Advertisement

Toughness of Neat, Rubber Modified and Filled β-nucleated Polypropylene: from Fundamentals to Applications

  • Christelle GreinEmail author
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 188)

Abstract

This review highlights several aspects of the toughness of β-nucleated polypropylene (PP). The focus is on dynamic fracture properties, a topic which is largely documented in the literature. The role of intrinsic parameters like molecular weight, polydispersity and matrix randomization has been discussed, that of extrinsic factors like stress-state, processing conditions, test speed and temperature illustrated. Under defined conditions, the toughness is also defined by the content and spatial distribution of the β-nucleating agent. The increase in fracture resistance is more pronounced in PP homopolymers than in random or rubber-modified copolymers. In the case of sequential copolymers, the molecular architecture inhibits a maximization of the amount of β-phase; in that of heterophasic systems, the rubber phase mainly controls the fracture behavior. The performance of β-nucleated PP has been explained in terms of smaller spherulitic size, lower packing density and favorable lamellar arrangement of the β-modification which induce a higher mobility of both crystalline and amorphous phases. The damage process is accompanied by numerous microvoids, the development of which has been utilized for breathable films. Other interesting application segments are fibers, glass-fiber reinforced PP, thermoformable grades and piping systems.

Deformation mechanisms Nucleation Polypropylene Toughness β-Crystalline structure (or β-modification β-Phase) 

Abbreviations

α-PP

α-modification of isotactic polypropylene

β-PP

β-modification of isotactic polypropylene

γ-PP

γ-modification of isotactic polypropylene

αc

high temperature relaxation of PP (DMA)

β

angle relaxation at 0°C of PP (DMA)

β1

first β-phase during DSC heat scan

β2

second β-phase during DSC heat scan

γ

high temperature relaxation of polypropylene (DMA)

ε

strain

εcav

cavitational contribution to strain

εbreak

elongation at break

νi

activation volume of the element motion unit for the process i

σy

yield stress

θ

angle

ΔH

melt enthalpy (DSC)

ΔH(α)

melt enthalpy (DSC) of α-PP

ΔH(β)

melt enthalpy (DSC) of β-PP

ΔH100%(α)

melt enthalpy (DSC) of 100% crystalline α-PP

ΔH100%(β)

melt enthalpy (DSC) of 100% crystalline β-PP

ΔHi

activation energy of the plastic flow for the mono-activated process i

Δpy

difference between the plateau stress and the yield stress

a

crack length

length of the a-parameter of a unit cell

b

length of the b-parameter of a unit cell

c

length of the c-parameter of a unit cell

d

displacement

dε/dt

strain rate

dF/dt

initial slope of the force-time curve

dK/dt

crack tip loading rate

f(a/W)

geometrical dimensionless factor

pC

critical pressure

t

time

v

test speed

we

specific essential work of fracture

B

thickness

Cwp

specific non-essential work of fracture

Dw

average particle size in weight

E

Young modulus, stiffness

Elimit

elasticity limit

F

force

Fmax

maximum of force

Gα

growth rate of α-phase

Gβ

growth rate of β-phase

GC

critical energy release rate (LEFM)

GD

dynamic fracture resistance (LEFM)

Gini

initiation energy

Gplast

plastic energy

Gtot

fracture energy

H

height of a crystalline peak (WAXS)

IS

impact strength

IV

intrinsic viscosity

JId

resistance to fracture (Integral J)

Kβ

β-content

KC

(critical) stress intensity factor (LEFM)

KD

dynamic fracture toughness (LEFM)

L

lateral size of lamellae

LP

lamellar long period

Mn

number average molecular weight

Mw

weight average molecular weight

MFR

melt flow rate

MWD

molecular weight distribution

NIS

notched impact strength

dNIS

double-edged notched impact strength

PI

polydispersity

S

order parameter of the β-phase

T

temperature

Tc

crystallization temperature

Tdb

temperature at which ductile-brittle transition occurs

Tg

glass transition temperature

Tm

melting temperature

Vc

cooling rate

W

width

ZC

size of diffuse whitened zone (on broken CT specimen)

ZI

size of intense whitened zone (on broken CT specimen)

