Advertisement

Fracture of Glassy Polymers Within Sliding Contacts

  • Antoine ChateauminoisEmail author
  • Marie Christine Baietto-Dubourg
Chapter
  • 312 Downloads
Part of the Advances in Polymer Science book series (POLYMER, volume 188)

Abstract

Cracking processes in brittle amorphous polymers within sliding contacts and their relationships with bulk fracture properties are reviewed. The focus is on the use of model single asperity contacts to mimic and characterize the failure modes which can be encountered at the microasperity level during the wear of macroscopic rough contacts between polymer surfaces and rigid counterfaces. Using the resources of in situ contact visualization, crack initiation and propagation mechanisms within epoxy substrates are detailed under contact fatigue conditions. With the prospect of understanding the fundamental mechanisms involved in particles detachment from brittle polymer surfaces, it is shown how cracks locations, orientations and depths can be predicted from a knowledge of the bulk toughness and fatigue properties of the polymer by means of a fracture mechanics analysis of the contact. In the last section, the sensitivity of contact fatigue processes to molecular parameters is addressed in the case of anti-plasticized epoxy networks and random copolymers of poly(methylmethacrylate).

Contact fatigue Toughness Fatigue properties Wear 

Abbreviations

a

Radius of the circular contact area

K

Tangential contact stiffness

KI

Mode I stress intensity factor

KII

Mode II stress intensity factor

KIC

Mode I fracture toughness

P

Normal load

Q

Instantaneous value of the tangential load

Q

Maximum value of the tangential load

δ

Instantaneous value of the tangential relative displacement applied to the contact

δ

Maximum value of the cyclic relative displacement applied to the contact

μ

Coefficient of friction

σH

Hydrostatic stress

τy0oct

Octahedral shear yield stress in the absence of hydrostatic stress

σH.

Hydrostatic stress

α

Coefficient describing the sensitivity of the yield stress to hydrostatic pressure

θ

Calculated crack orientation with respect to the normal to the contact plane

∆σm

Amplitude of the cyclic averaged effective tensile Stress perpendicular to the crack plane

