Advertisement

Charge Transport and Catalysis by Molecules Confined in Polymeric Materialsand Application to Future Nanodevices for Energy Conversion

  • Masayuki Yagi
  • Masao KanekoEmail author
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 199)

Abstract

Polymeric materials confining functional molecules are one of the most promising materials for designing nanodevices for energy conversion, e.g., solar cells, fuel cells, and artificial photosynthetic devices that are expected to provide a renewable energy resource. Charge transport (CT) and catalysis by redox molecules in polymeric solid materials are reviewed with a focus on a polyanion film, typically Nafion and other polymeric materials, containing excess water. CT in a polyanion film is evaluated based on the physical displacement (physical diffusion) and charge hopping mechanisms between redox molecules. The mechanism of CT is exhibited to depend on the structure and redox reaction of the center molecules, and the influencing factor on CT is discussed. For the polymeric solid reactor containing excess water, the physical data of CT and molecular transport in the bulk matrix are summarized to demonstrate that the electrochemical reaction in the solid reactor occurs similarly as in an aqueous solution. Recent progress in molecular catalysis for multielectron redox reactions with a focus on water oxidation, reduction of proton, and carbon dioxide is introduced, and the catalytic activity and mechanism in solution and polymeric matrixes are reviewed. A dye-sensitized solar cell was fabricated using polymeric solid materials containing excess organic solution as an electrolyte layer, and its performance similar to a liquid-type solar cell is discussed based on the physicochemical data in the polymeric solid materials. Recent approaches toward construction of an artificial photosynthetic system are reviewed, and, finally, concluding remarks and directions for future research are given.

Charge transport Catalysis Polymeric solid materials Artificial photosynthesis Dye-sensitized solar cell 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bard AJ, Fox MA (1995) Acc Chem Res 28:141 Google Scholar
  2. 2.
    Graetzel M, Kalyanasundaram K (1994) Curr Sci 66:706 Google Scholar
  3. 3.
    Meyer GJ (ed) (1997) Molecular Level Artificial Photosynthetic Materials Progress in Inorganic Chemistry. Wiley-Interscience, New York Google Scholar
  4. 4.
    Kaneko M (1997) Photoelectric conversion by polymeric and organic materials. In: Nalwa HS (ed) Handbook of Organic Conductive Molecules and Polymers. Wiley, Chichester, p 661 Google Scholar
  5. 5.
    Yagi M, Kaneko M (2001) Chem Rev 101:21 Google Scholar
  6. 6.
    Abe T, Kaneko M (2003) Prog Polym Sci 28:1441 Google Scholar
  7. 7.
    Murray RW (ed) (1992) Techniques of Chemistry: Molecular Design of Electrode Surfaces. Wiley, New York Google Scholar
  8. 8.
    Bard AJ (ed) (1996) Electroanalytical Chemistry. Marcel Dekker, New York Google Scholar
  9. 9.
    Zen J-M, Kumar AS (2001) Acc Chem Res 34:772 Google Scholar
  10. 10.
    Yagi M, Kinoshita K, Kaneko M (1996) J Phys Chem 100:11098 Google Scholar
  11. 11.
    Yagi M, Kinoshita K, Kaneko M (1997) J Phys Chem B 101:3957 Google Scholar
  12. 12.
    Torres GR, Dupart E, Mingotaud C, Ravaine S (2000) J Phys Chem B 104:9487 Google Scholar
  13. 13.
    Kaneko M, Woehrle D (1988) Adv Polym Sci 84:141 Google Scholar
  14. 14.
    Li W, Osora H, Otero L, Duncan DC, Fox MA (1998) J Phys Chem A 102:5333 Google Scholar
  15. 15.
    Kaneko M (2001) Prog Polym Sci 26:1101 Google Scholar
  16. 16.
    Majda M, Faulkner LR (1984) J Electroanal Chem 169:77 Google Scholar
  17. 17.
    Buttry DA, Anson FC (1981) J Electroanal Chem 130:333 Google Scholar
  18. 18.
    Blauch DN, Saveant JM (1992) J Am Chem Soc 114:3323 Google Scholar
  19. 19.
    Blauch DN, Saveant JM (1993) J Phys Chem 97:6444 Google Scholar
  20. 20.
