Skip to main content

The Effect of Time on Crazing and Fracture

  • Chapter
  • First Online:
Intrinsic Molecular Mobility and Toughness of Polymers I

Part of the book series: Advances in Polymer Science ((POLYMER,volume 187))

Abstract

By way of introduction to the subject of this VolumeFootnote 1 this contribution reviews the effects of the most prominent properties of macromolecules (their enormous length, strong elastic anisotropy in axial and lateral directions and high segmental mobility) and of their characteristic dimensions on the elementary molecular deformation mechanisms of thermoplastic polymers. The competition between these mechanisms has a determinant influence on the different failure modes (crazing, creep, yielding and flow, fracture through crack propagation). The main part is devoted to an analysis of failure in creep. The micro-morphological approach is further developed and compared to criteria derived from visco-elastic theory with representative equations. Small angle X-ray analysis of the formation of fibrillar structures in amorphous polymers SAN and PC identifies three distinct regimes associated to fluid-like behaviour and disentanglement by forced reptation at low and moderate stresses (or high temperatures) and chain-scission dominated craze initiation (at low temperatures and high stresses), respectively. In semi-crystalline polymers similar differences are found: homogeneous creep at high stresses mostly involving the plastic deformation and break-up of crystal lamellae as opposed to the formation of craze-like structures due to the disentanglement of chains at low stresses. This review focuses on the important dual role of molecular mobility, to be at the origin of time-dependent properties of polymer materials, especially of their toughness, and to influence without exception all damage mechanisms which limit the strength and durability of polymer components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. 1.

    The term This Volume refers to the Special Double Volume “Intrinsic Molecular Mobility and Toughness of Polymers” of the Advances in Polymer Science, Vol. 187 and 188 (2005)

Abbreviations

C :

characteristic ratio

D K :

equilibrium diameter of a molecular coil

E a :

activation energy

E :

Young's modulus

E′′:

mechanical loss modulus

E′:

mechanical storage modulus

D o :

fibril spacing (long period in scattering experiment)

G′′:

mechanical loss shear modulus

G o :

rubber elastic shear modulus

G Id :

dynamic energy release rate

J′′:

mechanical loss compliance

K,Kc:

stress intensity factor

K Ic :

critical stress intensity factor

K Id :

dynamic stress intensity factor

M e :

entanglement molecular weight

M w :

weight average molecular weight

NA :

Avogadro's number

R :

molar gas constant

T :

absolute temperature

T g :

glass-rubber transition temperature

T m :

melt temperature

U:

activation energy

V:

activation volume

a :

crack length

h:

Plank constant

k:

Boltzman constant

mol:

mole

ν:

Poisson's ratio

p :

internal pressure

r g :

radius of gyration

s max :

maximum of scattering vector

tf, tb:

time to failure

t h :

healing time

tanδ:

ratio of loss to storage modulus

εa :

linear amorphous strain

εt :

linear total strain

ϕ:

torsion angle about a chemical bond

γ:

surface tension

Γ:

fibrillation energy

νe :

entanglement density

ρ:

density

σo :

tensile stress

2D:

two-dimensional

BPA-PC:

bisphenol A polycarbonate

CT:

compact tension specimen

DCB:

double cantilever beam specimen

DENT:

double edge notch tensile specimen

DSC:

differential scanning calorimetry

ESIS:

European Structural Integrity Society

FNCT:

full notch creep test

HDPE:

high density polyethylene

iPP:

isotactic polypropylene

LEFM:

linear elastic fracture mechanics

MDPE:

medium density polyethylene

NMR:

nuclear magnetic resonance

PC:

polycarbonate

PE:

polyethylene

PVC:

polyvinylchloride

PET:

poly(ethylene tere-phthalate)

PMMA:

poly(methyl methacrylate)

POM:

polyoxymethylene

PS:

polystyrene

SAN:

styrene acrylonitrile

SCG:

slow crack growth

SEN:

single edge notch

UHMWPE:

ultra high molecular weight polyethylene

U-PVC:

unplasticized polyvinylchloride

WLF:

Willams, Landel, Ferry

References

  1. Michler GH (1992) Kunststoff-Mikromechanik. Carl Hanser, Munich

    Google Scholar 

  2. Materials Science and Technology: A Comprehensive Treatment (1993) Cahn RW, Haasen P, Kramer EJ (eds) Structure and Properties of Polymers, Thomas EL, vol-Ed, vol 12. Wiley, New York

    Google Scholar 

  3. Kausch H-H, Heymans N, Plummer CJ, Decroly P (2001) Matériaux Polymères: Propriétés Mécaniques et Physiques, Principes de Mise en Oeuvre. Presses Polytechniques et Universitaires Romandes, Lausanne

