Advertisement

The Influence of Molecular Variables on Fatigue Resistance in Stress Cracking Environments

  • V. AltstädtEmail author
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 188)

Abstract

The increasing economic importance of the polymer industry is responsible for a growing interest in the prediction of the lifetime of polymers. Although the influence of molecular parameters on the fatigue resistance in polymers has been intensively addressed, little work has been devoted to the same topic in stress cracking environments. Because of the complexity of the topic, we have studied different cases of mechanical loading, short-time, long-time, static, and dynamic in a stress cracking environment with special attention paid to fatigue, where the polymer is dynamically loaded over a long period. Fatigue crack propagation experiments can be employed as a fast and effective method for determining the long-term mechanical properties of polymers. We have particularly studied the effect of molecular weight, chain regularity, medium parameters, and processing and treatments on fatigue resistance. Special attention is also paid to the existing environmetal stress cracking prevention methods. We present an overview of the existing work and also our personal contribution to the field.

Environmental stress cracking Fatigue crack growth Molecular variables 

Abbreviations

a0

length of precrack

ABS

acrylonitrile butadiene styrene

ACETOPH

acetophenone

ACI

acetone

b

semiminor axis

BCN

butyl acetate

C

compliance

CED

cohesive energy density

COD

crack opening displacement

CT

compact tension

d

sample thickness (CT-specimen)

ΔEVAP

heat of vaporization

ΔK

stress intensity factor amplitude

ΔKth

threshold value of ΔK

ΔKc

critical value of ΔK

dP/dx

pressure gradient

Edyn

dynamic elastic modulus

EP

epoxy resin

ESC

environmetal stress cracking

ESCR

environmental stress cracking resistance

F

force

FCP

fatigue crack propagation

Fm

molar attraction constant

GIc

energy per unit area of crack

HIPS

high-impact polystyrene

IPA

isopropyl alcohol

k

Darcy's constant

KIc

critical stress intensity factor

M

molecular weight

MWD

molecular weight distribution

N

number of cycles

NMR

nuclear magnetic resonance

PA

polyamide

PC

polycarbonate

PE

polyethylene

PE-HD

high-density polyethylene

PE-LD

low-density polyethylene

PE-LLD

linear low-density polyethylene

PMMA

polymethylmethacrylate

PP

polypropylene

PS

polystyrene

PTFE

polytetrafluoroethylene

PU

polyurethane

PVC

polyvinylchloride

PVDF

polyvinylidene fluoride

R

stress ratio

S/N

stress versus number of cycles

SAN

styrene acrylonitrile

SCC

stress corrosion cracking

SEM

scanning electron microscopy

t

specimen thickness

tfl

failure time in Igepal solution

T

temperature

TCB

trichlorobenzene

Tg

glass-transition temperature

U/MMA

urethane methacrylate

UHMWPE

ultra-high-molecular-weight polyethylene

VE

bisphenol-vinylester resin

Vm

molar volume

W

ligament length

X

distance along semimajor axis to point of interest

δ

Hildebrand solubility parameter

ε

elliptical rig

εCR

critical strain value

μ

liquid viscosity

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The author gratefully acknowledges the fruitful discussions with Henning Kausch and Falko Ramsteiner. In addition, the supply of experimental data on PMMA by Frank Fischer and the help in preparing the manuscript by Sandrine Müller, Eva Bittmann, and Jan Sandler are acknowledged. Thanks are due to BASF AG and Röhm GmbH und Co KG for supplying the materials.