BSE

back-scattering electron mode

CT

compact tension

DMA

dynamic mechanical analysis

DSC

differential scanning calorimetry

EPR

ethylene-propylene rubber

EWF

essential work of fracture

LEFM

linear elastic fracture mechanics

PP

polypropylene

PP/EPR

blend of PP and EPR, ethylene-propylene block copolymer

PTT

phase transformation toughening

RCP

rapid crack propagation

RuO4

ruthenium tetraoxyde

SCG

slow crack growth

SEM

scanning electron microscopy

TEM

transmission electron microscopy

WAXS

wide angle X-ray scattering

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The writing of this review would not have been possible without the support of Dr. Kurt Hammerschmid (Borealis). His scientific assistance and day-to-day presence have been precious allies. Special thanks also to my colleagues DI. Klaus Bernreitner, Dr. Markus Gahleitner, Ing. Johannes Wolfschwenger, Dr. Wolfgang Neißl (all Borealis) for the stimulating discussions we have had concerning the β-topic. I would also like to point out the decisive role of my PhD stay at the Swiss Federal Institute of Technology (EPFL, Lausanne) as the starting point of my interest in β-nucleated systems. I therefore specially acknowledge Prof. Hans-Henning Kausch, Dr. Philippe Béguelin, Dr. Christopher J.G. Plummer and Dr. Rudolf Gensler.

