Direct Observation of the Growth of Lamellae and Spherulites by AFM

  • Chi-Ming ChanEmail author
  • Lin Li
Part of the Advances in Polymer Science book series (POLYMER, volume 188)


This article describes some of the progress made in the understanding of the growth of polymer lamellae and spherulites using atomic force microscopy (AFM) in the last five years. High-resolution and real-time AFM phase imaging enables us to observe the detailed growth process of lamellae. During the early stage of crystallization, embryos appear and disappear on the film surface. A stable embryo develops into a single lamella, which develops into a founding lamella. Then, the founding lamella develops into a lamellar sheaf through branching and splaying. Through further branching and splaying, a lamellar sheaf develops into a spherulite with two eyes at its center.

Atomic force microscopy Branching Crystallization Embryo Lamella Polymer Spherulite 



atomic force microscopy


electron microscopy


glass transition temperature


isotactic polypropylene


isotactic polystyrene


optical microscopy


poly(bisphenol A-co-decane)


poly(bisphenol A-co-octane)


poly(ethylene oxide)










scanning electron microscopy


tapping-mode atomic force microscopy


transmission electron microscopy


free energy of formation for an edge-on primary nucleus


free energy change per unit of crystalline material formed


interfacial energy between the folding surface and the melt


interfacial energy between the lateral plane and the melt


interfacial energy between the crystal and the substrate


interfacial energy between the melt and the substrate


dimension of a nucleus;


critical dimension of a nucleus

dimension of a nucleus


critical dimension of a nucleus


free energy of formation for a flat-on nucleus


enthalpy of melting per unit volume of crystal


equilibrium melting point of a polymer


crystallization temperature

\( \overline{M}_{\text{W}}\)

weight-average molecular weight


average growth rate of a lamella


length between the lamellar tip and the location at which an induced nucleus just appears


induction time for the formation of an induced nucleus


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Hong Kong Research Grants Council under grant numbers HKUST6176/02 and 600503, the National Science Foundation of China and the Hong Kong Research Grants Council Joint Research Scheme under Grant No. N_HKUST 618/01 as well as the Outstanding Youth Fund of the National Science Foundation of China.


