Skip to main content

The Centrosome Cycle

  • Chapter
  • First Online:
Cell Cycle Regulation

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 42))

Abstract

Centrosomes are dynamic organelles involved in many aspects of cell function and growth. Centrosomes act as microtubule organizing centers, and provide a site for concerted regulation of cell cycle progression. While there is diversity in microtubule organizing center structure among eukaryotes, many centrosome components, such as centrin, are conserved. Experimental analysis has provided an outline to describe centrosome duplication, and numerous centrosome components have been identified. Even so, more work is needed to provide a detailed understanding of the interactions between centrosome components and their roles in centrosome function and duplication. Precise duplication of centrosomes once during each cell cycle ensures proper mitotic spindle formation and chromosome segregation. Defects in centrosome duplication or function are linked to human diseases including cancer. Here we provide a multifaceted look at centrosomes with a detailed summary of the centrosome cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abal M, Piel M, Bouckson-Castaing V, Mogensen M, Sibarita JB, Bornens M (2002) Microtubule release from the centrosome in migrating cells. J Cell Biol 159:731–737

    PubMed  CAS  Google Scholar 

  2. Abrieu A, Magnaghi-Jaulin L, Kahana JA, Peter M, Castro A, Vigneron S, Lorca T, Cleveland DW, Labbe JC (2001) Mps1 is a kinetochore-associated kinase essential for the vertebrate mitotic checkpoint. Cell 106:83–93

    PubMed  CAS  Google Scholar 

  3. Afzelius BA (2004) Cilia-related diseases. J Pathol 204:470–477

    PubMed  CAS  Google Scholar 

  4. Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, Mann M (2003) Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426:570–574

    PubMed  CAS  Google Scholar 

  5. Avides MdC, Tavares AAM, Glover DM (2001) Polo kinase and Asp are needed to promote the mitotic organizing activity of centrosomes. Nat Cell Biol 3:421–423

    Google Scholar 

  6. Bailly E, Doree M, Nurse P, Bornens M (1989) p34cdc2 is located in both nucleus and cytoplasm; part is centrosomally associated at G2/M and enters vesicles at anaphase. EMBO J 8:3985–3995

    PubMed  CAS  Google Scholar 

  7. Bailly E, Pines J, Hunter T, Bornens M (1992) Cytoplasmic accumulation of cyclin B1 in human cells: association with a detergent-resistant compartment and with the centrosome. J Cell Sci 101:529–545

    PubMed  CAS  Google Scholar 

  8. Balczon R, Bao L, Zimmer W, Brown K, Zinkowski R, Brinkley B (1995) Dissociation of centrosome replication events from cycles of DNA synthesis and mitotic division in hydroxyurea-arrested chinese hamster ovary cells. J Cell Biol. 130:105–115

    PubMed  CAS  Google Scholar 

  9. Balczon RC (2001) Overexpression of cyclin A in human HeLa cells induces detachment of kinetochores and spindle pole/centrosome overproduction. Chromosoma 110:381–392

    PubMed  CAS  Google Scholar 

  10. Bellanger JM, Gonczy P (2003) TAC-1 and ZYG-9 form a complex that promotes microtubule assembly in C. elegans embryos. Curr Biol 13:1488–1498

    PubMed  CAS  Google Scholar 

  11. Berdnik D, Knoblich JA (2002) Drosophila Aurora-A is required for centrosome maturation and actin-dependent asymmetric protein localization during mitosis. Curr Biol 12:640–647

    PubMed  CAS  Google Scholar 

  12. Berthet C, Aleem E, Coppola V, Tessarollo L, Kaldis P (2003) Cdk2 knockout mice are viable. Curr Biol 13:1775–1785

    PubMed  CAS  Google Scholar 

  13. Bettencourt-Dias M, Giet R, Sinka R, Mazumdar A, Lock WG, Balloux F, Zafiropoulos PJ, Yamaguchi S, Winter S, Carthew RW, Cooper M, Jones D, Frenz L, Glover DM (2004) Genome-wide survey of protein kinases required for cell cycle progression. Nature 432:980–987

    PubMed  CAS  Google Scholar 

  14. Blangy A, Lane HA, d'Herin P, Harper M, Kress M, Nigg EA (1995) Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83:1159–1169

    PubMed  CAS  Google Scholar 

  15. Bobinnec Y, Khodjakov A, Mir LM, Rieder CL, Edde B, Bornens M (1998) Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells. J Cell Biol 143:1575–1589

    PubMed  CAS  Google Scholar 

  16. Bodano J, Teslovish T, Katsanis N (2005) The centrosome in human genetic disease. Nat Rev Gen 6:194–205

    Google Scholar 

  17. Budde PP, Kumagai A, Dunphy WG, Heald R (2001) Regulation of Op18 during spindle assembly in Xenopus egg extracts. J Cell Biol 153:149–158