    Google Scholar 

  4. Lousteaux B (2002) PhD Thesis, University Pierre and Marie Curie, Paris

    Google Scholar 

  5. Flory P (1953) Principles of Polymer Chemistry. Cornell University Press, Ithaca

    Google Scholar 

  6. Dettenmaier M (1986) personal communication based on the experiments published in Macromolecules 19:773

    Google Scholar 

  7. Suter U, p 63 in [3]

    Google Scholar 

  8. Gentile FT, Suter UW Amorphous polymer microstructure, Chap 2 in [2]

    Google Scholar 

  9. Monnerie L, Lauprêtre F, Halary JL (2005) Investigation of Solid-State Transitions in Linear and Crosslinked Amorphous Polymers. Adv Polym Sci 187:35

    CAS  Google Scholar 

  10. Monnerie L, Halary JL, Kausch H-H (2005) Deformation, Yield and Fracture of Amorphous Polymers: Relation to the Secondary Transitions. Adv Polym Sci 187:215

    CAS  Google Scholar 

  11. Fischer EW, Dettenmaier M (1978) J Noncryst Solids 31:11

    Article  Google Scholar 

  12. Michler GH (1992) p 216 in [1]

    Google Scholar 

  13. Chan C-M, Li L (2005) in volume 188

    Google Scholar 

  14. Grein C (2005) in volume 188

    Google Scholar 

  15. Brown HR (1991) Macromolecules 24:2752

    CAS  Google Scholar 

  16. Kausch H-H (1987) Polymer Fracture, 2nd ed. Springer, Heidelberg Berlin New York

    Google Scholar 

  17. Jud K, Kausch H-H, Williams JG (1981) J Mater Sci 16:204

    Article  CAS  Google Scholar 

  18. Gensler R (1998) Thesis No 1863, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

    Google Scholar 

  19. Kausch H-H, Gensler R, Grein C, Plummer CJG, Scaramuzzino P (1999) J Macromol Sci B38:803

    Article  Google Scholar 

  20. Kausch H-H, Langbein D (1973) J Polym Sci A2 11:1201

    Article  CAS  Google Scholar 

  21. Michler GH, Godehardt R (2000) Cryst Res Technol 35:863

    Article  CAS  Google Scholar 

  22. Kawai H, Hashimoto T, Miyoshi K, Uno H, Fujimura MJ (1980) Macromol Sci Polym Phys 17:427

    Google Scholar 

  23. Adhikar R, Michler GH, Goerlitz S, Knoll K (2004) J Appl Polym Sci 92:1208

    Google Scholar 

  24. Galeski A (2004) 11. Int Conf Polymeric Materials 2004, Halle, p C06

    Google Scholar 

  25. Williams JG (1984) Fracture mechanics of Polymers. Ellis Horwood, Chichester

    Google Scholar 

  26. Grellmann W, Seidler S (2001) Deformation and fracture behaviour of polymers. Springer, Berlin Heidelberg New York

    Google Scholar 

  27. Williams JG, Moore DR, Pavan A (2001) Fracture Mechanics Testing Methods for Polymers, Adhesives and Composites. Elsevier, Amsterdam

