Advertisement

Modeling and Computational Analysis of Fracture of Glassy Polymers

  • R. EstevezEmail author
  • E. Van der Giessen
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 188)

Abstract

Although it is recognized that failure of glassy polymers involves crazing and shear yielding, most of the studies of their fracture account for one or the other mechanism. We present a finite element analysis in which crazing and shear yielding are incorporated. Shear yielding is accounted for through the description of a three-dimensional constitutive law of the bulk material, while crazing is modeled by a cohesive surface which comprises the three stages of initiation, thickening, and craze fibril breakdown and related crack formation. The description is able to capture the main features of glassy polymer fracture such as the ductile-to-brittle transition at low rates and the evolution of the toughness with loading rate. In particular, it is demonstrated that the competition between shear yielding and crazing governs the material's toughness. Even if the description of crazing presented here is essentially phenomenological, a cohesive zone formulation is shown to provide a consistent formulation to bridge descriptions of failure at the molecular length scale with analyses performed at the continuum scale.

Crack tip plasticity Elastic--viscoplastic material Crazing Cohesive surface Fracture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ishikawa M, Narisawa I (1977) J Polym Sci 15:1791 Google Scholar
  2. 2.
    Döll W (1973) Eng Fract Mech 5:229 Google Scholar
  3. 3.
    Fuller KNG, Fox PG, Field JE (1975) Proc R Soc Lond A 341:537 Google Scholar
  4. 4.
    Haward RN, Thackray G (1968) Proc R Soc Lond A 302:453 Google Scholar
  5. 5.
    Boyce MC, Parks DM, Argon AS (1988) Mech Mater 7:15 Google Scholar
  6. 6.
    Wu PD, Van der Giessen E (1993) J Mech Phys Solids 41:427 Google Scholar
  7. 7.
    Wu PD, Van der Giessen E (1996) Eur J Mech 15:799 Google Scholar
  8. 8.
    Van der Giessen E (1997) Eur J Mech 16:87 Google Scholar
  9. 9.
    Basu S, Van der Giessen E (2002) Int J Plasticity 18:1395 CrossRefGoogle Scholar
  10. 10.
    Argon AS (1973) Philos Mag 28:839 Google Scholar
  11. 11.
    Arruda EM, Boyce MC (1993) J Mech Phys Solids 41:389 Google Scholar
  12. 12.
    Raha S, Bowden PB (1972) Polymer 13:174 CrossRefGoogle Scholar
  13. 13.
    Arruda EM, Boyce MC, Jayachandran R (1995) Mech Mater 19:193 CrossRefGoogle Scholar
  14. 14.
    Agassant JF, Avenas P, Sergent JPh, Carreau PJ (1991) Polymer processing: principles and modelling. Hanser Gardener, Munich Google Scholar
  15. 15.
    Van Krevelen DW (1990) Properties of polymers, 3rd edn. Elsevier, Amsterdam Google Scholar
  16. 16.
    Kambour RP (1973) J Polym Sci 7:1 Google Scholar
  17. 17.
    Kausch HH (1987) Polymer fracture, 2nd edn. Springer, Berlin Heidelberg New York Google Scholar
  18. 18.
    Kausch HH (ed) (1983) Crazing in polymers. Adv Polym Sci 52–53. Springer, Berlin Heidelberg New York Google Scholar
  19. 19.
    Kausch HH (ed) (1990) Crazing in polymers, vol 2. Adv Polym Sci 91–92. Springer, Berlin Heidelberg New York Google Scholar
  20. 20.
    Tijssens MGA, Van der Giessen E, Sluys LJ (2000) Mech Mater 32:19 CrossRefGoogle Scholar
  21. 21.
    Tijssens MGA, Van der Giessen E, Sluys LJ (2000) Int J Solids Struct 37:7307 Google Scholar
  22. 22.
    Estevez R, Tijssens MGA, Van der Giessen E (2000) J Mech Phys Solids 48:2585 Google Scholar
  23. 23.
    Argon AS, Hannoosh JG (1977) Philos Mag 36:1195 Google Scholar
  24. 24.
    Sternstein SS, Ongchin L (1969) Polymer Prepr 10:1117 Google Scholar
  25. 25.