    White HS, Leddy J, Bard AJ (1982) J Am Chem Soc 104:4811 Google Scholar
  21. 21.
    Leddy J, Bard AJ (1985) J Electroanal Chem 189:203 Google Scholar
  22. 22.
    Oyama N, Ohsaka T, Kaneko M, Sato K, Matsuda H (1983) J Am Chem Soc 105:6003 Google Scholar
  23. 23.
    Martin CR, Rubinstein I, Bard AJ (1982) J Am Chem Soc 104:4817 Google Scholar
  24. 24.
    Anson FC, Saveant JM, Shigehara K (1983) J Phys Chem 87:214 Google Scholar
  25. 25.
    Anson FC, Saveant JM, Shigehara K (1983) J Am Chem Soc 105:1096 Google Scholar
  26. 26.
    He P, Chen X (1988) J Electroanal Chem 256:353 Google Scholar
  27. 27.
    Yagi M, Mitsumoto T, Kaneko M (1997) J Electroanal Chem 437:219 Google Scholar
  28. 28.
    Yagi M, Mitsumoto T, Kaneko M (1998) J Electroanal Chem 448:131 Google Scholar
  29. 29.
    Inzelt G, Day RW, Kinstle JF, Chambers JQ (1983) J Phys Chem 87:4592 Google Scholar
  30. 30.
    Inzelt G, Chambers JQ, Kinstle JF, Day RW (1984) J Am Chem Soc 106:3396 Google Scholar
  31. 31.
    Majda M, Faulkner LR (1984) J Electroanal Chem 169:97 Google Scholar
  32. 32.
    Buttry DA, Anson FC (1982) J Am Chem Soc 104:4824 Google Scholar
  33. 33.
    Yagi M, Sato T (2003) J Phys Chem B 107:4975 Google Scholar
  34. 34.
    Yagi M, Fukiya H, Kaneko T, Aoki T, Oikawa E, Kaneko M (2000) J Electroanal Chem 481:69 Google Scholar
  35. 35.
    Yagi M, Yamase K, Kaneko M (1999) J Electroanal Chem 476:159 Google Scholar
  36. 36.
    Yagi M, Yamase K, Kaneko M (2002) Electrochim Acta 47:2019 Google Scholar
  37. 37.
    Zhang J, Abe T, Kaneko M (1997) J Electroanal Chem 438:133 Google Scholar
  38. 38.
    Zhao F, Zhang J, Abe T, Kaneko M (1999) J Porphyrins Phthalocyanines 3:238 Google Scholar
  39. 39.
    Yagi M, Takahashi M, Teraguchi M, Kaneko T, Aoki T (2003) J Phys Chem B 107:12662 Google Scholar
  40. 40.
    Yagi M, Nagai K, Kira A, Kaneko M (1995) J Electroanal Chem 394:169 Google Scholar
  41. 41.
    Zhang J, Zhao F, Abe T, Kaneko M (1999) Electrochim Acta 45:399 Google Scholar
  42. 42.
    Yagi M, Nagai K, Onikubo T, Kaneko M (1995) J Electroanal Chem 383:61 Google Scholar
  43. 43.
    Zhang J, Yagi M, Hou XH, Kaneko M (1996) J Electroanal Chem 412:159 Google Scholar
  44. 44.
    Kinoshita K, Yagi M, Kaneko M (1999) Electrochim Acta 44:1771 Google Scholar
  45. 45.
    Yagi M, Kinoshita K, Nagoshi K, Kaneko M (1998) Electrochim Acta 43:3277 Google Scholar
  46. 46.
    Osada Y, Kajiwara K (eds) (1997) Gel Handbook. NTS, Tokyo Google Scholar
  47. 47.
    Kaneko M, Mochizuki N, Suzuki K, Shiroishi H, Ishikawa K (2002) Chem Lett 31:530 Google Scholar
  48. 48.
    Ueno H, Kaneko M (2004) J Electroanal Chem 568:87 Google Scholar
  49. 49.
    Mochizuki N, Ueno H, Kaneko M (2004) Electrochim Acta 49:4143 Google Scholar
  50. 50.