∆τm

Amplitude of the average cyclic shear stress along the crack plane

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lancaster JK (1972) In: Jenkins AD (ed) Polymer science, a material science handbook, vol 2. North-Holland, London, pp 959–1042 Google Scholar
  2. 2.
    Lancaster JK (1990) Wear 141:159 CrossRefGoogle Scholar
  3. 3.
    Briscoe BJ, Sinha SK (2002) J Eng Tribol 216:401 Google Scholar
  4. 4.
    Briscoe BJ (1990) Scripta Metall Mater 24:839 CrossRefGoogle Scholar
  5. 5.
    Briscoe BJ (1981) Tribol Int 14:231 Google Scholar
  6. 6.
    Briscoe BJ, Chateauminois A (1998) In: Vincent L (ed) Matériaux et contacts. Presses Polytechniques et Universitaires Romandes, Lausanne, pp 197–208 Google Scholar
  7. 7.
    Bowden FP, D Tabor (1958) The friction and lubrication of solids. Clarendon, Oxford Google Scholar
  8. 8.
    Bahadur S (2000) Wear 245:92 CrossRefGoogle Scholar
  9. 9.
    Proceedings of the Royal Society of London - Series A, 1972, 329 (1578), p 251 Google Scholar
  10. 10.
    Tanaka K, Miyata T (1977) Wear 41:383 CrossRefGoogle Scholar
  11. 11.
    Hironaka S (1995) Sekiyu Gakkaishi 38:137 Google Scholar
  12. 12.
    Plummer CJG, Kausch H-H (1996) Polym Bull 37:393 CrossRefGoogle Scholar
  13. 13.
    Plummer CJG, Kausch HH (1997) Sen'i-Gakkaishi 53:555 Google Scholar
  14. 14.
    Li TQ, Zhang MQ, Song L, Zeng HM (1999) Polymer 40:4451 Google Scholar
  15. 15.
    Ratner SN, Farberoua II, Radyukeuich OV, Lure EG (1964) Soviet Plastics 7:37 Google Scholar
  16. 16.
    Lancaster JK (1969) Tribology Convention. Institute of Mechanical Engineers, London p 100 Google Scholar
  17. 17.
    Atkins AG, Omar MK, Lancaster JK (1984) J Mater Sci Lett 3:779 Google Scholar
  18. 18.
    Jain VK, Bahadur S (1980) Wear 60:237 CrossRefGoogle Scholar
  19. 19.
    Jain VK, Bahadur S (1982) Wear 79:241 CrossRefGoogle Scholar
  20. 20.
    Berthier Y, Kapsa P, Vincent L (1998) In: Vincent L (ed) Matériaux et contacts. Presses Polytechniques et Universitaires Romandes, Lausanne Google Scholar
  21. 21.
    Godet M (1984) Wear 100:437 CrossRefGoogle Scholar
  22. 22.
    Briscoe BJ, Chateauminois A, Lindley TC, Parsonage D (1998) Tribol Int 31:701 Google Scholar
  23. 23.
    Briscoe BJ, Chateauminois A, Parsonage D, Lindley TC (2000) Wear 240:27 CrossRefGoogle Scholar
  24. 24.
    Chateauminois A, Briscoe BJ (2003) Surf & Coatings Technol 163:435 Google Scholar
  25. 25.
    Briscoe BJ (1998) Tribol Int 31:121 Google Scholar
  26. 26.
    Friedrich K (1998) In: Friedrich K (ed) Advances in composite tribology. (Composite materials series), vol 8. Elsevier, Amsterdam p 209 Google Scholar
  27. 27.
    Tewari US, Bijwe J (1993) In: Friedrich K (ed) Advances in composite tribology. (Composite materials series), vol 8. Elsevier, Amsterdam p 159 Google Scholar
  28. 28.
    Schottner G, Rose K, Posset U (2003) J Sol-Gel Sci Technol 27:71 CrossRefGoogle Scholar
  29. 29.
    Stojanovic S, Bauer F, Glasel HJ, Mehnert R (2004) Prog Adv Mater Processes (Mater Sci Forum) 453–454:473 Google Scholar
  30. 30.
    Mehnert R, Hartmann E, Glasel HJ, Rummel S, Bauer F, Sobottka A, Elsner C (2001) Materialwissenschaft Werkstofftechnik 32:774 Google Scholar
  31. 31.
    Schallamach A (1971) Wear 17:301 CrossRefGoogle Scholar
  32. 32.
    Tabor D (1951) The Hardness of Metals. Oxford University Press, New York Google Scholar
  33. 33.
    Briscoe BJ, Fiori L, Pelillo E (1998) Journal of Physics D: Applied Physics 31:2395 CrossRefGoogle Scholar
  34. 34.
    Briscoe BJ, Pelillo E, Sinha SK (1996) Polymer Engineering and Sci 36:2996 Google Scholar
  35. 35.