  1. 1.
    Bassett DC (1981) Principles of Polymer Morphology. Cambridge University Press, Cambridge Google Scholar
  2. 2.
    Woodward AE (1988) Atlas of polymer morphology. Hanser Publisher, New York Google Scholar
  3. 3.
    Schultz JM (2001) Polymer crystallization: the development of crystalline order in thermoplastic polymers. Oxford University Press, Oxford Google Scholar
  4. 4.
    Strobl GR (1996) The physics of polymers: concepts for understanding their structures and behavior. Springer, Berlin Heidelberg New York Google Scholar
  5. 5.
    Bassett DC, Olley RH (1984) Polymer 25:935 CrossRefGoogle Scholar
  6. 6.
    Norton DR, Keller A (1985) Polymer 26:704 CrossRefGoogle Scholar
  7. 7.
    Keller A (1955) J Polym Sci 17:291 Google Scholar
  8. 8.
    Keith HD, Padden Jr FJ (1959) J Polym Sci 39:101 Google Scholar
  9. 9.
    Keller A, Sawada S (1964) Makromol Chem 74:190 CrossRefGoogle Scholar
  10. 10.
    Bassett DC, Hodge AM, Olley RH (1981) Proc R Soc A377:25 Google Scholar
  11. 11.
    Bassett DC, Vaughan AS (1985) Polymer 26:717 CrossRefGoogle Scholar
  12. 12.
    Olley RH, Bassett DC (1989) Polymer 30:399 CrossRefGoogle Scholar
  13. 13.
    Bassett DC (1994) Phil Trans R Soc A 348:29 CrossRefGoogle Scholar
  14. 14.
    Li JX, Ness JN, Cheung WL (1996) J Appl Polym Sci 59:1733 Google Scholar
  15. 15.
    Li JX, Cheung WL (1999) J Appl Polym Sci 72:1529 Google Scholar
  16. 16.
    Phillips PJ, Andrews EH (1972) Polym Letters 10:321 Google Scholar
  17. 17.
    Phillips PJ, Edwards BC (1975) J Polym Sci: Polym Phys 13:1819 Google Scholar
  18. 18.
    Edwards BC, Phillips PJ (1975) J Polym Sci: Polym Phys 13:2117 Google Scholar
  19. 19.
    Phillips PJ, Edwards BC (1976) Polym Lett 14:449 Google Scholar
  20. 20.
    Phillips PJ, Sorenson D (1979) J Polym Sci: Polym Phys 17:521 Google Scholar
  21. 21.
    Edwards BC, Phillips PJ, Sorenson D (1980) J Polym Sci: Polym Phys 18:1737 Google Scholar
  22. 22.
    Phillips PJ, Sorenson D (1981) J Polym Sci: Polym Lett 19:585 Google Scholar
  23. 23.
    Rensch GJ, Phillips PJ, Vatansever N (1986) J Polym Sci, Polym Phys 24:1943 Google Scholar
  24. 24.
    Daxaben P, Bassett DC (1994) Phil Trans R Soc Lond A445:577 Google Scholar
  25. 25.
    Bassett DC, Olley RH, Al Raheil IAM (1988) Polymer 29:1539 Google Scholar
  26. 26.
    Bassett DC, Hodge AM (1981) Proc R Soc Lond A 377:25 Google Scholar
  27. 27.
    Padden FJ, Keith HD (1959) J Appl Phys 30:1479 CrossRefGoogle Scholar
  28. 28.
    Bassett DC, Olley RH(1984) Polymer 25:935 CrossRefGoogle Scholar
  29. 29.
    Keith, HD, Padden FJ (1963) J Appl Phys 34:2409 CrossRefGoogle Scholar
  30. 30.
    Binning G, Quate CF, Gerber Ch (1986) Phys Rev Lett 66:930 Google Scholar
  31. 31.
    Rugar D, Hansma P (1990) Physics Today 43:23 Google Scholar
  32. 32.
    Miles JM (1997) Science 277:1845 CrossRefGoogle Scholar
  33. 33.
    Magonov SN (1993) Applied Spectroscopy Reviews 28:1 Google Scholar
  34. 34.
    Sheiko SS (2000) Adv Polym Sci 151:61 Google Scholar
  35. 35.
    Magonov SN, Reneker DH (1997) Ann Rev Mat Sci 27:175 CrossRefGoogle Scholar