    PubMed  CAS  Google Scholar 

  18. Burakov A, Nadezhdina E, Slepchenko B, Rodionov V (2003) Centrosome positioning in interphase cells. J Cell Biol 162:963–969

    PubMed  CAS  Google Scholar 

  19. Cambiazo V, Logarinho E, Pottstock H, Sunkel CE (2000) Microtubule binding of the drosophila DMAP-85 protein is regulated by phosphorylation in vitro. FEBS Lett 483:37–42

    PubMed  CAS  Google Scholar 

  20. Casenghi M, Meraldi P, Weinhart U, Duncan PI, Korner R, Nigg EA (2003) Polo-like kinase 1 regulates Nlp, a centrosome protein involved in microtubule nucleation. Dev Cell 5:113–125

    PubMed  CAS  Google Scholar 

  21. Ceulemans H, Bollen M (2004) Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol Rev 84:1–39

    PubMed  CAS  Google Scholar 

  22. Cha H, Hancock C, Dangi S, Maiguel D, Carrier F, Shapiro P (2004) Phosphorylation regulates nucleophosmin targeting to the centrosome during mitosis as detected by cross-reactive phosphorylation-specific MKK1/MKK2 antibodies. Biochem J 378:857–865

    PubMed  CAS  Google Scholar 

  23. Chang P, Stearns T (2000) Delta-tubulin and epsilon-tubulin: two new human centrosomal tubulins reveal new aspects of centrosome structure and function. Nat Cell Biol 2:30–35

    PubMed  CAS  Google Scholar 

  24. Chang P, Giddings TH Jr, Winey M, Stearns T (2003) Epsilon-tubulin is required for centriole duplication and microtubule organization. Nat Cell Biol 5:71–76

    PubMed  CAS  Google Scholar 

  25. Chen Z, Indjeian VB, McManus M, Wang L, Dynlacht BD (2002) CP110, a cell cycle-dependent CDK substrate, regulates centrosome duplication in human cells. Dev Cell 3:339–350

    PubMed  CAS  Google Scholar 

  26. Chevrier V, Piel M, Collomb N, Saoudi Y, Frank R, Paintrand M, Narumiya S, Bornens M, Job D (2002) The Rho-associated protein kinase p160ROCK is required for centrosome positioning. J Cell Biol 157:807–817

    PubMed  CAS  Google Scholar 

  27. Chretien D, Buendia B, Fuller SD, Karsenti E (1997) Reconstruction of the centrosome cycle from cryoelectron micrographs. J Struct Biol 120:117–133

    PubMed  CAS  Google Scholar 

  28. Colombo E, Marine JC, Danovi D, Falini B, Pelicci PG (2002) Nucleophosmin regulates the stability and transcriptional activity of p53. Nat Cell Biol 4:529–533

    PubMed  CAS  Google Scholar 

  29. Conte N, Delaval B, Ginestier C, Ferrand A, Isnardon D, Larroque C, Prigent C, Seraphin B, Jacquemier J, Birnbaum D (2003) TACC1-chTOG-Aurora A protein complex in breast cancer. Oncogene 22:8102–8116

    PubMed  CAS  Google Scholar 

  30. Crook T, Marston NJ, Sara EA, Vousden KH (1994) Transcriptional activation by p53 correlates with suppression of growth but not transformation. Cell 79:817–827

    PubMed  CAS  Google Scholar 

  31. Dahmann C, Diffley JFX, Futcher B (1995) S-phase-promoting kinases prevent re-replication by inhibiting the transition of replication origins to a pre-replicative state. Curr Biol 5:1257–1269

    PubMed  CAS  Google Scholar 

  32. Dai W (2005) Polo-like kinases, an introduction. Oncogene 24:214–216

    PubMed  CAS  Google Scholar 

  33. Dammermann A, Muller-Reichert T, Pelletier L, Habermann B, Desai A, Oegema K (2004) Centriole assembly requires both centriolar and pericentriolar material proteins. Dev Cell 7:815–829

    PubMed  CAS  Google Scholar 

  34. Delattre M, Gonczy P (2004) The arithmetic of centrosome biogenesis. J Cell Sci 117:1619–1630

    PubMed  CAS  Google Scholar 

  35. Delattre M, Leidel S, Wani K, Baumer K, Bamat J, Schnabel H, Feichtinger R, Schnabel R, Gonczy P (2004) Centriolar SAS-5 is required for centrosome duplication in C. elegans. Nat Cell Biol 6:656–664

    PubMed  CAS  Google Scholar 

  36. Donaldson MM, Tavares AAM, Ohkura H, Deak P, Glover DM (2001) Metaphase arrest with centromere separation in polo mutants of Drosophila. J Cell Biol 153:663–675

    PubMed  CAS  Google Scholar 

  37. Dou Z, Ding X, Zereshki A, Zhang Y, Zhang J, Wang F, Sun J, Huang H, Yao X (2004) TTK kinase is essential for the centrosomal localization of TACC2. FEBS Lett 572:51–56