    Ueno H, Endo Y, Kaburagi Y, Kaneko M (2004) J Electroanal Chem 570:95 Google Scholar
  51. 51.
    Kaneko M, Gokan N, Takato K (2004) Chem Lett 33:686 Google Scholar
  52. 52.
    O'Regan B, Graetzel M (1991) Nature 353:737 Google Scholar
  53. 53.
    Kubo W, Kitamura T, Hanabusa K, Wada Y, Yanagida S (2002) Chem Commun 374 Google Scholar
  54. 54.
    Mikoshiba S, Sumino H, Yonetsu M, Hayase S (2000) 13th International Conference on Photochemical Conversion and Storage of Solar Energy. Snowmass,CO, 2000:W6–70 Google Scholar
  55. 55.
    Murakami TN, Kijitori Y, Kawashima N, Miyasaka T (2004) J Photochem Photobio A Chem 164:187 Google Scholar
  56. 56.
    Kaneko M, Hoshi T (2003) Chem Lett 32:872 Google Scholar
  57. 57.
    Kaneko M, Hoshi T, Kaburagi Y, Ueno H (2004) J Electroanal Chem 572:21 Google Scholar
  58. 58.
    Arnott S, Fulmer A, ScottI WE, Dea CM, Moorhouse R, Rees DA (1974) J Mol Biol 90:269 Google Scholar
  59. 59.
    Uzuhashi Y, Nishinari K (2003) FFI J 208:791 Google Scholar
  60. 60.
    Ikeda S (2003) FFI J 208:801 Google Scholar
  61. 61.
    Crumbliss AL, Perine SC, Edwards AK, Rillema DP (1992) J Phys Chem 96:1388 Google Scholar
  62. 62.
    Oyama N, Anson FC (1979) J Am Chem Soc 101:3450 Google Scholar
  63. 63.
    Sende JAR, Arana CR, Hernandez L, Potts KF, Keshevarz-K M, Abruna HD (1995) Inorg Chem 34:3339 Google Scholar
  64. 64.
    Zhang J, Zhao F, Kaneko M (2000) J Porphyrins Phthalocyanines 4:65 Google Scholar
  65. 65.
    Watanabe M, Nagasaka H, Ogata N (1995) J Phys Chem 99:12294 Google Scholar
  66. 66.
    Williams ME, Murray RW (1999) J Phys Chem 103:10221 Google Scholar
  67. 67.
    Zamponi S, Kijak AM, Sommer AJ, Marassi R, Kulesza PJ, Cox JA (2002) J Solid State Electrochem 6:528 Google Scholar
  68. 68.
    Lev O, Wu Z, Bharathi S, Glezer V, Modestov A, Gun J, Rabinovich L, Sampath S (1997) Chem Mater 9:2354 Google Scholar
  69. 69.
    Alber KS, Cox JA, Kulesza PJ (1997) Electroanalysis 9:97 Google Scholar
  70. 70.
    Lee M-H, Kim Y-T (1999) Electrochem Solid State Lett 2:72 Google Scholar
  71. 71.
    Zouni A, Jordan R, Schlodder E, Fromme P, Witt HT (2000) Biochim Biophys Acta Bioenerg 1457:103 Google Scholar
  72. 72.
    Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Science 303:1831 Google Scholar
  73. 73.
    Limburg J, Vrettos JS, Liable-Sands LM, Rheingold AL, Crabtree RH, Brudvig GW (1999) Science 283:1524 Google Scholar
  74. 74.
    Collomb MN, Deronzier A, Richardot A, Pecaut J (1999) New J Chem 23:351 Google Scholar
  75. 75.
    Limburg J, Vrettos JS, Chen HY, de Paula JC, Crabtree RH, Brudvig GW (2001) J Am Chem Soc 123:423 Google Scholar
  76. 76.
    Lister MW, Petterson RC (1962) Can J Chem 40:729 Google Scholar
  77. 77.
    Yagi M, Narita K (2004) J Am Chem Soc 126:8084 Google Scholar
  78. 78.
    Narita K (2004) Studies on catalytic activity for water oxidation induced by adsorption of di μ-O dinuclear manganese complex onto heterogeneous matrixes. Master's thesis, Niigata University Google Scholar
  79. 79.