  36. 36.
    Munz M, Capella B, Sturm H, Geuss M (2003) Adv Polym Sci 164:87 Google Scholar
  37. 37.
    Magonov SN, Elings V, Whangbo MH (1997) Surf Sci 375:L385 CrossRefGoogle Scholar
  38. 38.
    Bar G, Thomann Y, Brandsch R, Cantow HJ, Whangbo MH (1997) Langmuir 13:3807 Google Scholar
  39. 39.
    Bar G, Delineau L, Brandsch R, Bruch M, Whangbo MH (1997) Appl Phys Lett 75:4198 Google Scholar
  40. 40.
    Bar G, Brandsch R, Whangbo MH (1999) Surf Sci 436:L715 CrossRefGoogle Scholar
  41. 41.
    Magonov SN, Godovsky YK (1999) American Laboratory 31:52 Google Scholar
  42. 42.
    Höper R, Gesang T, Possart W, Hennemann OD, Boseck S (1995) Ultramicroscopy 60:17 Google Scholar
  43. 43.
    Magonov SN, Cleveland J, Elings V, Denley D, Whangbo MH (1997) Surf Sci 389:201 CrossRefGoogle Scholar
  44. 44.
    Leclère Ph, Lazzaroni R, Brédas JL, Yu JM, Dubois Ph, Jérôme R (1996) Langmuir 12:4317 Google Scholar
  45. 45.
    Patil R, Kim SJ, Smith E, Reneker DH, Weisenhorn AL (1990) Polym Comm 31:455 Google Scholar
  46. 46.
    Snetivy D, Vancso GJ (1992) Polymer 33:432 CrossRefGoogle Scholar
  47. 47.
    Pearce R, Vancso GJ (1998) Polymer 39:1237 Google Scholar
  48. 48.
    Pearce R, Vancso GJ (1998) J Polym Sci: Polym Phys 36:2643 Google Scholar
  49. 49.
    Haeringen DTV, Varga J, Ehrenstein GW, Vancso GJ (2000) J Polym Sci: Polym Phys 38:672 Google Scholar
  50. 50.
    Harbon HR, Pritchard RG, Cope BC, Goddard DT (1996) J Polym Sci: Polym Phys 34:173 Google Scholar
  51. 51.
    Crämer K, Wawkuschewski A, Domb A, Cantow HJ, Magonov SN (1995) Polym Bull 35:457 Google Scholar
  52. 52.
    Motomatsu M, Nie HY, Mizutani W, Tokumoto H (1996) Polymer 37:183 CrossRefGoogle Scholar
  53. 53.
    Ivanov DA, Jonas AM (1998) Macromolecules 31:4546 CrossRefGoogle Scholar
  54. 54.
    Trifonova D, Varga J, Vancso GJ (1998) Polym Bull 41:341 CrossRefGoogle Scholar
  55. 55.
    Godovsky YK, Magonov SN (2000) Langmuir 16:3549 CrossRefGoogle Scholar
  56. 56.
    Bartczak Z, Argon AS, Cohen RE, Kowalewski T (1999) Polymer 40:2367 Google Scholar
  57. 57.
    Schultz JM, Miles MJ (1998) J Polym Sci: Polym Phys 36:2311 Google Scholar
  58. 58.
    Hobbs JK, McMaster TJ, Miles MJ, Barham PJ (1998) Polymer 39:2437 CrossRefGoogle Scholar
  59. 59.
    Li L, Chan CM, Li JX, Ng KM, Yeung KL, Weng LT (1999) Macromolecules 32:8240 Google Scholar
  60. 60.
    Li L, Chan CM, Yeung KL, Li JX, Ng KM, Lei YG (2001) Macromolecules 34:316 Google Scholar
  61. 61.
    Lei YG, Chan CM, Li JX, Ng KM, Wang Y, Jiang Y, Li L (2002) Macromolecules 35:6751 CrossRefGoogle Scholar
  62. 62.
    Lei YG, Chan CM, Wang Y, Ng KM, Jiang Y, Li L (2003) Polymer 44:4673 Google Scholar
  63. 63.
    Luo YH, Jiang Y, Jin XG, Li L, Lei YG, Chan CM (2002) Chinese Science Bulletin 47:1761 Google Scholar
  64. 64.
    Jiang Y, Yan DD, Gao X, Han CC, Jin XG, Li L, Wang Y, Chan CM (2003) Macromolecules 36:3652 Google Scholar
  65. 65.
    Luo YH, Jiang Y, Jin XG, Li L, Chan CM (2003) Macromolecular Symposia 192:271 CrossRefGoogle Scholar
  66. 66.