    PubMed  CAS  Google Scholar 

  38. Doxsey S, Zimmermann W, Mikule K (2005) Centrosome control of the cell cycle. Trends in Cell Biology (in press)

    Google Scholar 

  39. Doxsey S, Stein P, Evans L, Calarco P, Kirschner M (1994) Pericentrin, a highly conserved centrosome protein involved in microtubule organization. Cell 76:639–650

    PubMed  CAS  Google Scholar 

  40. Dutcher SK, Trabuco EC (1998) The UNI3 gene is required for assembly of basal bodies of Chlamydomonas and encodes delta-tubulin, a new member of the tubulin superfamily. Mol Biol Cell 9:1293–1308

    PubMed  CAS  Google Scholar 

  41. Dutcher SK, Morrissette NS, Preble AM, Rackley C, Stanga J (2002) Epsilon-tubulin is an essential component of the centriole. Mol Biol Cell 13:3859–3869

    PubMed  CAS  Google Scholar 

  42. Errabolu R, Sanders MA, Salisbury JL (1994) Cloning of a cDNA encoding human centrin, an EF-hand protein of centrosomes and mitotic spindle poles. J Cell Sci 107:9–16

    PubMed  CAS  Google Scholar 

  43. Faragher AJ, Fry AM (2003) Nek2A kinase stimulates centrosome disjunction and is required for formation of bipolar mitotic spindles. Mol Biol Cell 14:2876–2889

    PubMed  CAS  Google Scholar 

  44. Fava F, Raynaud-Messina B, Leung-Tack J, Mazzolini L, Li M, Guillemot JC, Cachot D, Tollon Y, Ferrara P, Wright M (1999) Human 76p: a new member of the gamma-tubulin-associated protein family. J Cell Biol 147:857–868

    PubMed  CAS  Google Scholar 

  45. Fischer MG, Heeger S, Hacker U, Lehner CF (2004) The mitotic arrest in response to hypoxia and of polar bodies during early embryogenesis requires Drosophila Mps1. Curr Biol 14:2019–2024

    PubMed  CAS  Google Scholar 

  46. Fisk HA, Winey M (2001) The mouse Mps1p-like kinase regulates centrosome duplication. Cell 106:95–104

    PubMed  CAS  Google Scholar 

  47. Fisk HA, Winey M (2004) Spindle regulation: Mps1 flies into new areas. Curr Biol 14:1058–1060

    Google Scholar 

  48. Fisk HA, Mattison CP, Winey M (2003) Human Mps1 protein kinase is required for centrosome duplication and normal mitotic progression. Proc Natl Acad Sci USA 100:14875–14880

    PubMed  CAS  Google Scholar 

  49. Flory MR, Davis TN (2003) The centrosomal proteins pericentrin and kendrin are encoded by alternatively spliced products of one gene. Genomics 82:401–405

    PubMed  CAS  Google Scholar 

  50. Freed E, Lacey KR, Huie P, Lyapina SA, Deshaies RJ, Stearns T, Jackson PK (1999) Components of an SCF ubiquitin ligase localize to the centrosome and regulate the centrosome duplication cycle. Genes Dev 13:2242–2257

    PubMed  CAS  Google Scholar 

  51. Fry AM (2002) The Nek2 protein kinase: a novel regulator of centrosome structure. Oncogene 21:6184–6194

    PubMed  CAS  Google Scholar 

  52. Fry AM, Schultz SJ, Bartek J, Nigg EA (1995) Substrate specificity and cell cycle regulation of the Nek2 protein kinase, a potential human homolog of the mitotic regulator NIMA of Aspergillus nidulans. J Biol Chem 270:12899–12905

    PubMed  CAS  Google Scholar 

  53. Fry AM, Mayor T, Meraldi P, Stierhof YD, Tanaka K, Nigg EA (1998a) C-Nap1, a novel centrosomal coiled-coil protein and candidate substrate of the cell cycle-regulated protein kinase Nek2. J Cell Biol 141:1563–1574

    CAS  Google Scholar 

  54. Fry AM, Meraldi P, Nigg EA (1998b) A centrosomal function for the human Nek2 protein kinase, a member of the NIMA family of cell cycle regulators. EMBO J 17:470–481

    CAS  Google Scholar 

  55. Fry AM, Arnaud L, Nigg EA (1999) Activity of the human centrosomal kinase, Nek2, depends on an unusual leucine zipper dimerization motif. J Biol Chem 274:16304–163110

    PubMed  CAS  Google Scholar 

  56. Fry AM, Descombes P, Twomey C, Bacchieri R, Nigg EA (2000) The NIMA-related kinase X-Nek2B is required for efficient assembly of the zygotic centrosome in Xenopus laevis. J Cell Sci 113:1973–1984

    PubMed  CAS  Google Scholar 

  57. Fuchs B, Hecker D, Scheidtmann KH (1995) Phosphorylation studies on rat p53 using the baculovirus expression system. Manipulation of the phosphorylation state with okadaic acid and influence on DNA binding. Eur J Biochem 228:625–639