    Naruta Y, Sasayama M, Sasaki T (1994) Angew Chem Int Ed Engl 33:1839 Google Scholar
  80. 80.
    Shimazaki Y, Nagano T, Takesue H, Ye B-H, Tani F, Naruta Y (2004) Angew Chem Int Edit 43:98 Google Scholar
  81. 81.
    Yagi M, Tokita S, Nagoshi K, Ogino I, Kaneko M (1996) J Chem Soc Faraday Trans 92:2457 Google Scholar
  82. 82.
    Yagi M, Nagoshi K, Kaneko M (1997) J Phys Chem B 101:5143 Google Scholar
  83. 83.
    Kinoshita K, Yagi M, Kaneko M (1998) Macromolecules 31:6042 Google Scholar
  84. 84.
    Nagoshi K, Yagi M, Kaneko M (2000) Bull Chem Soc Jpn 73:2193 Google Scholar
  85. 85.
    Yagi M, Sukegawa N, Kasamastu M, Kaneko M (1999) J Phys Chem B 103:2151 Google Scholar
  86. 86.
    Yagi M, Sukegawa N, Kaneko M (2000) J Phys Chem B 104:4111 Google Scholar
  87. 87.
    Kinoshita K, Yagi M, Kaneko M (1999) J Mol Catal A Chem 142:1 Google Scholar
  88. 88.
    Yagi M, Osawa Y, Sukegawa N, Kaneko M (1999) Langmuir 15:7406 Google Scholar
  89. 89.
    Ogino I, Nagoshi K, Yagi M, Kaneko M (1996) J Chem Soc Faraday Trans 92:3431 Google Scholar
  90. 90.
    Yagi M, Ogino I, Miura A, Kurimura Y, Kaneko M (1995) Chem Lett 863 Google Scholar
  91. 91.
    Gilbert JA, Eggleston DS, Murphy WR, Geselowitz DA, Gersten SW, Hodgson DJ, Meyer TJ (1985) J Am Chem Soc 107:3855 Google Scholar
  92. 92.
    Gersten SW, Samuels GJ, Meyer TJ (1982) J Am Chem Soc 104:4029 Google Scholar
  93. 93.
    Rotzinger FP, Munavalli S, Comte P, Hurst JK, Graetzel M, Pern F-J, Frank AJ (1987) J Am Chem Soc 109:6619 Google Scholar
  94. 94.
    Comte P, Nazeeruddin MK, Rotzinger FP, Frank AJ, Graetzel M (1989) J Mol Catal 52:63 Google Scholar
  95. 95.
    Meyer TJ, Huynh MHV (2003) Inorg Chem 42:8140 Google Scholar
  96. 96.
    Ruettinger W, Dismukes GC (1997) Chem Rev 97:1 Google Scholar
  97. 97.
    Chronister CW, Binstead RA, Ni JF, Meyer TJ (1997) Inorg Chem 36:3814 Google Scholar
  98. 98.
    Geselowitz D, Meyer TJ (1990) Inorg Chem 29:3892 Google Scholar
  99. 99.
    Binstead RA, Chronister CW, Ni JF, Hartshorn CM, Meyer TJ (2000) J Am Chem Soc 122:8464 Google Scholar
  100. 100.
    Nagoshi K, Yamashita S, Yagi M, Kaneko M (1999) J Mol Catal A Chem 144:71 Google Scholar
  101. 101.
    Lei Y, Hurst JK (1994) Inorg Chim Acta 226:179 Google Scholar
  102. 102.
    Yamada H, Hurst JK (2000) J Am Chem Soc 122:5303 Google Scholar
  103. 103.
    Yamada H, Siems WF, Koike T, Hurst JK (2004) J Am Chem Soc 126:9786 Google Scholar
  104. 104.
    Sens C, Romero I, Rodriguez M, Llobet A, Parella T, Benet-Buchholz J (2004) J Am Chem Soc 126:7798 Google Scholar
  105. 105.
    Wada T, Tsuge K, Tanaka K (2000) Angew Chem Int Edit 39:1479 Google Scholar
  106. 106.
    Wada T, Tsuge K, Tanaka K (2001) Inorg Chem 40:329 Google Scholar
  107. 107.