References

  1. 1.
    Crissman (1969) J Polym Sci 7(A2):389 Google Scholar
  2. 2.
    Fujiwara Y (1975) Colloid Polym Sci 253:273 Google Scholar
  3. 3.
    Lovinger AJ, Chua JO, Gryte CC (1977) J Polym Sci Polym Phys Ed 15:641 Google Scholar
  4. 4.
    Leugering HJ, Kirsch G (1973) Angew Makromol Chem 33:17 Google Scholar
  5. 5.
    Devaux E, Chabert B (1991) Polym Commun 32:464 Google Scholar
  6. 6.
    Devaux E, Gerard JF, Bourgin P, Chabert B (1993) Compos Sci Technol 48:199 CrossRefGoogle Scholar
  7. 7.
    Varga J, Karger-Kocsis J (1993) Compos Sci Technol 48:191 CrossRefGoogle Scholar
  8. 8.
    Varga J, Karger-Kocsis J (1993) Polym Bull (Berlin) 30:105 Google Scholar
  9. 9.
    Varga J, Karger-Kocsis J (1995) Polymer 36:4877 Google Scholar
  10. 10.
    Varga J, Karger-Kocsis J (1996) J Polym Sci Part B: Polym Phys Ed 34:657 CrossRefGoogle Scholar
  11. 11.
    Jay F, Haudin JM, Monasse B (1999) J Mater Sci 34:2089 CrossRefGoogle Scholar
  12. 12.
    Ellis G, Gomez MA, Marco C (2004) J Macromol Sci Phys 43:191 Google Scholar
  13. 13.
    Leugering HJ (1967) Makromol Chem 109:204 CrossRefGoogle Scholar
  14. 14.
    Kathan W (1986) DE Patent 3443599 Google Scholar
  15. 15.
    Garbarczyk J, Paukszta D (1985) Colloid Polym Sci 236:985 Google Scholar
  16. 16.
    Marcincin A, Ujhelyiova A, Marcincin K, Alexy P (1996) J Therm Anal 46:581 Google Scholar
  17. 17.
    Ikeda N, Yoshimura M, Mizoguchi K, Kitagawa H, Kawashima Y, Sadamitsu K, Kawahara Y (1993) EP Patent 557721 Google Scholar
  18. 18.
    Huang M, Li X, Fang B (1995) J Appl Polym Sci 56:1323 Google Scholar
  19. 19.
    Wolfschwenger J, Bernreitner K (1995) EP Patent 682066 Google Scholar
  20. 20.
    Kawai T, Iijima R, Yamamoto Y, Kimura T (2002) Polymer 43:7301 CrossRefGoogle Scholar
  21. 21.
    Fujiyama M (1996) Intern Polym Process 11:271 Google Scholar
  22. 22.
    Ye C, Liu J, Mo Z, Tang G, Jing X (1996) J Appl Polym Sci 60:1877 Google Scholar
  23. 23.
    Li JX, Cheung WL (1997) J Vinyl Additive Technol 3:151 Google Scholar
  24. 24.
    Kobayashi T, Killough L (1997) AddCon Asia '97, Int Plastics Additives and Modifiers Conf, Singapore Google Scholar
  25. 25.
    Berson AL, Claverie F, Drujon X, Lotz B, Wittmann JC, Thierry A (1998) EP Patent 887375 Google Scholar
  26. 26.
    Varga J, Mudra I, Ehrenstein GW (1999) J Appl Polym Sci 74:2357 CrossRefGoogle Scholar
  27. 27.
    Marco C, Gomez MA, Ellis G, Arribas JM (2002) J Appl Polym Sci 86:531 CrossRefGoogle Scholar
  28. 28.
    Li X, Hu K, Ji M, Huang Y, Zhou G (2002) J Appl Polym Sci 86:633 Google Scholar
  29. 29.
    Feng J, Chen M, Huang Z, Guo Y, Hu H (2002) J Appl Polym Sci 85:1742 Google Scholar
  30. 30.
    Busch D, Kochem K, Schmitz B, Tews W (2003) WO Application 2003091316 Google Scholar
  31. 31.
    Maeder D, Hoffmann K, Schmidt HW (2003) WO Application 2003102069 Google Scholar
  32. 32.
    Fujiyama M (1995) Int Polym Process 10:172 Google Scholar
  33. 33.
    Fujiyama M (1995) Int Polym Process 10:251 Google Scholar
  34. 34.
    Fujiyama M (1996) Int Polym Process 11:159 Google Scholar
  35. 35.
    Radhakrishnan S, Tapale M, Shah N, Rairkar E, Shirodkar V, Natu HP (1997) J Appl Polym Sci 64:1247 CrossRefGoogle Scholar
  36. 36.
    Sterzynski T, Calo P, Lambla M, Thomas M (1997) Polym Eng Sci 37:1917 CrossRefGoogle Scholar
  37. 37.
    Stocker W, Schumacher M, Graff S, Thierry A, Wittmann JC, Lotz B (1998) Macromolecules 31:807 Google Scholar
  38. 38.
    Fujiyama M (1998) Int Polym Process 13:291 Google Scholar