    PubMed  CAS  Google Scholar 

  58. Fukasawa K, Choi T, Kuriyama R, Rulong S, Vande Woude GF (1996) Abnormal centrosome amplification in the absence of p53. Science 271:1744–1747

    PubMed  CAS  Google Scholar 

  59. Fukasawa K, Wiener F, Vande Woude GF, Mai S (1997) Genomic instability and apoptosis are frequent in p53 deficient young mice. Oncogene 15:1295–1302

    PubMed  CAS  Google Scholar 

  60. Gavet O, Alvarez C, Gaspar P, Bornens M (2003) Centrin4p, a novel mammalian centrin specifically expressed in ciliated cells. Mol Biol Cell 14:1818–1834

    PubMed  CAS  Google Scholar 

  61. Geng Y, Yu Q, Sicinska E, Das M, Schneider JE, Bhattacharya S, Rideout WM, Bronson RT, Gardner H, Sicinski P (2003) Cyclin E ablation in the mouse. Cell 114:431–443

    PubMed  CAS  Google Scholar 

  62. Giet R, Prigent C (2000) The Xenopus laevis aurora/Ip11p-related kinase pEg2 participates in the stability of the bipolar mitotic spindle. Exp Cell Res 258:145–151

    PubMed  CAS  Google Scholar 

  63. Giet R, Prigent C (2001) The non-catalytic domain of the Xenopus laevis Aurora-A kinase localises the protein to the centrosome. J Cell Sci 114:2095–2104

    PubMed  CAS  Google Scholar 

  64. Giet R, Uzbekov R, Cubizolles F, Le Guellec K, Prigent C (1999) The Xenopus laevis aurora-related protein kinase pEg2 associates with and phosphorylates the kinesin-related protein XlEg5. J Biol Chem 274:15005–15013

    PubMed  CAS  Google Scholar 

  65. Giet R, McLean D, Descamps S, Lee MJ, Raff JW, Prigent C, Glover DM (2002) Drosophila Aurora A kinase is required to localize D-TACC to centrosomes and to regulate astral microtubules. J Cell Biol 156:437–451

    PubMed  CAS  Google Scholar 

  66. Gillingham AK, Munro S (2000) The PACT domain, a conserved centrosomal targeting motif in the coiled-coil proteins AKAP450 and pericentrin. EMBO Rep 1:524–529

    PubMed  CAS  Google Scholar 

  67. Glover D, Leibowitz M, McLean D, Parry H (1995) Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell 81:95–105

    PubMed  CAS  Google Scholar 

  68. Gonczy P, Pichler S, Kirkham M, Hyman AA (1999) Cytoplasmic dynein is required for distinct aspects of MTOC positioning, including centrosome separation, in the one cell stage Caenorhabditis elegans embryo. J Cell Biol 147:135–150

    PubMed  CAS  Google Scholar 

  69. Guarguaglini G, Duncan PI, Stierhof YD, Holmstrom T, Duensing S, Nigg EA (2004) The FHA-domain protein Cep170 interacts with Plk1 and serves as a marker for mature centrioles. Mol Biol Cell 16:1095–1107

    PubMed  Google Scholar 

  70. Gunawardane RN, Lizarraga SB, Wiese C, Wilde A, Zheng Y (2000) gamma-Tubulin complexes and their role in microtubule nucleation. Curr Top Dev Biol 49:55–73

    PubMed  CAS  Google Scholar 

  71. Haase SB, Winey M, Reed SI (2001) Multi-step control of spindle pole body duplication by cyclin-dependent kinase. Nat Cell Biol 3:38–42

    PubMed  CAS  Google Scholar 

  72. Hames RS, Crookes RE, Straatman KR, Merdes A, Hayes MJ, Faragher AJ, Fry AM (2005) Dynamic recruitment of Nek2 kinase to the centrosome involves microtubules, PCM-1 and localized proteasomal degradation. Mol Biol Cell 16:1711–1724

    PubMed  CAS  Google Scholar 

  73. Hannak E, Kirkham M, Hyman AA, Oegema K (2001) Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans. J Cell Biol 155:1109–1116

    PubMed  CAS  Google Scholar 

  74. He X, Jones MH, Winey M, Sazer S (1998) Mph1, a member of the Mps1-like family of dual specificity protein kinases, is required for the spindle checkpoint in S. pombe. J Cell Sci 111:1635–1647

    PubMed  CAS  Google Scholar 

  75. Heald R, Tournebize R, Habermann A, Karsenti E, Hyman A (1997) Spindle assembly in Xenopus egg extracts: respective roles of centrosomes and microtubule self-organization. J Cell Biol 138:615–628

    PubMed  CAS  Google Scholar 

  76. Helps NR, Luo X, Barker HM, Cohen PT (2000) NIMA-related kinase 2 (Nek2), a cell-cycle-regulated protein kinase localized to centrosomes, is complexed to protein phosphatase 1. Biochem J 349:509–518