    Sternstein SS, Myers FA (1973) J Macromol Sci Phys B 8:539 Google Scholar
  26. 26.
    Oxborough RJ, Bowden PB (1973) Philos Mag 28:547 Google Scholar
  27. 27.
    Ishikawa M, Narisawa I (1983) J Mater Sci 2826 Google Scholar
  28. 28.
    Gearing BP, Anand L (2004) Int J Solids Struct 41:827 Google Scholar
  29. 29.
    Döll W (1983) Adv Polym Sci 52–53:106 Google Scholar
  30. 30.
    Döll W, Könczöl L (1990) Adv Polym Sci 91–92:138 Google Scholar
  31. 31.
    Kramer EJ (1983) Adv Polym Sci 52–53:1 Google Scholar
  32. 32.
    Kramer EJ, Berger LL (1990) Adv Polym Sci 91–92:1 Google Scholar
  33. 33.
    Dugdale DS (1960) J Mech Phys Solids 8:100 Google Scholar
  34. 34.
    Lauterwasser BD, Kramer EJ (1979) Philos Mag A 39:469 Google Scholar
  35. 35.
    Brown HR, Kramer EJ (1981) J Macromol Sci Phys B19:487 Google Scholar
  36. 36.
    Van der Giessen E, Lai J (1997) Proceedings of the 10th international conference on deformation, yield and fracture of polymers, Cambridge, 35 Google Scholar
  37. 37.
    Tijssens MGA, Van der Giessen E (2002) Polymer 43:831 CrossRefGoogle Scholar
  38. 38.
    Brown HR, Ward IM (1973) Polymer 14:469 Google Scholar
  39. 39.
    Marshall GP, Coutts LH, Williams JG (1974) J Mater Sci 9:1409 CrossRefGoogle Scholar
  40. 40.
    Williams JG (1984) Fracture mechanics of polymers. Ellis Horwood, New York Google Scholar
  41. 41.
    Döll W, Schinker MG, Könczöl L (1979) Int J Fract 15:R145 Google Scholar
  42. 42.
    Pitman GL, Ward IM (1979) Polymer 20:895 CrossRefGoogle Scholar
  43. 43.
    Morgan GP, Ward IM (1977) Polymer 18:87 CrossRefGoogle Scholar
  44. 44.
    Weidman GW, Döll W (1978) Int J Fract 14:R189 Google Scholar
  45. 45.
    Schirrer R (1990) Adv Polym Sci 91–92:215 Google Scholar
  46. 46.
    Brown HR (1991) Macromolecules 24:2752 Google Scholar
  47. 47.
    Sih GC, Liebowitz H (1968) In: Liebowitz H (ed) Fracture. Academic, San Diego, p 67 Google Scholar
  48. 48.
    Wu S (1990) Polym Eng Sci 30:753 Google Scholar
  49. 49.
    Rottler J, Robins MO (2002) Phys Rev Lett 89:1955 Google Scholar
  50. 50.
    Rottler J, Robins MO (2003) Phys Rev E 68:118 Google Scholar
  51. 51.
    Hui CY, Ruina A, Creton C, Kramer EJ (1992) Macromolecules 25:3948 CrossRefGoogle Scholar
  52. 52.
    Sha Y, Hui CY, Ruina A, Kramer EJ (1995) Macromolecules 28:2450 CrossRefGoogle Scholar
  53. 53.
    Sha Y, Hui CY, Kramer EJ (1999) J Mater Sci 34:3695 CrossRefGoogle Scholar
  54. 54.
    Needleman A (1987) J Appl Mech 54:525 CrossRefGoogle Scholar
  55. 55.
    Socrate S, Boyce MC, Lazzeri A (2001) Mech Mater 33:155 CrossRefGoogle Scholar
  56. 56.
    Leevers PS (1995) Int J Fract 73:109 CrossRefGoogle Scholar
  57. 57.
    Estevez R, Basu S, Van der Giessen E (2005) Int J Fract 132:249 CrossRefGoogle Scholar
  58. 58.
    Rittel D (1998) Int J Solids Struct 35:2959 Google Scholar
  59. 59.
    Bjerke TW, Li Z, Lambros J (2003) J Mech Phys Solids 51:1147 Google Scholar
  60. 60.
    Wada H (1992) Eng Fract Mech 41:821 Google Scholar
  61. 61.
    Wada H, Seika M, Kennedy TC, Calder CA, Murase K(1996) Eng Fract Mech 54:805 Google Scholar
  62. 62.
    Rittel D, Maigre H (1996) Mech Mater 23:229 CrossRefGoogle Scholar
  63. 63.
    Williams JG, Hodgkinson JM (1981) Proc R Soc Lond A 375:231 Google Scholar
  64. 64.
    Saad N, Esteves R, Olagnon C, Séguéla R (2005) Proceedings of the 11th international conference of fracture, 4488 Google Scholar

Authors and Affiliations

  1. 1.GEMPPM-CNRSINSA LyonVilleurbanne cedexFrance
  2. 2.Department of Applied Physics, Micromechanics of Materials GroupUniversity of GroningenGroningenThe Netherlands

Personalised recommendations