  39. 39.
    Fujiyama M (1998) Int Polym Process 13:406 Google Scholar
  40. 40.
    Fujiyama M (1998) Int Polym Process 13:411 Google Scholar
  41. 41.
    Mubarak Y, Martin PJ, Harkin-Jones E (2000) Plast Rubber Compos 29:307 Google Scholar
  42. 42.
    Sterzynski T (2000) Polimery 45:786 Google Scholar
  43. 43.
    Mathieu C, Thierry A, Wittmann IC, Lotz B (2002) J Polym Sci, Part B: Polym Phys 40:2504 Google Scholar
  44. 44.
    Varga J, Schulek-Toth F, Pati M (1992) HU Patent 209132 Google Scholar
  45. 45.
    Shi G, Cao Y, Zhang X, Hong J, Hua X (1992) Chin J Polym Sci 10:319 Google Scholar
  46. 46.
    Zhang X, Shi G (1994) Thermochim Acta 235:49 Google Scholar
  47. 47.
    Tjong SC, Shen JS, Li RKY (1995) Scr Metall Mater 33:503 CrossRefGoogle Scholar
  48. 48.
    Tjong SC, Shen JS, Li RKY (1996) Polym Eng Sci 36:100 Google Scholar
  49. 49.
    Wolfschwenger J, deMink P, Bernreitner K (1995) DE Patent 4420991 Google Scholar
  50. 50.
    Tjong SC, Shen JS, Li RKY (1996) Polymer 37:2309 CrossRefGoogle Scholar
  51. 51.
    Varga J, Schulek-Toth F (1996) J Therm Anal 47:941 Google Scholar
  52. 52.
    Varga J, Ehrenstein (1997) Colloid Polym Sci 275:511 CrossRefGoogle Scholar
  53. 53.
    Tjong SC, Li RKY, Cheung T (1997) Polym Eng Sci 37:166 CrossRefGoogle Scholar
  54. 54.
    Tjong SC, Xu SA (1997) Polym Intern 44:95 Google Scholar
  55. 55.
    Li JX, Cheung WL (1998) Polymer 39:6935 Google Scholar
  56. 56.
    Varga J, Mudra I, Ehrenstein GW (1999) J Therm Anal Calorim 56:1047 Google Scholar
  57. 57.
    Shi G, Zhang J, Jing H (1993) US Patent 5231126 Google Scholar
  58. 58.
    Sterzynski T, Oysaed H (2004) Polym Eng Sci 44:2004 CrossRefGoogle Scholar
  59. 59.
    Ikeda N, Yoshimura M, Mizoguchi K, Kimura Y (1995) EP Patent 632095 Google Scholar
  60. 60.
    Davidson PMMcK, Biddiscombe HA, Govier RK, Ott MFM (1998) EP Patent 865913 Google Scholar
  61. 61.
    Konrad R, Ebner K, Bernreitner K, Wolfschwenger J (2000) EP Patent 1044240 Google Scholar
  62. 62.
    Busse K, Kressler J, Maier RD, Scherble J (2000) Macromolecules 33:8775 CrossRefGoogle Scholar
  63. 63.
    Nezbedova E, Pospisil V, Bohaty P, Vlach B (2001) Macromol Symp 170:349 CrossRefGoogle Scholar
  64. 64.
    Kotek J, Raab M, Baldrian J, Grellmann W (2002) J Appl Polym Sci 85:117 CrossRefGoogle Scholar
  65. 65.
    Chu F, Kimura Y (1996) Polymer 37:573 CrossRefGoogle Scholar
  66. 66.
    Cho K, Nabi Saheb D, Yang H, Kang BI, Kim J, Lee SS (2003) Polymer 44:4053 Google Scholar
  67. 67.
    Scudla J, Raab M, Eichhorn KJ, Strachota A (2003) Polymer 44:4655 CrossRefGoogle Scholar
  68. 68.
    Obadal M, Cermak R, Stoklasa K, Petruchova M (2003) Annu Tech Conf – Soc Plast Eng 61:1479 Google Scholar
  69. 69.
    Romankiewicz A, Jurga J, Sterzynski T (2003) Macromol Symp 202:28 CrossRefGoogle Scholar
  70. 70.
    Varga J (2002) J Macromol Sci Phys 41:1121 Google Scholar
  71. 71.
    McGenity PM, Hooper JJ, Paynter CD, Riley AM, Nutbeem C, Elton NJ, Adams JM (1992) Polymer 33:5215 CrossRefGoogle Scholar
  72. 72.
    Karger-Kocsis J, Varga J, Ehrenstein GW (1997) J Appl Polym Sci 64:2057 CrossRefGoogle Scholar
  73. 73.
    Karger-Kocsis J, Putnoki I, Schopf A (1997) Plastic, Rubber Compos Process Appl 26:372 Google Scholar
  74. 74.
    Karger-Kocsis J, Mouzakis DE, Ehrenstein GW, Varga J (1999) J Appl Polym Sci 73:1205 CrossRefGoogle Scholar
  75. 75.
    Labour T, Vigier G, Séguéla R, Gauthier C, Orange G, Bomal Y (2001) J Polym Sci, Part B: Polym Phys 40:31 Google Scholar