    PubMed  CAS  Google Scholar 

  77. Hinchcliffe EH, Li C, Thompson EA, Maller JL, Sluder G (1999) Requirement of Cdk2-cyclin E activity for repeated centrosome reproduction in Xenopus egg extracts. Science 283:851–854

    PubMed  CAS  Google Scholar 

  78. Hinchcliffe EH, Linck RW (1998) Two proteins isolated from sea urchin sperm flagella: structural components common to the stable microtubules of axonemes and centrioles. J Cell Sci 111:585–595

    PubMed  CAS  Google Scholar 

  79. Hinchcliffe EH, Sluder G (2001) “It takes two to tango”: understanding how centrosome duplication is regulated throughout the cell cycle. Genes Dev 15:1167–1181

    PubMed  CAS  Google Scholar 

  80. Hinchcliffe EH, Sluder G (2002) Two for two: Cdk2 and its role in centrosome doubling. Oncogene 21:6154–6160

    PubMed  CAS  Google Scholar 

  81. Hinchcliffe EH, Miller FJ, Cham M, Khodjakov A, Sluder G (2001) Requirement of a centrosomal activity for cell cycle progression through G1 into S-phase. Science 291:1547–1550

    PubMed  CAS  Google Scholar 

  82. Hirota T, Kunitoku N, Sasayama T, Marumoto T, Zhang D, Nitta M, Hatakeyama K, Saya H (2003) Aurora-A and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells. Cell 114:585–598

    PubMed  CAS  Google Scholar 

  83. Hsu LC, White RL (1998) BRCA1 is associated with the centrosome during mitosis. Proc Natl Acad Sci USA 95:12983–12988

    PubMed  CAS  Google Scholar 

  84. Huang B, Mengersen A, Lee V (1988) Molecular cloning of cDNA for caltractin, a basal body-associated Ca2+-binding protein: homology in its protein sequence with calmodulin and the yeast CDC31 gene product. J Cell Biol 107:133–140

    PubMed  CAS  Google Scholar 

  85. Hung LY, Tang CJ, Tang TK (2000) Protein 4.1 R-135 interacts with a novel centrosomal protein (CPAP) which is associated with the gamma-tubulin complex. Mol Cell Biol 20:7813–7825

    PubMed  CAS  Google Scholar 

  86. Hung LY, Chen HL, Chang CW, Li BR, Tang TK (2004) Identification of a novel microtubule-destabilizing motif in CPAP that binds to tubulin heterodimers and inhibits microtubule assembly. Mol Biol Cell 15:2697–2706

    PubMed  CAS  Google Scholar 

  87. Jackman M, Lindon C, Nigg EA, Pines J (2003) Active cyclin B1-Cdk1 first appears on centrosomes in prophase. Nat Cell Biol 5:143–148

    PubMed  CAS  Google Scholar 

  88. Jaspersen SL, Winey M (2004) The budding yeast spindle pole body: structure, duplication, and function. Annu Rev Cell Dev Biol 20:1–28

    PubMed  CAS  Google Scholar 

  89. Jaspersen SL, Huneycutt BJ, Giddings TH, Jr, Resing KA, Ahn NG, Winey M (2004) Cdc28/Cdk1 regulates spindle pole body duplication through phosphorylation of Spc42 and Mps1. Dev Cell 7:263–274

    PubMed  CAS  Google Scholar 

  90. Kaiser BK, Zimmerman ZA, Charbonneau H, Jackson PK (2002) Disruption of centrosome structure, chromosome segregation, and cytokinesis by misexpression of human Cdc14A phosphatase. Mol Biol Cell 13:2289–2300

    PubMed  CAS  Google Scholar 

  91. Kaiser BK, Nachury MV, Gardner BE, Jackson PK (2004) Xenopus Cdc14 alpha/beta are localized to the nucleolus and centrosome and are required for embryonic cell division. BMC Cell Biol 5:27

    PubMed  Google Scholar 

  92. Kawaguchi S, Zheng Y (2004) Characterization of a Drosophila centrosome protein CP309 that shares homology with Kendrin and CG-NAP. Mol Biol Cell 15:37–45

    PubMed  Google Scholar 

  93. Kemp CA, Kopish KR, Zipperlen P, Ahringer J, O'Connell KF (2004) Centrosome maturation and duplication in C. elegans require the coiled-coil protein SPD-2. Dev Cell 6:511–523

    PubMed  CAS  Google Scholar 

  94. Khodjakov A, Rieder CL (1999) The sudden recruitment of gamma-tubulin to the centrosome at the onset of mitosis and its dynamic exchange throughout the cell cycle, do not require microtubules. J Cell Biol 146:585–596

    PubMed  CAS  Google Scholar 

  95. Khodjakov A, Rieder CL (2001) Centrosomes enhance the fidelity of cytokinesis in vertebrates and are required for cell cycle progression. J Cell Biol 153:237–242