References

  1. 1.
    Wright DC (1996) Environmental stress cracking of plastics. Rapra Technology, Shawbury, ISBN: 1-85957-064-X Google Scholar
  2. 2.
    Klemchuk PP (1985) Enviromental degradation of polymers. In: Klemchuk PP (ed) Polymer Stabilization and Degradation. ACS Symposium Series 280, Washington, DC, pp 461–484. ISBN: 0-8412-0916-2 Google Scholar
  3. 3.
    Wishnis C, Wright DC (1964) Adv Mater Process 12:93 Google Scholar
  4. 4.
    Lustiger A (1986) Environmental stress cracking: the phenomenon and its utility. In: Brostow W, Corneliussen RD (ed) Failure of Plastics. Hanser Gardener, Munich, pp 305–329. ISBN: 1-56990-008-6 Google Scholar
  5. 5.
    Goodwin AA, Whittaker AK, Jack KS, Hay JN, Forsythe J (2000) Absorption of low molecular weight penetrants by a thermoplastic polyimide. Polymer 41(19):7263–7271 CrossRefGoogle Scholar
  6. 6.
    Arnold JC (1995) The influence of liquid uptake on environmental stress cracking of glassy polymers. Mater Sci Eng A 197(1):119–124 Google Scholar
  7. 7.
    Hansen CM, Just L (2001) Prediction of environmental stress cracking in plastics with Hansen solubility parameters. Ind Eng Chem Res 40(1):21–25 CrossRefGoogle Scholar
  8. 8.
    Hughes-Dillon K, Schroeder LW (1998) Stress cracking of polyurethanes by absorbed steroids. Polym Degradat Stabil 60(1):11–20 Google Scholar
  9. 9.
    Arnold JC (1998) The effects of diffusion on environmental stress crack initiation in PMMA. J Mater Sci 33(21):5193–5204 CrossRefGoogle Scholar
  10. 10.
    Hansen CM (2002) On predicting environmental stress cracking in polymers. Polym Degradat Stabil 77(1):43–53 Google Scholar
  11. 11.
    Arnold JC (1995) Craze initiation during the enviromental stress cracking of polymers. J Mater Sci 30(3):655–660 CrossRefGoogle Scholar
  12. 12.
    Turnbull A, Maxwell AS, Pillai S (2000) Comparative assessment of slow strain rate, 4-pt bend and constant load test methods for measuring environment stress cracking of polymers. Polym Test 19(2):117–129 CrossRefGoogle Scholar
  13. 13.
    Kramer EJ (1979) Environmental cracking of polymers. In: Andrews EH (ed) Developments in Polymer Fracture. Applied Science, London, pp 55–120. ISBN: 0-85334-819-7 Google Scholar
  14. 14.
    Arnold JC (1994) The use of flexural tests in the study of enviromental stress cracking of polymers. Polym Eng Sci 34(8):665–670 CrossRefGoogle Scholar
  15. 15.
    Kefalas VA (1995) Solvent crazing as a stress-induced surface adsorption and bulk plasticization effect. J Appl Polym Sci 58(4):711–717 CrossRefGoogle Scholar
  16. 16.
    Marshall GP, Culver LE, Williams JG (1970) Craze growth in poly(methyl methacrylate): a fracture mechanics approach. Proc R Soc Lond A Math Phys Eng Sci 319(1537):165–187 Google Scholar
  17. 17.
    Kramer EJ, Bubeck RA (1978) Growth kinetics of solvent crazes in glassy polymers. J Polym Sci Polym Phys 16(7):1195–1217 Google Scholar
  18. 18.
    Kambour RP (1973) A review of crazing and fracture in thermoplastics. J Polym Sci Macromol Rev 7(1):1–154 Google Scholar
  19. 19.
    Kambour RP, Gruner CL, Romagosa EE (1974) Bisphenol-A polycarbonate immersed in organic media: swelling and response to stress. Macromolecules 7(2):248–253 CrossRefGoogle Scholar
  20. 20.
    Bernier GA, Kambour RP (1968) The role of organic agents in the stress crazing and cracking of poly(2,6-dimethyl-1,4-phenylene oxide). Macromolecules 1(5):393–400 CrossRefGoogle Scholar