  76. 76.
    Tordjeman P, Robert C, Marin G, Gérard P (2001) Eur Phys J E 4:459 CrossRefGoogle Scholar
  77. 77.
    Grein C, Plummer CJG, Kausch HH, Germain Y, Béguelin P (2002) Polymer 43:3279 CrossRefGoogle Scholar
  78. 78.
    Chen HB, Karger-Kocsis J, Wu JS, Varga J (2002) Polymer 43:6505 Google Scholar
  79. 79.
    Chan CM, Wu J, Li JX, Cheung YK (2002) Polymer 43:2981 CrossRefGoogle Scholar
  80. 80.
    McGoldrick J, Liedauer S, Ek CG (2002) EP Patent 1260545 Google Scholar
  81. 81.
    Karger-Kocsis J, Varga J, Drummer D (2002) J Macromol Sci Phys 41:881 Google Scholar
  82. 82.
    Bernreitner K, Hauer A, Gubo R (2003) EP 1344793 Google Scholar
  83. 83.
    Gahleitner M, Hesse A, Hauer A (2004) EP Patent 1382638 Google Scholar
  84. 84.
    Kotek J, Kelnar I, Baldrian J, Raab M (2004) Eur Polym J 40:679 Google Scholar
  85. 85.
    Natta G, Corradini P (1960) Del Nuovo Cimento Suppl 15:40 Google Scholar
  86. 86.
    Turner Jones A, Aizlewood AM, Beckett DR (1964) Makromol Chem 75:13 Google Scholar
  87. 87.
    Immirzi A (1980) Acta Cryst B36:2378 Google Scholar
  88. 88.
    Mencik Z (1972) J Makromol Sci Phys B 6:101 Google Scholar
  89. 89.
    Hikosaka M, Seto T (1973) Polym J 5:111 Google Scholar
  90. 90.
    Guerra G, Petraconne V, Corradini P, De Rosa C, Napolitani R, Pizozzi B, Giunchi G (1984) J Polym Sci Polym Phys 22:1029 Google Scholar
  91. 91.
    De Rosa C, Napolitani R, Pizozzi B (1984) Eur Polym J 20:937 Google Scholar
  92. 92.
    Napolitano R, Pirozzi B, Varriale V (1990) J Polym Sci Polym Phys 28:139 CrossRefGoogle Scholar
  93. 93.
    Norton DR, Keller A (1985) Polymer 26:704 CrossRefGoogle Scholar
  94. 94.
    Lotz B, Wittmann JC (1986) J Polym Sci Polym Phys 24:1541 Google Scholar
  95. 95.
    Keith HD, Padden FJJ, Walter NM, Wickhoff HW (1959) J Appl Phys 30:1485 CrossRefGoogle Scholar
  96. 96.
    Brückner S, Meille SV, Petraconne V, Pirozzi B (1991) Prog Polym Sci 16:361 Google Scholar
  97. 97.
    Meille SV, Ferro DR, Brückner S, Lovinger AJ, Padden FJ (1994) Macromolecules 27:2615 CrossRefGoogle Scholar
  98. 98.
    Dorset DL, McCourt MP, Kopp S, Schumacher M, Okihara T, Lotz B (1998) Polymer 39:6331 CrossRefGoogle Scholar
  99. 99.
    Lotz B, Wittmann JC, Lovinger AJ (1996) Polymer 37:4979 CrossRefGoogle Scholar
  100. 100.
    Cartier L, Spassky N, Lotz B (1998) Macromolecules 31:3040 Google Scholar
  101. 101.
    Cartier L, Lotz B (1998) Macromolecules 31:3049 Google Scholar
  102. 102.
    Zhou G, He Z, Yu J, Han Z, Shi G (1986) Makrom Chem 187:633 CrossRefGoogle Scholar
  103. 103.
    Li JX, Cheung WL, Demin J (1999) Polymer 40:1219 Google Scholar
  104. 104.
    Shi G, Huang B, Zhang J (1984) Makromol Chem Rapid Commun 5:573 Google Scholar
  105. 105.
    Monasse B, Haudin JM (1985) Colloid Polym Sci 263:822 CrossRefGoogle Scholar
  106. 106.
    Clark EJ, Hoffman JD (1984) Macromolecules 17:878 Google Scholar
  107. 107.
    Van Krevelen DW (1997) Properties of Polymers, 3rd edn. Elsevier, Amsterdam Google Scholar
  108. 108.
    Varga J, Garzo G (1991) Acta Chim Hung 128:303 Google Scholar
  109. 109.
    Varga J, Mudra I, Ehrenstein GW (1998) Annu Tech Conf – Soc Plast Eng 56:3492 Google Scholar
  110. 110.
    Varga J (1994) Crystallisation, melting and supermolecular structure of isotactic polypropylene. In: Karger-Kocsis J (ed) Polypropylene, Blends and Composites, Vol. I. Chapman and Hall, London, p 56 Google Scholar
  111. 111.
    Grein C, Gahleitner M, Wolfschwenger J (in preparation) Google Scholar
  112. 112.