    Jiang Y, Zhou JJ, Li L, Xu J, Guo BH, Zhang ZM, Wu Q, Chen GQ, Weng LT, Cheung ZL, Chan CM (2003) Langmuir 19:7417 Google Scholar
  67. 67.
    Jiang Y, Jin XG, Han CC, Li L, Wang Y, Chan CM (2003) Langmuir 19:8010 Google Scholar
  68. 68.
    Schönherr H, Snetivy D, Vancso GJ (1993) Polym Bull 30:567 Google Scholar
  69. 69.
    Nakamura J, Kawaguchi A (2004) Macromolecules 37:3725 Google Scholar
  70. 70.
    Dubreuil N, Hocquet S, Dosière M, Ivanov DA (2004) Macromolecules 37:1 CrossRefGoogle Scholar
  71. 71.
    Schönherr H, Wiyatno W, Pople J, Frank CW, Fuller GG, Gast AP, Waymouth RM (2002) Macromolecules 35:2654 Google Scholar
  72. 72.
    Schönherr H, Frank CW (2003) Macromolecules 36:1188 Google Scholar
  73. 73.
    Schönherr H, Waymouth RM, Frank CW (2003) Macromolecules 36:2412 Google Scholar
  74. 74.
    Koike Y, Cakmak M (2004) Macromolecules 37:2171 CrossRefGoogle Scholar
  75. 75.
    Imase T, Ohira A, Okoshi K, Sano N, Kawauchi S, Watanabe J, Kunitake M (2004) Macromolecules 36:1865 Google Scholar
  76. 76.
    Hosier IL, Alamo RG, Lin JS (2004) Polymer 45:3441 CrossRefGoogle Scholar
  77. 77.
    Pearce R, Vancso GJ (1997) Macromolecules 30:5843 CrossRefGoogle Scholar
  78. 78.
    Beekmans LGM (2002) Morphology development in semi-crystalline polymers by in-situ scanning force microscopy. PhD Thesis, University of Twente Google Scholar
  79. 79.
    Vancso GJ, Beekmans LGM, Pearce R, Trifonova D, Varga J (1999) J Macromol Sci: Phys B38:491 Google Scholar
  80. 80.
    Wang Y, Ge S, Rafailovich M, Sokolov J, Zou Y, Ade H, Luning J, Lustiger A, Maron G (2004) Macromolecules 37:3319 Google Scholar
  81. 81.
    Beekmans LGM, Vancso GJ (2000) Polymer 41:8975 CrossRefGoogle Scholar
  82. 82.
    Wang Y, Chan CM, Ng KM, Jiang Y, Li L (2004) Langmuir 20:8220 Google Scholar
  83. 83.
    Wang Y, Chan CM (unpublished work) Google Scholar
  84. 84.
    Hobbs JK, Humphris ADL, Miles MJ (2001) Macromolecules 34:5508 Google Scholar
  85. 85.
    Li L, Chan CM, Ng KM, Lei YG, Weng LT (2001) Polymer 42:6841 Google Scholar
  86. 86.
    Torres JA, Nealey PF, de Pablo JJ (2000) Phys Rev Lett 85:3221 CrossRefGoogle Scholar
  87. 87.
    Forrest JA, Dalnoki-Veress K, Stevens JR, Dutcher JR (1996) Phys Rev Lett 77:2002 Google Scholar
  88. 88.
    Forrest JA, Dalnoki-Veress K, Dutcher JR (1997) Phys Rev E 56:5705 CrossRefGoogle Scholar
  89. 89.
    Van Zanten JH, Wallace WE, Wu WL (1996) Phys Rev E 53:R2053 Google Scholar
  90. 90.
    Schönherr H, Frank CW (2003) Macromolecules 36:1199 Google Scholar
  91. 91.
    Fryer DS, Nealey PF, de Pablo JJ (2000) Macromolecules 33:6439 CrossRefGoogle Scholar
  92. 92.
    Massa MV, Dalnoki-Veress K, Forrest JA (2003) Eur Phys J E 11:191 CrossRefGoogle Scholar
  93. 93.
    Kikkawa Y, Abe H, Iwata T, Inoue Y, Doi Y (2001) Biomacromolecules 2:940 CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Department of Chemical EngineeringHong Kong University of Science and TechnologyHong KongP.R. China
  2. 2.State Key Laboratory of Polymer Physics and Chemistry, Institute of ChemistryChinese Academy of SciencesPekingP.R. China

Personalised recommendations