  21. 21.
    Kambour RP, Romagosa EE, Gruner CL (1972) Swelling, crazing, and cracking of an aromatic copolyether-sulfone in organic media. Macromolecules 5(4):335–340 CrossRefGoogle Scholar
  22. 22.
    Kambour RP, Gruner CL, Romagosa EE (1973) Solvent crazing of dry polystyrene and dry crazing of plasticized polystyrene. J Polym Sci Polym Phys 11(10):1879–1890 Google Scholar
  23. 23.
    Kambour RP (1985) Crazing. In: Kroschwitz JI (ed) Encyclopedia of Polymer Science and Engineering. Wiley, New York, p 299. ISBN: 0-471-89540-7 Google Scholar
  24. 24.
    Kambour RP, Gruner CL (1978) Effects of polar group incorporation on crazing of glassy polymers: styrene-acrylonitrile copolymer and a dicyano bisphenol polycarbonate. J Polym Sci Polym Phys 16(4):703–716 Google Scholar
  25. 25.
    White SA, Weissman SR, Kambour RP (1982) Resistance of a polyetherimide to environmental stress crazing and cracking. J Appl Polym Sci 27(7):2675–2682 CrossRefGoogle Scholar
  26. 26.
    Hildebrand JH, Prausnitz TM, Scott RL (1970) Regular and Related Solutions. Krieger, New York. ISBN: 0-442-15665-0 Google Scholar
  27. 27.
    Jacques CHM, Wyzgoski MG (1979) Prediction of environmental stress cracking of polycarbonate from solubility considerations. J Appl Polym Sci 23(4):1153–1166 CrossRefGoogle Scholar
  28. 28.
    Kawagoe M, Kitagawa M (1987) Craze initiation in poly(methyl methacrylate) exposed to n-alkanes. J Mater Sci 22(8):3000–3004 CrossRefGoogle Scholar
  29. 29.
    Kawagoe M, Morita M (1993) Fatigue failure of poly(methyl methacrylate) in alcohol environments. J Mater Sci 28(9):2347–2352 CrossRefGoogle Scholar
  30. 30.
    Kawagoe M, Kitagawa M (1981) Craze initiation in poly(methyl methacrylate) under biaxial stress. J Polym Sci Polym Phys 19(9):1423–1433 Google Scholar
  31. 31.
    Lapique F, Meakin P, Feder J, Jøssang T (2002) Self-affine fractal scaling in fracture surfaces generated in ethylene and propylene polymers and copolymers. J Appl Polym Sci 86(4):973–983 CrossRefGoogle Scholar
  32. 32.
    Griffiths CL, Betteridge S (2000) The effect of environmental stress cracking on water tree growth. IEE Conference, 473 (Dielectric Materials, Measurements and Applications), pp 41–46 Google Scholar
  33. 33.
    Lagarón JM, Capaccio G, Rose LJ, Kip BJ (2000) Craze morphology and molecular orientation in the slow crack growth failure of polyethylene. J Appl Polym Sci 77(2):283–296 Google Scholar
  34. 34.
    Schellenberg J, Fienhold G (1998) Environmental stress cracking resistance of blends of high-density polyethylene with other polyethylenes. Polym Eng Sci 38(9):1413–1419 CrossRefGoogle Scholar
  35. 35.
    Dukes WA (1961) The Endurance of Polyethylene under constant tension while immersed in Igepal. British Plastics 34:123 Google Scholar
  36. 36.
    Qian R, Lu X, Brown N (1993) The effect of concentration of an environmental stress cracking agent on slow crack growth in polyethylenes. Polymer 34(22):4727–4731 CrossRefGoogle Scholar
  37. 37.
    Ward AL, Lu X, Huang Y, Brown N (1991) The mechanism of slow crack growth in polyethylene by an environmental stress cracking agent. Polymer 32(12):2172–2178 CrossRefGoogle Scholar
  38. 38.
    Cho K, Lee MS, Park CE (1997) Environmental stress cracking of rubber-modified styrenic polymers in Freon vapour. Polymer 38(18):4641–4650 Google Scholar