    Kausch HH (1987) Polymer Fracture, 2nd edn. Springer, Berlin Heidelberg New York Google Scholar
  113. 113.
    Lustiger A, Markham RL (1983) Polymer 24:1647 CrossRefGoogle Scholar
  114. 114.
    Butler MF, Donald AM (1987) J Mater Sci 32:3675 Google Scholar
  115. 115.
    Van der Wal A, Mulder JJ, Thijs HA, Gaymans RJ (1998) Polymer 39:5467 Google Scholar
  116. 116.
    Karger-Kocsis J, Moos E, Mudra I, Varga J (1999) J Macromol Sci Phys 38:647 Google Scholar
  117. 117.
    Dey SK, Agarwal PK (2001) Polyolefins 2001, Int Conf on Polyolefins, Houston, TX, 2001:441 Google Scholar
  118. 118.
    Varma-Nair M, Agarwal PK (2000) J Therm Anal Calorim 59:483 CrossRefGoogle Scholar
  119. 119.
    Zhang X, Shi G (1994) Polymer 35:5067 Google Scholar
  120. 120.
    Busse K, Kressler J, Maier RD, Scherble J (2000) Macromolecules 33:8775 CrossRefGoogle Scholar
  121. 121.
    Juhasz P, Varga J, Belina K (2002) J Makromol Sci Phys B41:1173 Google Scholar
  122. 122.
    Fillon B, Thierry A, Wittmann JC, Lotz B (1993) J Polym Sci, Part B: Polym Phys 31:1407 Google Scholar
  123. 123.
    Lotz B (1998) Polymer 39:4561 CrossRefGoogle Scholar
  124. 124.
    Sterzynski T, Lambla M, Georgi F, Thomas M (1997) Int Polym Process 7:64 Google Scholar
  125. 125.
    Baran N, Stoklasa K, Pospisil L (2000) Plasty a kaucuk 5:133 Google Scholar
  126. 126.
    Garbarczyk J, Paukszka D (1981) Polymer 22:562 CrossRefGoogle Scholar
  127. 127.
    Dos Santos Filho D, Oliveira CMF (1993) Makromol Chem 194:279 Google Scholar
  128. 128.
    Takahashi T (2002) Sen'i Gakkaishi 58:357 Google Scholar
  129. 129.
    Chen X, Wang Y, Wang X, Wu Z (1991) Int Polym Process 6:337 Google Scholar
  130. 130.
    Kim S, Townsend EB (2002) Annu Tech Conf – Soc Plast Eng 60:2980 Google Scholar
  131. 131.
    Fujiyama M, Kawamura Y, Wakino T, Okamoto T (1988) J Appl Polym Sci 36:985 Google Scholar
  132. 132.
    Broda J (2003) J Appl Polym Sci 89:3364 CrossRefGoogle Scholar
  133. 133.
    Broda J, Wlochowicz A (2000) Eur Polym J 36:1283 Google Scholar
  134. 134.
    Broda J (2004) J Appl Polym Sci 91:1413 CrossRefGoogle Scholar
  135. 135.
    Varga J (1989) J Therm Anal 35:1891 Google Scholar
  136. 136.
    Scudla J, Eichhorn KJ, Raab M, Schmidt P, Jehnichen D, Haussler L (2002) Macromol Symp 184:371 CrossRefGoogle Scholar
  137. 137.
    Varga J, Breining A, Ehrenstein GW, Bodor G (1999) Int Polym Process 14:358 Google Scholar
  138. 138.
    Varga J, Breining A, Ehrenstein GW, Bodor G (1999) Int Polym Sci Technol 26:20 Google Scholar
  139. 139.
    Li JX, Cheung WL (1997) J Mater Process Technol 63:472 Google Scholar
  140. 140.
    Labour T, Gauthier C, Séguéla R, Vigier G, Bomal Y, Orange G (2001) Polymer 42:7127 CrossRefGoogle Scholar
  141. 141.
    Roetling JA (1965) Polymer 6:311 Google Scholar
  142. 142.
    Bauwens-Crowet C, Bauwens JA, Homès G (1969) J Polymer Sci A2(7):1745 Google Scholar
  143. 143.
    Ward IM, Hadley DW (1993) An Introduction to the Mechanical Properties of Solid Polymers, 1st edn. Wiley, Chichester Google Scholar
  144. 144.
    Stachurski ZH (1997) Prog Polym Sci 22:407 CrossRefGoogle Scholar
  145. 145.
    Varga J, Schulek Toth F (1991) Angew Makromol Chem 188:11 Google Scholar
  146. 146.
    Labour T, Ferry L, Gauthier C, Haiji P, Vigier G (1999) J Appl Polym Sci 74:195 CrossRefGoogle Scholar
  147. 147.
    Liu J, Wei X, Guo Q (1990) J Appl Polym Sci 41:2829 Google Scholar
  148. 148.
    Dweik H, Al-Jabareen A, Marom G, Assouline E (2003) Int J Polym Mater 52:655 Google Scholar