    Google Scholar 

  28. Knauss WG (1970) Int J Fracture 6:7

    Google Scholar 

  29. Bradley W, Cantwell WJ, Kausch H-H (1998) Mech Time-Depend Mat 1:241

    Google Scholar 

  30. Stalder B cited after [16], p 237

    Google Scholar 

  31. Grellmann W, Seidler S, Hesse W (2001) p 71 in [26]

    Google Scholar 

  32. Greig JM, Leevers PS, Yayla P (1992) Eng Fract Mech 42:663

    Google Scholar 

  33. Chan MKV, Williams JG (1983) Polymer 24:234

    Article  CAS  Google Scholar 

  34. Takahashi K, Arakawa K (1987) Exp Mech 27:195

    Google Scholar 

  35. Ferrer JB, Fond C, Arakawa K, Takahashi K, Béguelin P, Kausch H-H (1997) Int J Fracture 87:L77

    Google Scholar 

  36. Harward RN (1973) The Physics of Glassy Polymers. Appl Sci Publ, London

    Google Scholar 

  37. Ferry DJ (1960) Viscoelastic properties of polymers. Wiley, New York

    Google Scholar 

  38. Crist B (1993) Plastic deformation of polymers, Chap 10 in [2]

    Google Scholar 

  39. Ward IM, Hadley DW (1993) Mechanical properties of solid polymers. Wiley, Chichester

    Google Scholar 

  40. Myasnikova LP, Marikhin VA, Ivan'kova EM, Yakushev PN (1999) J Macromol Sci Phys 38B:859

    Google Scholar 

  41. Eyring H (1936) J Chem Phys 4:283

    CAS  Google Scholar 

  42. Castiglione C, Verzanini D, Pavan A (2004) Plastic Pipes XII, Session 10b

    Google Scholar 

  43. Berger L, Kausch H-H (2003) Polymer 44:5877

    CAS  Google Scholar 

  44. Wilding MA, Ward IM (1978) Polymer 19:969

    Article  CAS  Google Scholar 

  45. Plummer CJG (2004) Adv Polymer Sci 169:75

    CAS  Google Scholar 

  46. Damen J, Schramm D, Anderson K (2004) Plastic Pipes XII, Session 10b

    Google Scholar 

  47. da Andrade ENC (1910) Proc Royal Soc London 84:1

    CAS  Google Scholar 

  48. Findley WN (1987) Polym Eng Sci 27:582

    Article  CAS  Google Scholar 

  49. Schapery RA (1997) Mech Time-Depend Mat 1:209

    Google Scholar 

  50. Gregory A, Vogel D, Béguelin PH, Gensler R, Kausch H-H (1999) Mech Time-Depend Mat 3:71

    CAS  Google Scholar 

  51. Pilz G, Lang RW (2001) Proceedings of Plastics Pipes XI, p 903

    Google Scholar 

  52. Niklas H, Kausch von Schmeling HH (1963) Kunststoffe 53:886

    CAS  Google Scholar 

  53. Janson LE, Bergstrom G, Backman M, Blomster T, Plastic Pipes XII, Session 10b

    Google Scholar 

  54. Starke JU, Schulze G, Michler GH (1997) Acta Polymer 48:92

    Article  CAS  Google Scholar 

  55. Kambour RP (1968) Appl Polym Symp 7:215

    Google Scholar 

  56. Rabinowitz S, Beardmore P (1969) CRC Crit Rev 1:1

    Google Scholar 

  57. Kausch H-H (ed) (1983) Crazing in Polymers Advances in Polymer Science, 52=53. Springer, Berlin Heidelberg New York

    Google Scholar 

  58. Kausch H-H (ed) (1990) Crazing in Polymers, vol II. Advances in Polymer Science, 91=92. Springer, Berlin Heidelberg New York

    Google Scholar 

  59. Plummer CJG (1997) Curr Trend Polym Sci 2:125

    CAS  Google Scholar 

  60. Paredes E, Fischer EW (1979) Makromol Chem 180:2707

    Article  CAS  Google Scholar 

  61. Kramer EJ (1983) p 1 in [57]

    Google Scholar 

  62. Michler GH, Section B 1.4, p 193 in [26]

    Google Scholar 

  63. Dettenmaier M (1983) p 57 in [57]

    Google Scholar 

  64. Estevez R, van der Giessen E (2005) Adv Polym Sci 188:195

    CAS  Google Scholar 

  65. Altstädt V (2005) Adv Polym Sci 188:105

    Google Scholar 

  66. Chateauminois A, Baietto-Dubourg MC (2005) Adv Polym Sci 188:153

    CAS  Google Scholar 

  67. Scaramuzzino P (1998) Thesis No 1818, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

    Google Scholar 

  68. Monnerie L, Halary JL, Kausch H-H (2005) Deformation, Yield and Fracture of Amorphous Polymers: Relation to the Secondary Transitions, Sect 2.3 of [10]. Adv Polym Sci 187:215

    CAS  Google Scholar 

  69. Brown N, Lu X (1995) Polymer 36:543

    CAS  Google Scholar 

  70. Kausch H-H (1987) p 347 in [16]

    Google Scholar 

  71. Schapery RA (1990) J Mech Phys Solids 38:215

    Google Scholar 

  72. Park SW, Kim YR, Schapery RA (1996) Mech Mater 24:241

    Article  Google Scholar 

  73. Rodrigez A, Eyerer P (2005) 10. Tagung Deformation und Bruchverhalten von Kunststoffen, Merseburg/Germany, June 15–17

    Google Scholar 

  74. Strobl G (2005) Symposium “Deformation Mechanisms in Polymers”, Halle/Germany, May 19–20

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge fruitful discussions with M. Fischer, St. Antoni, B. Möginger, Rheinbach, A. Pavan, Milano, C.J.G. Plummer, Lausanne, and A. Rodrigez, Stuttgart.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Henning Kausch .

Editor information

Hans-Henning Kausch

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Kausch, HH., Michler, G.H. The Effect of Time on Crazing and Fracture. In: Kausch, HH. (eds) Intrinsic Molecular Mobility and Toughness of Polymers I. Advances in Polymer Science, vol 187. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b136954

Download citation

Publish with us

Policies and ethics