, Morishita Y, Sato I, Nishino H, Inoue Y, Soai K (2005) J Am Chem Soc 127:3274

    Article  PubMed  Google Scholar 

  157. Singleton DA, Vo LK (2003) Org Lett 5:4337

    Article  PubMed  Google Scholar 

  158. Soai K, Osanai S, Kadowaki K, Yonekubo S, Shibata T (1999) J Am Chem Soc 121:11235

    Article  Google Scholar 

  159. Sato I, Kadowaki K, Ohgo Y, Soai K (2004) J Mol Catal Chem 216:209

    Article  Google Scholar 

  160. Sato I, Sugie R, Matsueda Y, Furumura Y, Soai K (2004) Angew Chem Int Edit 43:4490

    Article  Google Scholar 

  161. Lahav N, White D, Chang S (1978) Science 210:67

    Google Scholar 

  162. Plankensteiner K, Righi A, Rode BM (2002) Origins Life Evol B 32:225

    Article  Google Scholar 

  163. de Duve C (2002) Life evolving: Molecules mind and meaning. Oxford University Press, New York

    Google Scholar 

  164. Wächtershäuser G (1988) Microbiol Rev 52:452

    PubMed  Google Scholar 

  165. Huber C, Wächtershäuser G (1997) Science 276:245

    Article  PubMed  Google Scholar 

  166. Huber C, Eisenreich W, Hecht S, Wächtershäuser G (2003) Science 301:938

    Article  PubMed  Google Scholar 

  167. Leman L, Orgel L, Ghadiri MR (2004) Science 306:283

    Article  PubMed  Google Scholar 

  168. Commeyras A, Collet H, Boiteau L, Taillades J, Trambouze O, Cottet H, Biron J-P, Plasson R, Mion L, Lagrille O, Martin H, Selsis F, Dobrijevic M (2002) Polymer Int 51:661

    Article  Google Scholar 

  169. Vayaboury W, Giani O, Collet H, Commeyras A, Schue F (2004) Amino Acids 27:161

    Article  PubMed  Google Scholar 

  170. Blair NE, Bonner WA (1980) Origins Life Evol B 10:255 (and references cited therein)

    Article  Google Scholar 

  171. Inoue S, Matsuura K, Tsuruta T (1968) J Polym Sci C23:271

    Google Scholar 

  172. Brack A, Spach G (1979) J Mol Evol 13:35

    Article  PubMed  Google Scholar 

  173. Goldberg SI, Crosby JM, Iusem ND, Younes UE (1987) J Am Chem Soc 109:823

    Article  Google Scholar 

  174. Blocher M, Hitz T, Luisi PL (2001) Helv Chim Acta 84:842

    Article  Google Scholar 

  175. Hitz T, Luisi PL (2002) Helv Chim Acta 85:3975

    Article  Google Scholar 

  176. Hitz T, Luisi PL (2003) Helv Chim Acta 86:1423

    Article  Google Scholar 

  177. Blair NE, Dirbas FM, Bonner WA (1981) Tetrahedron 37:27

    Article  Google Scholar 

  178. Spach G, Brack A (1980) J Mol Evol 15:231

    Article  PubMed  Google Scholar 

  179. Bonner WA, Blair NE, Dirbas FM (1981) Origins Life 11:119

    Article  Google Scholar 

  180. Green MM, Peterson NC, Sato T, Teramoto A, Cook R, Lifson S (1995) Science 268:1860

    Google Scholar 

  181. Wittung P, Nielsen PE, Buchardt O, Egholm M, Norden B (1994) Nature 368:561

    Article  PubMed  Google Scholar 

  182. Rowan AE, Nolte RJM (1998) Angew Chem Int Edit 37:63

    Article  Google Scholar 

  183. Huck NPM, Jager WF, deLange B, Feringa BL (1996) Science 273:1686

    Google Scholar 

  184. Addadi L, van Mil J, Lahav M (1981) J Am Chem Soc 103:1249

    Article  Google Scholar 

  185. van Mil J, Addadi L, Gati E, Lahav M (1982) J Am Chem Soc 104:3429

    Article  Google Scholar 

  186. Addadi L, Weinstein S, Gati E, Weissbuch I, Lahav M (1982) J Am Chem Soc 104:4610

    Article  Google Scholar 

  187. Zbaida D, Weissbuch I, Shavit-Gati E, Addadi L, Leiserowitz L, Lahav M (1987) Reactive Polymers 6:241

    Google Scholar 

  188. Zbaida D, Lahav M, Drauz K, Knaup G, Kottenhahn M (2000) Tetrahedron 56:6645

    Article  Google Scholar 

  189. Fukuda K, Shibasaki Y, Nakahara H (1981) J Macromol Sci Chem A15:999

    Google Scholar 

  190. Fukuda K, Shibasaki Y, Nakahara H, Liu M (2000) Adv Colloid Interf Sci 87:113

    Article  Google Scholar 

  191. Eliash R, Weissbuch I, Weygand MJ, Kjaer K, Leiserowitz L, Lahav M (2004) J Phys Chem B 108:7228

    Article  Google Scholar 

  192. Shibata A, Hashimura Y, Yamashita S, Ueno S, Yamashita T (1991) Langmuir 7:2261

    Article  Google Scholar 

  193. Zepik H, Shavit E, Tang M, Jensen TR, Kjaer K, Bolbach G, Leiserowitz L, Weissbuch I, Lahav M (2002) Science 295:1266