  149. 149.
    Lustiger A, Marzinsky CN, Mueller RR, Wagner HD (1997) 213th ACS National Meeting, San Francisco Google Scholar
  150. 150.
    Lustiger A, Marzinsky CN, Mueller RR, Wagner HD (1995) J Adhesion 53:1 Google Scholar
  151. 151.
    Wagner HD, Lustiger A, Marzinsky CN, Mueller RR (1993) Compos Sci Technol 48:181 CrossRefGoogle Scholar
  152. 152.
    Tjong SC, Li RKY (1997) J Vinyl Additive Technol 3:89 Google Scholar
  153. 153.
    Mi Y, Chen X, Guo Q (1997) J Appl Polym Sci 64:1267 CrossRefGoogle Scholar
  154. 154.
    Nunez AJ, Kenny JM, Reboredo MM, Aranguren MI, Marcovich NE (2002) Polym Eng Sci 42:733 Google Scholar
  155. 155.
    Bhattacharya SK, Shembekar VR (1995) Macromol Reports A 32:485 Google Scholar
  156. 156.
    Xie XL, Li RKY, Tjong SC, Mai YW (2002) Polym Composites 23:319 CrossRefGoogle Scholar
  157. 157.
    Grady BP, Pompeo F, Shambaugh RL, Resasco DE (2002) J Phys Chem B 106:5852 CrossRefGoogle Scholar
  158. 158.
    Jain S, Goossens H, Picchioni F, van Duin M (2003) Annu Tech Conf – Soc Plast Eng 61:1352 Google Scholar
  159. 159.
    Perkins WG (1999) Polym Eng Sci 39:2445 CrossRefGoogle Scholar
  160. 160.
    Walker I, Collyer AA (1994) Rubber toughening mechanisms in polymeric materials. In: Collyer AA (ed) Rubber Toughened Engineering Plastics. Chapman & Hall, London, p29 Google Scholar
  161. 161.
    Bucknall CB (2000) Deformation mechanisms in rubber-toughened polymers. In: Paul DR and Bucknall CB (eds) Polymer Blends, Vol 2. Wiley, New York p 83 Google Scholar
  162. 162.
    Gaymans RJ (2000) Toughening semicrystalline thermoplastics. In: Paul DR and Bucknall CB (eds) Polymer Blends, Vol 2. Wiley, New York p 177 Google Scholar
  163. 163.
    Partridge IK (1992) Rubber Toughened Polymers. In: Rostami S (ed) Multicomponent Polymer Systems. Longman Scientific & Technical Ltd., Essex, England, p 149 Google Scholar
  164. 164.
    Hao WT, He YY, Luo XL, Ma DZ (2001) Chin J Polym Sci 19:317 Google Scholar
  165. 165.
    Varga J, Garzo G (1989) Angew Makromol Chem 180:15 Google Scholar
  166. 166.
    Varga J, Schulek-Toth F, Mudra I (1994) Macromol Symp 78:229 Google Scholar
  167. 167.
    Long Y, Stachurski ZH, Shanks RA (1991) Polym Int 26:143 Google Scholar
  168. 168.
    Grein C, Bernreitner K, Hauer A, Gahleitner M, Neißl W (2003) J Appl Polym Sci 87:1702 CrossRefGoogle Scholar
  169. 169.
    Grein C (2001) PhD Thesis n 2341 Swiss Federal Institute of Technology (EPFL, Lausanne, Switzerland) Google Scholar
  170. 170.
    Asano T, Fujiwara Y (1978) Polymer 19:99 CrossRefGoogle Scholar
  171. 171.
    Yoshida T, Fujiwara Y, Asano T (1983) Polymer 24:925 CrossRefGoogle Scholar
  172. 172.
    Fujiyama M (1999) Int Polym Process 14:75 Google Scholar
  173. 173.
    Li JX, Cheung WL, Chan CM (1999) Polymer 40:2089 Google Scholar
  174. 174.
    Li JX, Cheung WL, Chan CM (1999) Polymer 40:3641 Google Scholar
  175. 175.
    Henning S, Adhikari R, Michler GH, Balta Calleja FJ, Karger-Kocsis J (in preparation) Google Scholar
  176. 176.
    Aboulfaraj M, G'Sell C, Ulrich B, Dahoun A (1995) Polymer 36:731 CrossRefGoogle Scholar
  177. 177.
    Chu F, Yamaoka T, Ide H, Kimura Y (1994) Polymer 35:3442 CrossRefGoogle Scholar
  178. 178.
    Chu F, Yamaoka T, Kimura Y (1995) Polymer 36:2523 Google Scholar
  179. 179.
    Zhang X, Shi G (1994) Polymer 35:5067 Google Scholar
  180. 180.
    Garbarczyk J, Sterzynski T, Paukzta D (1989) Polym Commun 30:153 Google Scholar
  181. 181.
    Rybnikar FJ (1991) Macromol Sci Phys B 30:201 Google Scholar