    Briscoe BJ, Evans PD, EP, Sinha SK (1996) Wear 200:137 CrossRefGoogle Scholar
  36. 36.
    Briscoe BJ, Pelillo E, Sinha SK (1997) Polymer International 43:359 Google Scholar
  37. 37.
    Briscoe BJ, Sinha SK (2003) Materialwiss Werkstofftech 34:989 Google Scholar
  38. 38.
    Xiang C, Sue HJ, Chu J, Coleman B (2000) J Polym Sci: Part B: Polymer Physics 39:47 Google Scholar
  39. 39.
    Yang ACM, Wu TW (1993) J Mater Sci 28:955 Google Scholar
  40. 40.
    Yang ACM, Wu TW (1997) J Polym Sci B: Polym Phys 35:1295 Google Scholar
  41. 41.
    Jardret V, Morel P (2003) Prog Org Coatings 48:322 CrossRefGoogle Scholar
  42. 42.
    Hamilton GM (1983) Proc Inst Mech Eng 197C:53 Google Scholar
  43. 43.
    Bucaille JL, Felder E, Hochstetter G (2001) Wear 249:422 CrossRefGoogle Scholar
  44. 44.
    Bucaille JL, Felder E (2002) Philos Mag A-Phys Condensed Matter Struct Defects Mech Properties 82:2003 Google Scholar
  45. 45.
    Bertrand-Lambotte P, Loubet JL, Verpy C, Pavan S (2001) Thin Solid Films 398–399:306 Google Scholar
  46. 46.
    Bertrand-Lambotte P, Loubet JL, Verpy C, Pavan S (2002) Thin Solid Films 420–421:281 Google Scholar
  47. 47.
    Puttick KE (1980) J Phys D: Appl Phys 13:2249 Google Scholar
  48. 48.
    Puttick KE, Yousif RH (1983) J Phys D: Appl Phys 16:621 Google Scholar
  49. 49.
    Gauthier C, Lafaye S, Schirrer R (2001) Tribol Int 34:469 CrossRefGoogle Scholar
  50. 50.
    Gauthier C, Schirrer R (2000) J Mater Sci 35:2121 CrossRefGoogle Scholar
  51. 51.
    Zhang HQ, Sadeghipour K, Baran G (1999) Wear 224:141 Google Scholar
  52. 52.
    Sadeghipour K, Baran G, Zhang HQ, Wu W (2003) J Eng Mater Technol Trans Asme 125:97 Google Scholar
  53. 53.
    Chateauminois A, Kharrat M, Krichen A (2000) In: Chandrasekaran V, Elliott CB (eds) Fretting fatigue: current technology and practices, ASTM STP 1367. American Society for Testing and Materials, West Conshohocken, p 325 Google Scholar
  54. 54.
    Mindlin RD (1953) ASME Trans J Appl Mech, Ser E 16:327 Google Scholar
  55. 55.
    Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge, UK Google Scholar
  56. 56.
    Kharrat M, Krichen K, Chateauminois A (1999) Tribol Trans 42:377 Google Scholar
  57. 57.
    Vincent L (1994) Fretting fatigue ESIS 18. Mechanical Engineering Publications, London, p 323 Google Scholar
  58. 58.
    Fouvry S, Kapsa P, Vincent L (1996) Wear 200:186 CrossRefGoogle Scholar
  59. 59.
    Cattaneo C (1938) Rend Accad Lincei 6:343 Google Scholar
  60. 60.
    Nagasawa M, Kinuhata H, Koizuka H, Miyamoto K, Tanaka T, Kishimoto H, Koike T (1995) J Mater Sci 30:1266 CrossRefGoogle Scholar
  61. 61.
    Lorenzo L, Hahn HT (1986) Polym Eng Sci 26:274 CrossRefGoogle Scholar
  62. 62.
    Rabinowitz S, Beardmore P (1974) J Mater Sci 9:81 CrossRefGoogle Scholar
  63. 63.
    Lesser AJ, Kody RS (1997) J Polym Sci B: Polym Phys 35:16 Google Scholar
  64. 64.
    Kody RS, Lesser AJ (1997) J Mater Sci 32:5637 CrossRefGoogle Scholar
  65. 65.
    Dubourg MC, Chateauminois A, Villechaise B (2003) Tribol Int 36:109 CrossRefGoogle Scholar
  66. 66.
    Kalker JJ (1990) Three dimensional elastic bodies in rolling contact. Kluwer, Dordrecht Google Scholar
  67. 67.
    Lawn B (1993) Fracture of brittle solids, 2nd edn. Cambridge University Press, Cambridge, UK Google Scholar
  68. 68.
    Dubourg MC, Villechaise B (1992) ASME J Tribol 114:462 Google Scholar
  69. 69.
    Dubourg MC, Villechaise B (1989) Eur J Mech A 8:309 Google Scholar
  70. 70.
    Dubourg MC, Villechaise B (1992) ASME J Tribol 114:455 Google Scholar
  71. 71.
    Yamini S, Young RJ (1980) J Mater Sci 15:1823 Google Scholar
  72. 72.