  39. 39.
    Cho K, Lee MS, Park CE (1998) The effect of Freon vapour on fracture behaviour of styrene-acrylonitrile copolymer – I. Craze initiation behaviour. Polymer 39(6–7):1357–1361 Google Scholar
  40. 40.
    Maxwell AS, Turnbull A (2004) Influence of small fluctuating loads on environment stress cracking of polymers. Polym Test 23(4):419–422 CrossRefGoogle Scholar
  41. 41.
    Kawaguchi T, Nishimura H (2003) Environmental stress cracking (ESC) of plastics caused by non-ionic surfactants. Polym Eng Sci 43(2):419–430 CrossRefGoogle Scholar
  42. 42.
    Kawaguchi T, Nishimura H, Miwa F, Abe K, Kuriyama T, Narisawa I (1999) Environmental stress cracking of poly(acrylonitrile-butadiene-styrene). Polym Eng Sci 39(2):268–273 CrossRefGoogle Scholar
  43. 43.
    Wang HT, Pan BR, Du QG, Li YQ (2003) The strain in the test environmental stress cracking of plastics. Polym Test 22(2):125–128 CrossRefGoogle Scholar
  44. 44.
    Raman A, Farris RJ, Lesser AJ (2003) Effect of stress state and polymer morphology on environmental stress cracking in polycarbonate. J Appl Polym Sci 88(2):550–564 CrossRefGoogle Scholar
  45. 45.
    Al-Saidi LF, Mortensen K, Almdal K (2003) Environmental stress cracking resistance: behaviour of polycarbonate in different chemicals by determination of the time-dependence of stress at constant strains. Polym Degradat Stabil 82(3):451–461 Google Scholar
  46. 46.
    Arnold JC, Taylor JE (1999) Improved thermodynamic approach for predicting the ESC behavior of polycarbonate in binary liquid mixtures. J Appl Polym Sci 71(13):2155–2161 CrossRefGoogle Scholar
  47. 47.
    Ishiyama C, Sakuma T, Shimojo M, Higo Y (2002) Effects of humidity on environmental stress cracking behavior in poly(methyl methacrylate). J Polym Sci Part B Polym Phys 40(1):1–9 CrossRefGoogle Scholar
  48. 48.
    Hough MC, Wright DC (1996) Two new test methods for assessing environmental stress cracking of amorphous thermoplastics. Polym Test 15(5):403–408 CrossRefGoogle Scholar
  49. 49.
    Martin DJ, Warren LAP, Gunatillake PA, McCarthy SJ, Meijs GF, Schindhelm K (2001) New methods for the assessment of in vitro and in vivo stress cracking in biomedical polyurethanes. Biomaterials 22(9):973–978 CrossRefGoogle Scholar
  50. 50.
    Arnold JC, Li J, Isaac DH (1996) The effects of pre-immersion in hostile environments on the ESC behaviour of urethane-acrylic polymers. J Mater Process Technol 56(1–4):126–135 Google Scholar
  51. 51.
    Li J, Isaac DH, Arnold JC (1996) Environmental stress cracking in uniaxial tension of urethane methacrylate based resins. Mater Sci Eng A 214(1–2):68–77 Google Scholar
  52. 52.
    Li J, Arnold JC, Isaac DH (1994) Environmental stress cracking behavior of urethane methacrylate based resins – I. Environmental crazing and cracking under bending conditions. J Mater Sci 29(12):3095–3101 Google Scholar
  53. 53.
    Moskala EJ (1998) A fracture mechanics approach to environmental stress cracking in poly (ethyleneterephthalate). Polymer 39(3):675–680 CrossRefGoogle Scholar
  54. 54.
    Karger-Kocsis J (1991) Environmental stress corrosion behavior of polyamides and their composites with short glass fiber and glass swirl mat. Polym Bull 26(1):123–130 CrossRefGoogle Scholar
  55. 55.