    PubMed  CAS  Google Scholar 

  96. Khodjakov A, Cole RW, Oakley BR, Rieder CL (2000) Centrosome-independent mitotic spindle formation in vertebrates. Curr Biol 10:59–67

    PubMed  CAS  Google Scholar 

  97. Khodjakov A, Rieder CL, Sluder G, Cassels G, Sibon O, Wang CL (2002) De novo formation of centrosomes in vertebrate cells arrested during S-phase. J Cell Biol 158:1171–1181

    PubMed  CAS  Google Scholar 

  98. Kirkham M, Muller-Reichert T, Oegema K, Grill S, Hyman AA (2003) SAS-4 is a C. elegans centriolar protein that controls centrosome size. Cell 112:575–587

    PubMed  CAS  Google Scholar 

  99. Kitada K, Johnson AL, Johnston LH, Sugino A (1993) A multicopy suppressor gene of the Saccharomyces cerevisiae G1 cell cycle mutant gene dbf4 encodes a protein kinase and is identified as CDC5. Mol Cell Biol 13:4445–4457

    PubMed  CAS  Google Scholar 

  100. Knop M, Schiebel E (1997) Spc98p and Spc97p of the yeast γ-tubulin complex mediate binding to the spindle pole body via their interaction with Spc110p. EMBO J 18:6985–6995

    Google Scholar 

  101. Knop M, Schiebel E (1998) Receptors determine the cellular localization of a gamma-tubulin complex and thereby the site of microtubule formation. EMBO J 17:3952–3967

    PubMed  CAS  Google Scholar 

  102. Knop M, Pereira G, Geissler S, Grein K, Schiebel E (1997) The spindle pole body component Spc97p interacts with the gamma-tubulin of Saccharomyces cerevisiae and functions in microtubule organization and spindle pole body duplication. EMBO J 16:1550–1564

    PubMed  CAS  Google Scholar 

  103. Koblenz B, Schoppmeier J, Grunow A, Lechtreck KF (2003) Centrin deficiency in Chlamydomonas causes defects in basal body replication, segregation and maturation. J Cell Sci 116:2635–2646

    PubMed  CAS  Google Scholar 

  104. Kochanski R, Borisy G (1991) Mode of centriole duplication and distribution. J Cell Biol 110:1599–1605

    Google Scholar 

  105. Koonce MP, Kohler J, Neujahr R, Schwartz JM, Tikhonenko I, Gerisch G (1999) Dynein motor regulation stabilizes interphase microtubule arrays and determines centrosome position. EMBO J 18:6786–6792

    PubMed  CAS  Google Scholar 

  106. Kramer A, Lukas J, Bartek J (2004) Checking out the centrosome. Cell Cycle 3:1390–1393

    PubMed  Google Scholar 

  107. Kuriyama R, Borisy G (1981) Microtubule-nucleating activity of centrosomes in Chinese hamster ovary cells is independent of the centriole cycle but coupled to the mitotic cycle. J Cell Biol 91:822–826

    PubMed  CAS  Google Scholar 

  108. Kuriyama R, Dasgupta S, Borisy GG (1986) Independence of centriole formation and initiation of DNA synthesis in Chinese hamster ovary cells. Cell Motil Cytoskeleton 6:355–362

    CAS  Google Scholar 

  109. Lacey K, Jackson P, Stearns T (1999) Cyclin-dependent kinase control of centrosome duplication. Proc Natl Acad Sci USA 96:2817–2822

    PubMed  CAS  Google Scholar 

  110. Lane HA, Nigg EA (1996) Antibody microinjection reveals an essential role for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes. J Cell Biol 135:1701–1713

    PubMed  CAS  Google Scholar 

  111. Lange B, Gull K (1995) A molecular marker for centriole maturation in the mammalian cell cycle. J Cell Biol 130:919–927

    PubMed  CAS  Google Scholar 

  112. Larsson M, Norrander J, Graslund S, Brundell E, Linck R, Stahl S, Hoog C (2000) The spatial and temporal expression of Tekt1, a mouse tektin C homologue, during spermatogenesis suggest that it is involved in the development of the sperm tail basal body and axoneme. Eur J Cell Biol 79:718–725

    PubMed  CAS  Google Scholar 

  113. Le Bot N, Tsai MC, Andrews RK, Ahringer J (2003) TAC-1, a regulator of microtubule length in the C. elegans embryo. Curr Biol 13:1499–1505

    PubMed  Google Scholar 

  114. Lee VD, Huang B (1993) Molecular cloning and centrosomal localization of human caltractin. Proc Natl Acad Sci USA 90:11039–11043

    PubMed  CAS  Google Scholar 

  115. Leidel S, Delattre M, Cerutti L, Baumer K, Gonczy P (2005) SAS-6 defines a protein family required for centrosome duplication in C. elegans and in human cells. Nat Cell Biol 7:115–125