    Cammack R (1999) Nature 397:214 Google Scholar
  108. 108.
    Peters JW, Lanzilotta WN, Lemon BJ, Seefeldt LC (1998) Science 282:1853 Google Scholar
  109. 109.
    Nicolet Y, Piras C, Legrand P, Hatchikian CE, Fontecilla-Camps JC (1999) Structure 7:13 Google Scholar
  110. 110.
    Volbeda A, Garcin E, Piras C, Lacey ALd, Fernandez VM, Hatchikian EC, Frey M, Fontecilla-Camps JC (1996) J Am Chem Soc 118:12989 Google Scholar
  111. 111.
    Schmidt M, Contakes SM, Rauchfuss TB (1999) J Am Chem Soc 121:9736 Google Scholar
  112. 112.
    Gloaguen F, Lawrence JD, Rauchfuss TB (2001) J Am Chem Soc 123:9476 Google Scholar
  113. 113.
    Ott S, Kritikos M, Akermark B, Sun L, Lomoth R (2004) Angew Chem Int Edit 43:1006 Google Scholar
  114. 114.
    Abe T, Taguchi F, Imaya H, Zhao F, Zhang J, Kaneko M (1998) Polym Adv Technol 9:559 Google Scholar
  115. 115.
    Taguchi F, Abe T, Kaneko M (1999) J Mol Catal A Chem 140:41 Google Scholar
  116. 116.
    Ayers WM (ed) (1988) Catalytic Activation of Carbon Dioxide. American Chemical Society, New York Google Scholar
  117. 117.
    Collomb-Dunand-Sauthier M-N, Deronzier A, Ziessel R (1994) Inorg Chem 33:2961 Google Scholar
  118. 118.
    Premkumar J, Ramaraj R (1997) J Photochem Photobio A Chem 110:53 Google Scholar
  119. 119.
    Abe T, Yoshida T, Tokita S, Taguchi F, Imaya H, Kaneko M (1996) J Electroanal Chem 412:125 Google Scholar
  120. 120.
    Kaneko M, Okura I (eds) (2002) Photocatalysis – Science and Technology. Kodansha-Springer, Tokyo Google Scholar
  121. 121.
    Dai Q, Rabani J (2001) Chem Commun 2142 Google Scholar
  122. 122.
    Kaneko M, Nomura T, Sasaki C (2003) Macromol Rapid Commun 24:444 Google Scholar
  123. 123.
    Hoshi T, Nomura T, Shiroishi H, Kaneko M (2004) J Appl Electrochem 33:1239 Google Scholar
  124. 124.
    Sun LC, Berglund H, Davydov R, Norrby T, Hammarstrom L, Korall P, Borje A, Philouze C, Berg K, Tran A, Andersson M, Stenhagen G, Martensson J, Almgren M, Styring S, Akermark B (1997) J Am Chem Soc 119:6996 Google Scholar
  125. 125.
    Sun LC, Hammarstrom L, Norrby T, Berglund H, Davydov R, Andersson M, Borje A, Korall P, Philouze C, Almgren M, Styring S, Akermark B (1997) Chem Commun 607 Google Scholar
  126. 126.
    Burdinski D, Bothe E, Wieghardt K (2000) Inorg Chem 39:105 Google Scholar
  127. 127.
    Burdinski D, Wieghardt K, Steenken S (1999) J Am Chem Soc 121:10781 Google Scholar
  128. 128.
    Wolpher H, Borgstrom M, Hammarstrom L, Bergquist J, Sundstrom V, Styring S, Sun L, Akermark B (2003) Inorg Chem Commun 6:989 Google Scholar
  129. 129.
    Ott S, Kritikos M, Akermark B, Sun L (2003) Angew Chem Int Edit 42:3285 Google Scholar
  130. 130.
    Jiang D-L, Choi C-K, Honda K, Li W-S, Yuzawa T, Aida T (2004) J Am Chem Soc 126:12084 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2006

Authors and Affiliations

  1. 1.Faculty of Education and Human Sciences, and Center for Transdisciplinary ResearchNiigata UniversityNiigataJapan
  2. 2.Faculty of ScienceIbaraki UniversityMitoJapan

Personalised recommendations