  182. 182.
    Varga J Gabor G, Ille A (1986) Angew Makromol Chem 186:171 Google Scholar
  183. 183.
    Bohaty P, Vlach B, Seidler S, Koch T, Nezbedova E (2002) J Macromol Sci Phys 41:657 Google Scholar
  184. 184.
    Lotti C, Correa CA, Canevarolo SV (2000) Mater Res 3(2):37 Google Scholar
  185. 185.
    Ramsteiner F (1983) Kunststoffe 73:148 Google Scholar
  186. 186.
    Karger-Kocsis J, Kuleznev VN (1982) Polymer 23:699 CrossRefGoogle Scholar
  187. 187.
    Grein C, Béguelin P, Plummer CJG, Kausch HH, Tézé L, Germain Y (2000) Influence of the morphology on the impact fracture behaviour of iPP/EPR blends. In: Williams JG, Pavan A (eds) Fracture of Polymers, Composites and Adhesives. ESIS Pulication 27. Elsevier Science, Kidlington (Oxford, UK), p 319 Google Scholar
  188. 188.
    Read BE (1989) Polymer 30:1439 CrossRefGoogle Scholar
  189. 189.
    Boyd RH (1986) Polymer 26:323 Google Scholar
  190. 190.
    Jacoby P, Bersted BH, Kissel WJ, Smith CE (1986) J Polym Sci Part B:Polym Phys 24:461 Google Scholar
  191. 191.
    Grein C, Bernreitner K, Gahleitner M (accepted for J Appl Polym Sci) Google Scholar
  192. 192.
    Karger-Kocsis J, Varga J (1996) J Appl Polym Sci 62:291 CrossRefGoogle Scholar
  193. 193.
    Karger-Kocsis J (1996) Polym Eng Sci 36:203 CrossRefGoogle Scholar
  194. 194.
    Broda J (2003) J Appl Polym Sci 90:3957 CrossRefGoogle Scholar
  195. 195.
    Karger-Kocsis J (2004) DE Patent 102 37 803 Google Scholar
  196. 196.
    Lustiger A, Marzinsky CN, Devorest Y (1997) US Patent 5 627 226 Google Scholar
  197. 197.
    Jacoby P, Heiden M (1994) EP Patent 0 589 033 Google Scholar
  198. 198.
    Kong DC, Cleckner MD (2003) US Patent 2003207138, 2002278241 Google Scholar
  199. 199.
    Kong DC, Cleckner MD (2003) US Patent 2003207137 Google Scholar
  200. 200.
    Davidson PMMcK, Biddiscombe HA, Govier RK, Ott MFM (1998) EP Patent 865914 Google Scholar
  201. 201.
    Davidson PMMcK, Biddiscombe HA, Govier RK, Ott MFM (1998) EP Patent 865912 Google Scholar
  202. 202.
    Davidson PMMcK, Biddiscombe HA, Govier RK, Ott MFM (1998) EP Patent 865911 Google Scholar
  203. 203.
    Davidson PMMcK, Biddiscombe HA, Govier RK, Ott MFM (1998) EP Patent 865910 Google Scholar
  204. 204.
    Davidson PMMcK, Biddiscombe HA, Govier RK, Ott MFM (1998) EP Patent 865909 Google Scholar
  205. 205.
    Tapp WT (1992) US Patent 5169712 Google Scholar
  206. 206.
    Jacoby P, Bauer CW, Clingman SR, Tapp WT (1992) EP Patent 492942 Google Scholar
  207. 207.
    Jacoby P, Bauer CW (1990) WO Application 9011321 Google Scholar
  208. 208.
    Ruf BL (1996) J Plast Film Sheet 12:225 Google Scholar
  209. 209.
    Fujiyama M, Kawamura Y (1988) J Appl Polym Sci 36:995 Google Scholar
  210. 210.
    Hughes SK, Kody RS, Mrozinski JS, Brostrom ML (2002) WO Application 2002081557 Google Scholar
  211. 211.
    Ek CG, Liedauer S, McGoldrick J, Ruemer F (2003) EP Patent 1364986 Google Scholar
  212. 212.
    Rydin C, Ek CG (2003) WO Application 2003087205 Google Scholar
  213. 213.
    Rydin C, McGoldrick J, Lindström T, Liedauer S (2002) EP Patent 1260547 Google Scholar
  214. 214.
    Ek CG, Sandberg H, Liedauer S, McGoldrick J (2002) EP Patent 1260546 Google Scholar
  215. 215.
    McGoldrick J, Ruemer F, Schiesser S, Liedauer S (2002) EP Patent 1260529 Google Scholar
  216. 216.
    Greenshields CJ (1997) Plastic, Rubber Compos Process Appl 26:387 Google Scholar

Authors and Affiliations

  1. 1.Borealis GmbHLinzAustria

Personalised recommendations