    PubMed  CAS  Google Scholar 

  116. Leidel S, Gonczy P (2003) SAS-4 is essential for centrosome duplication in C elegans and is recruited to daughter centrioles once per cell cycle. Dev Cell 4:431–439

    PubMed  CAS  Google Scholar 

  117. Li Q, Hansen D, Killilea A, Joshi HC, Palazzo RE, Balczon R (2001) Kendrin/pericentrin-B, a centrosome protein with homology to pericentrin that complexes with PCM-1. J Cell Sci 114:797–809

    PubMed  CAS  Google Scholar 

  118. Linck RW (1976) Flagellar doublet microtubules: fractionation of minor components and alpha-tubulin from specific regions of the A-tubule. J Cell Sci 20:405–439

    PubMed  CAS  Google Scholar 

  119. Linck RW, Amos LA, Amos WB (1985) Localization of tektin filaments in microtubules of sea urchin sperm flagella by immunoelectron microscopy. J Cell Biol 100:126–135

    PubMed  CAS  Google Scholar 

  120. Lingle WL, Barrett SL, Negron VC, D'Assoro AB, Boeneman K, Liu W, Whitehead CM, Reynolds C, Salisbury JL (2002) Centrosome amplification drives chromosomal instability in breast tumor development. Proc Natl Acad Sci USA 99:1978–1983

    PubMed  CAS  Google Scholar 

  121. Liu ST, Chan GK, Hittle JC, Fujii G, Lees E, Yen TJ (2003) Human MPS1 kinase is required for mitotic arrest induced by the loss of CENP-E from kinetochores. Mol Biol Cell 14:1638–1651

    PubMed  CAS  Google Scholar 

  122. Liu X, Erikson RL (2002) Activation of Cdc2/cyclin B and inhibition of centrosome amplification in cells depleted of Plk1 by siRNA. Proc Natl Acad Sci USA 99:8672–8676

    PubMed  CAS  Google Scholar 

  123. Llamazares S, Moreira A, Tavares A, Girdham C, Spruce BA, Gonzalez C, Karess RE, Glover DM, Sunkel CE (1991) polo encodes a protein kinase homolog required for mitosis in Drosophila. Genes Dev 5:2153–2165

    PubMed  CAS  Google Scholar 

  124. Louie RK, Bahmanyar S, Siemers KA, Votin V, Chang P, Stearns T, Nelson WJ, Barth AI (2004) Adenomatous polyposis coli and EB1 localize in close proximity of the mother centriole and EB1 is a functional component of centrosomes. J Cell Sci 117:1117–1128

    PubMed  CAS  Google Scholar 

  125. Lowery DM, Lim D, Yaffe MB (2005) Structure and function of Polo-like kinases. Oncogene 24:248–259

    PubMed  CAS  Google Scholar 

  126. Lu KP, Hunter T (1995) The NIMA kinase: a mitotic regulator in Aspergillus nidulans and vertebrate cells. Prog Cell Cycle Res 1:187–205

    PubMed  CAS  Google Scholar 

  127. Lutz W, Lingle WL, McCormick D, Greenwood TM, Salisbury JL (2001) Phosphorylation of centrin during the cell cycle and its role in centriole separation preceding centrosome duplication. J Biol Chem 276:20774–20780

    PubMed  CAS  Google Scholar 

  128. Ma S, Trivinos-Lagos L, Graf R, Chisholm RL (1999) Dynein intermediate chain mediated dynein-dynactin interaction is required for interphase microtubule organization and centrosome replication and separation in Dictyostelium. J Cell Biol 147:1261–1273

    PubMed  CAS  Google Scholar 

  129. Mack GJ, Rees J, Sandblom O, Balczon R, Fritzler MJ, Rattner JB (1998) Autoantibodies to a group of centrosomal proteins in human autoimmune sera reactive with the centrosome. Arthr Rheum 41:551–558

    CAS  Google Scholar 

  130. Mailand N, Lukas C, Kaiser BK, Jackson PK, Bartek J, Lukas J (2002) Deregulated human Cdc14A phosphatase disrupts centrosome separation and chromosome segregation. Nat Cell Biol 4:317–322

    PubMed  CAS  Google Scholar 

  131. Malone CJ, Misner L, Le Bot N, Tsai MC, Campbell JM, Ahringer J, White JG (2003) The C. elegans hook protein, ZYG-12, mediates the essential attachment between the centrosome and nucleus. Cell 115:825–836

    PubMed  CAS  Google Scholar 

  132. Manchester KL (1995) Theodor Boveri and the origin of malignant tumours. Trends Cell Biol 5:384–387

    PubMed  CAS  Google Scholar 

  133. Martin-Lluesma S, Stucke VM, Nigg EA (2002) Role of Hec1 in spindle checkpoint signaling and kinetochore recruitment of Mad1/Mad2. Science 297:2267–2270