    Bishop S, Isaac DH, Hinksman P, Morrissey P (2000) Environmental stress cracking of poly(vinyl chloride) in alkaline solutions. Polym Degradat Stabil 70(3):477–484 Google Scholar
  56. 56.
    Hansen CM (2002) Environmental stress cracking of PTFE in kerosene. Polym Degradat Stabil 77(3):511–513 Google Scholar
  57. 57.
    Maccone P, Brinati G, Arcella V (2000) Environmental stress cracking of poly(vinylidene fluoride) in sodium hydroxide: effect of chain regularity. Polym Eng Sci 40(3):761–767 CrossRefGoogle Scholar
  58. 58.
    Carter JT, Emmerson GT, Lo Faro C, McGrail PT, Moore DR (2003) The development of a low temperature cure modified epoxy resin system for aerospace composites. Compos Part A Appl Sci Manuf 34(1):83–91 CrossRefGoogle Scholar
  59. 59.
    Kawada H, Srivastava VK (2001) The effect of an acidic stress environment on the stress-intensity factor for GRP laminates. Compos Sci Technol 61(8):1109–1114 CrossRefGoogle Scholar
  60. 60.
    Bergen RL (1968) J SPE 24:667 Google Scholar
  61. 61.
    Moskala EJ, Jones M (1994) Evaluating environmental stress cracking of medical plastics. Med Plast Biomater Mag 1(1):48–54 Google Scholar
  62. 62.
    Arnold JC (1996) Environmental stress crack initiation in glassy polymer: review. Trends Polym Sci 4(12):403–408 Google Scholar
  63. 63.
    Williams JG, Marshall GP (1975) Environmental crack and craze growth phenomena in polymers. Proc R Soc Lond Ser A 342(1628):55–57 Google Scholar
  64. 64.
    Wyzgoski MG, Novak GE (1987) Stress cracking of nylon polymers in aqueous salt solutions. Part 3: Craze-growth kinetics. J Mater Sci 22(7):2615–2623 CrossRefGoogle Scholar
  65. 65.
    Wyzgoski MG, Novak GE (1987) Stress cracking of nylon polymers in aqueous salt solutions – Part II. Nylon-salt interactions. J Mater Sci 22(5):1715–1723 Google Scholar
  66. 66.
    Hertzberg RW, Manson JA (1980) Fatigue of Engineering Plastics. Academic, New York. ISBN: 0-123-43550-1 Google Scholar
  67. 67.
    Kausch HH (1987) Polymer Fracture. Springer, Berlin Heidelberg New York. ISBN: 0-387-13250-3 Google Scholar
  68. 68.
    Suresh S, Pruitt L (1991) Fatigue crack growth in polymers and organic composites under cyclic compressive loads. In: Proceedings of the 8th International Conference on Deformation, Yield and Fracture Of Polymers, 32:1–4 Google Scholar
  69. 69.
    Pruitt L, Hermann R, Suresh S (1992) Fatigue crack growth in polymers subjected to fully compressive cyclic loads. J Mater Sci 27(6):1608–1616 CrossRefGoogle Scholar
  70. 70.
    Pruitt L, Suresh S (1994) Cyclic stress fields ahead of tension fatigue cracks in amorphous polymers. Polymer 35(15):3221–3229 CrossRefGoogle Scholar
  71. 71.
    Pruitt L, Suresh S (1993) Cyclic stress fields for fatigue cracks in amorphous solids: experimental measurements and their implications. Philos Mag A 67(5):1219–1245 Google Scholar
  72. 72.
    Saxena A, Hudak SJ (1979) Review and extension of compliance information for common crack growth specimens. Int J Fract 14(5):453–468 Google Scholar
  73. 73.
    Sauer JA, Hara M (1990) Effect of molecular variables on crazing and fatigue. In: Kausch HH (ed) Advances in Polymer Science 91=92. Springer, Berlin Heidelberg New York, pp 69–118. ISBN: 3-540-51306-X Google Scholar
  74. 74.
    Castellani L, Rink M (2001) Fatigue crack growth of polymers. In: Moore DR, Pavan A, Williams JG (eds) Fracture Mechanics Testing Methods for Polymers. Adhesives and Composites. Elsevier, New York, pp 91–116. ISBN: 0-08-043689-7 Google Scholar