    Phillips DC, Scott JM, Jones M (1978) J Mater Sci 13:311 CrossRefGoogle Scholar
  73. 73.
    Vakil UM, Martin GC (1993) J Mater Sci 28:4442 CrossRefGoogle Scholar
  74. 74.
    Urbaczewski-Espuche E, Galy J, Gerard JF, Pascault JP, Sautereau H (1991) Polym Eng Sci 31:1572 CrossRefGoogle Scholar
  75. 75.
    Williams RJJ, Rozenberg B, Pascault JP (1997) Adv Polym Sci 128:1 Google Scholar
  76. 76.
    Sultan JN, McGarry FJ (1973) Polym Eng Sci 13:29 CrossRefGoogle Scholar
  77. 77.
    Becu L, Sautereau H, Maazouz A, Gerard JF, Pabon M, Pichot C (1994) Polym Adv Technol 6:316 Google Scholar
  78. 78.
    Verchere D, Pascault JP, Sautereau H, Moschiar SM, Riccardi CC, Williams J (1991) J Appl Polym Sci 42:701 CrossRefGoogle Scholar
  79. 79.
    Rey L, Poisson N, Maazouz A, Sautereau H (1999) J Mater Sci 34:1775 CrossRefGoogle Scholar
  80. 80.
    Chitsaz-Zadeh MR, Eiss NS (1990) Tribol Trans 33:499 Google Scholar
  81. 81.
    Eiss NS, Czichos H (1986) Wear 111:347 CrossRefGoogle Scholar
  82. 82.
    Chateauminois A, Sauvant V, Halary JL (2003) Polym Int 52:507 Google Scholar
  83. 83.
    Heux L, Lauprêtre F, Halary JL, Monnerie L (1998) Polym 39:1269 CrossRefGoogle Scholar
  84. 84.
    Merritt ME, Goetz JM, Whitney D, Chang CPP, Heux L, Halary JL, Schaefer J (1998) Macromolecules 31:1214 CrossRefGoogle Scholar
  85. 85.
    Sauvant V, Halary JL (2001) J Appl Polym Sci 29:759 Google Scholar
  86. 86.
    Sauvant V, Halary JL (2002) Composites Sci Technol 62:481 Google Scholar
  87. 87.
    Halary JL, Monnerie L, Kausch HH (2005) In: Kausch HH (ed) Intrinsic molecular mobility and toughness of polymers. (Advances in polymer science). Springer, Berlin Heidelberg New York Google Scholar
  88. 88.
    Laupretre F, Monnerie L, Halary JL (2005) In: Kausch HH (ed) Intrinsic molecular mobility and toughness of polymers. (Advances in polymer science). Springer, Berlin Heidelberg New York Google Scholar
  89. 89.
    Tordjeman P, Halary JL, Monnerie L, Donald AM (1995) Polymer 36:1627 CrossRefGoogle Scholar
  90. 90.
    Tordjeman P, Teze L, Halary JL, Monnerie L (1997) Polym Eng Sci 37:1621 CrossRefGoogle Scholar
  91. 91.
    Teze L, Halary JL, Monnerie L, Canova L (1999) Polymer 40:971 CrossRefGoogle Scholar
  92. 92.
    Plummer CJG, Kausch H-H, Teze L, Halary JL, Monnerie L (1996) Polymer 37:4299 Google Scholar
  93. 93.
    Lamethe JF, Sergot P, Briscoe BJ, Chateauminois A (2003) Wear 255:758 CrossRefGoogle Scholar
  94. 94.
    Argon AS, Hannoosh JG (1977) Philos Magazine 36:1195 Google Scholar
  95. 95.
    Estevez R, Giessen vd (2005) In: Kausch HH (ed) Intrinsic mobility and toughness of polymers. (Advances in Polymer Science). Springer, Berlin Heidelberg New York Google Scholar
  96. 96.
    Briscoe BJ (1998) In: Friedrich K (ed) Advances in composite tribology (composite materials series), vol 8. Elsevier, Amsterdam, p 3 Google Scholar
  97. 97.
    Dubourg MC, Chateauminois A (2002) In: Williams JG (ed) Fracture of polymers, composites and adhesives (ESIS TC4) (ESIS publication 32). Elsevier, Les Diablerets, Switzerland, p 51 Google Scholar
  98. 98.
    Teze L, Halary JL, Monnerie L, Canova L (1998) Polymer 40:971 Google Scholar

Authors and Affiliations

  • Antoine Chateauminois
    • 1
    Email author
  • Marie Christine Baietto-Dubourg
    • 2
  1. 1.Laboratoire de Physico-Chimie des Polymères et des Milieux Dispersés, PPMD, CNRS UMR 7615Ecole Supérieure de Physique et Chimie Industrielles (ESPCI)Paris Cedex 5France
  2. 2.Laboratoire de Mécanique des Contacts et des Solides, LAMCOS, CNRS UMR 5514INSA de LyonVilleurbanne CedexFrance

Personalised recommendations