    Article  PubMed  Google Scholar 

  194. Weissbuch I, Bolbach G, Zepik H, Shavit E, Tang M, Frey J, Jensen TR, Kjaer K, Leiserowitz L, Lahav M (2002) J Am Chem Soc 124:9093

    Article  PubMed  Google Scholar 

  195. Weissbuch I, Zepik H, Bolbach G, Shavit E, Tang M, Jensen TR, Kjaer K, Leiserowitz L, Lahav M (2003) Chem Eur J 9:1782

    Article  Google Scholar 

  196. Morowetz HJ (1969) J Theor Biol 25:491

    PubMed  Google Scholar 

  197. Elliel E, Wilen S (1994) Stereochemistry of Organic Compounds. Wiley, New York

    Google Scholar 

  198. Lahav M, Laub F, Gati E, Leiserowitz L, Ludmer Z (1976) J Am Chem Soc 98:1620

    Article  Google Scholar 

  199. Weissbuch I, Bolbach G, Leiserowitz L, Lahav M (2004) Origins Life Evol B 34:79

    Article  Google Scholar 

  200. Deamer DW (1997) Microb Mol Biol Rev 61:239

    Google Scholar 

  201. Blocher M, Liu D, Walde P, Luisi PL (1999) Macromolecules 32:7332

    Article  Google Scholar 

  202. Rubinstein I, Bolbach G, Weygand MJ, Kjaer K, Weissbuch I, Lahav M (2003) Helv Chim Acta 86:3851

    Article  Google Scholar 

  203. Kanazawa H (1992) Polymer 33:2557

    Article  Google Scholar 

  204. Kanazawa H, Ohashi Y (1996) Mol Cryst Liq Cryst 277:45

    Google Scholar 

  205. Kanazawa H, Uekusa H, Ohashi Y (1997) Acta Crystallogr C 53:1154

    Google Scholar 

  206. Nery JG, Bolbach G, Weissbuch I, Lahav M (2003) Angew Chem Int Edit 42:2157

    Article  Google Scholar 

  207. Nery JG, Bolbach G, Weissbuch I, Lahav M (2005) Chem Eur J 11:3039

    Article  Google Scholar 

  208. Bolli M, Micura R, Eschenmoser A (1997) Chem Biol 4:309

    Article  PubMed  Google Scholar 

  209. Siegel JS (1998) Chirality 10:24

    Google Scholar 

  210. von Kiedrowski G (1986) Angew Chem Int Edit 25:932

    Google Scholar 

  211. von Kiedrowski G (1993) Bioorg Chem Front 3:113

    Google Scholar 

  212. Orgel LE (1992) Nature 358:203

    Article  PubMed  Google Scholar 

  213. Severin D, von Kiedrowski G (1994) Nature :221

    Google Scholar 

  214. Li KC, Nicolaou T (1994) Nature 369:218

    Article  PubMed  Google Scholar 

  215. Paul N, Joyce GF (2004) Curr Opin Chem Biol 8:634

    Article  PubMed  Google Scholar 

  216. Lee DH, Granja JR, Martinez JA, Severin K, Ghadiri MR (1996) Nature 382:525

    Article  PubMed  Google Scholar 

  217. Lee DH, Severin K, Yokobayashi Y, Ghadiri MR (1997) Nature 390:591

    Article  PubMed  Google Scholar 

  218. Sagathelian A, Yokobyashi Y, Soltani K, Ghadiri MR (2001) Nature 409:797

    Article  PubMed  Google Scholar 

  219. Bernal JD (1969) The origin of life. World Publishing Co, Cleveland, OH

    Google Scholar 

  220. Cairns-Smith G (1986) Clay minerals and the origin of life. Cambridge University Press, Cambridge

    Google Scholar 

  221. Dunitz JD (1996) Proc Natl Acad Sci USA 93:14 260

    Article  Google Scholar 

  222. Banfi S, Colona S, Molinari H, Julia S, Guixer J (1984) Tetrahedron 40:5207

    Article  Google Scholar 

  223. Kelly DR, Meck A, Roberts SM (2004) Chem Commun 18:2018

    Article  PubMed  Google Scholar 

  224. Springsteen G, Joyce GF (2004) J Am Chem Soc 126:9578

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meir Lahav .

Editor information

Peter Walde

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Weissbuch, I., Leiserowitz, L., Lahav, M. Stochastic “Mirror Symmetry Breaking” via Self-Assembly, Reactivity and Amplification of Chirality: Relevance to Abiotic Conditions. In: Walde, P. (eds) Prebiotic Chemistry. Topics in Current Chemistry, vol 259. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b137067

Download citation

Publish with us

Policies and ethics