  75. 75.
    Paris PC (1964) Proceedings of the 10th Sagamore Conference. Syracuse University Press, New York, p 107 Google Scholar
  76. 76.
    Altstädt V (1997) Fatigue crack propagation in homopolymers and blends with high and low interphase strength. In: European Conference on Macromolecular Physics – Surfaces and Interfaces in Polymers and Composites, Lausanne, Switzerland Google Scholar
  77. 77.
    Altstädt V, Loth W, Schlarb A (1996) Comparison of fatigue test methods for research and development of polymers and polymer composites. In: Cardon AH, Fuduka H, Reifsnider KL (eds) Progress in Durability Analysis of Composite Systems. Balkema, Rotterdam, pp 75–80 Google Scholar
  78. 78.
    Altstädt V, Keiter S, Renner M, Schlarb A (2000) Accelerated evaluation of environmental ageing monitored by fatigue crack growth experiments. In: Cardon AH, Fuduka H, Reifsnider KL, Verchery G (eds) Recent developments in durability analysis of composite systems. Balkema, Rotterdam, pp 195–209 Google Scholar
  79. 79.
    Altstädt V, Keiter S, Renner M, Schlarb A (2004) Environmental stress cracking of polymers monitored by fatigue crack growth. Macromol Symp 214(1):31–46 Google Scholar
  80. 80.
    Rudd RF (1963) Molecular-weight dependence of environmental stress cracking in polystyrene. J Polym Sci Part B Polym Lett 1(1):1–5 Google Scholar
  81. 81.
    Wellinghoff S, Baer E (1975) Mechanism of crazing in polystyrene. J Macromol Sci Phys B 11(3):367–387 Google Scholar
  82. 82.
    Rufke B (1992) Prüfung des Medienverhaltens. In: Schmiedel H (ed) Handbuch der Kunststoffprüfung. Carl Hanser, Munich, Vienna, pp 303–364. ISBN: 3-446-16336-0 Google Scholar
  83. 83.
    Ramsteiner F (2005) Bewertung der Spannungsrissbeständigkeit. In: Grellmann W (ed) Prüfung von Verbundwerkstoffen; Kunststoffprüfung. Carl Hanser, Munich Google Scholar
  84. 84.
    Soares JBP, Abbott RF, Kim JD (2000) Environmental stress cracking resistance of polyethylene: the use of CRYSTAF and SEC to establish structure-property relationships. J Polym Sci Part B Polym Phys 38(10):1267–1275 CrossRefGoogle Scholar
  85. 85.
    Yeh JT, Jung-Horng Chen J-H, Huei-Song Hong H-S (1994) Environmental stress cracking behavior of short-chain branch polyehtylenes. In: Igepal Solution Under a Constant Load. J Appl Polym Sci 54:2171–2186 CrossRefGoogle Scholar
  86. 86.
    Maccone P, Brinati G, Arcella V (2000) Environmental stress cracking of poly(vinylidene fluoride) in sodium hydroxide: effect of chain regularity. Polym Eng Sci 40(3):761–767 CrossRefGoogle Scholar
  87. 87.
    Bubeck RA, Arends CB (1981) Environmental stress cracking in impact polystyrene. Polym Eng Sci 21(10):624–633 CrossRefGoogle Scholar
  88. 88.
    Pinter G, Lang RW (2001) Fracture mechanics characterisation of effects of stabilisers on creep crack growth in polyethylene pipes. Plast Rubber Compos 30(2):94–100 Google Scholar
  89. 89.
    Baker DA, Hastings RS, Pruitt L (1999) Compression and tension fatigue resistance of medical grade ultra high molecular weight polyethylene: the effect of morphology, sterilization, aging and temperature. Polymer 41(2):795–808 Google Scholar

Authors and Affiliations

  1. 1.Lehrstuhl für Polymere Werkstoffe, Polymer Engineering – FAN AUniversität BayreuthBayreuthGermany

Personalised recommendations