    PubMed  CAS  Google Scholar 

  134. Marumoto T, Honda S, Hara T, Nitta M, Hirota T, Kohmura E, Saya H (2003) Aurora-A kinase maintains the fidelity of early and late mitotic events in HeLa cells. J Biol Chem 278:51786–51795

    PubMed  CAS  Google Scholar 

  135. Marumoto T, Zhang D, Saya H (2005) Aurora-A – a guardian of poles. Nat Rev Cancer 5:42–50

    PubMed  CAS  Google Scholar 

  136. Matsumoto Y, Maller JL (2002) Calcium, calmodulin, and CaMKII requirement for initiation of centrosome duplication in Xenopus egg extracts. Science 295:499–502

    PubMed  CAS  Google Scholar 

  137. Matsumoto Y, Hayashi K, Nishida E (1999) Cyclin-dependent kinase 2 (Cdk2) is required for centrosome duplication in mammalian cells. Curr Biol 9:429–432

    PubMed  CAS  Google Scholar 

  138. Matsuura K, Lefebvre PA, Kamiya R, Hirono M (2004) Bld10p, a novel protein essential for basal body assembly in Chlamydomonas: localization to the cartwheel, the first ninefold symmetrical structure appearing during assembly. J Cell Biol 165:663–671

    PubMed  Google Scholar 

  139. Mayor T, Hacker U, Stierhof YD, Nigg EA (2002) The mechanism regulating the dissociation of the centrosomal protein C-Nap1from mitotic spindle poles. J Cell Sci 115:3275–3284

    PubMed  CAS  Google Scholar 

  140. Mayor T, Stierhof Y-D, Tanaka K, Fry AM, Nigg EA (2000) The centrosomal protein C-Nap1 is required for cell cycle-regulated centrosome cohesion. J Cell Biol 151:837–846

    PubMed  CAS  Google Scholar 

  141. Meraldi P, Lukas J, Fry AM, Bartek J, Nigg EA (1999) Centrosome duplication in mammalian somatic cells requires E2F and Cdk2-cyclin A. Nat Cell Biol 1:88–93

    PubMed  CAS  Google Scholar 

  142. Meraldi P, Nigg EA (2001) Centrosome cohesion is regulated by a balance of kinase and phosphatase activities. J Cell Sci 114:3749–3757

    PubMed  CAS  Google Scholar 

  143. Meraldi P, Nigg EA (2002) The centrosome cycle. FEBS Lett 521:9–13

    PubMed  CAS  Google Scholar 

  144. Middendorp S, Paoletti A, Schiebel E, Bornens M (1997) Identification of a new mammalian centrin gene, more closely related to Saccharomyces cerevisiae CDC31 gene. Proc Natl Acad Sci USA 94:9141–9146

    PubMed  CAS  Google Scholar 

  145. Moritz KB, Sauer HW (1996) Boveri's contributions to developmental biology – a challenge for today. Int J Dev Biol 40:27–47

    PubMed  CAS  Google Scholar 

  146. Moritz M, Braufeld M, Sedat J, Alberts B, Agard D (1995) Microtubule nucleation by gamma-tubulin-containing rings in the centrosome. Nature 378:638–640

    PubMed  CAS  Google Scholar 

  147. Murphy SM, Urbani L, Stearns T (1998) The mammalian gamma-tubulin complex contains homologues of the yeast spindle pole body components spc97p and spc98p. J Cell Biol 141:663–674

    PubMed  CAS  Google Scholar 

  148. Murphy SM, Preble AM, Patel UK, O'Connell KL, Dias DP, Moritz M, Agard D, Stults JT, Stearns T (2001) GCP5 and GCP6: two new members of the human gamma-tubulin complex. Mol Biol Cell 12:3340–3352

    PubMed  CAS  Google Scholar 

  149. Nigg EA (2002) Centrosome aberrations: cause or consequence of cancer progression? Nat Rev Cancer 2:815–825

    PubMed  CAS  Google Scholar 

  150. Noton E, Diffley JF (2000) CDK inactivation is the only essential function of the APC/C and the mitotic exit network proteins for origin resetting during mitosis. Mol Cell 5:85–95

    PubMed  CAS  Google Scholar 

  151. O'Connell KF, Caron C, Kopish KR, Hurd DD, Kemphues KJ, Li Y, White JG (2001) The C. elegans zyg-1 gene encodes a regulator of centrosome duplication with distinct maternal and paternal roles in the embryo. Cell 105:547–558

    PubMed  Google Scholar 

  152. O'Connell KF, Leys CM, White JG (1998) A genetic screen for temperature-sensitive cell-division mutants of Caenorhabditis elegans. Genetics 149:1303–1321

    Google Scholar 

  153. O'Connell KF, Maxwell KN, White JG (2000) The spd-2 gene is required for polarization of the anteroposterior axis and formation of the sperm asters in the Caenorhabditis elegans zygote. Dev Biol 222:55–70

    PubMed  Google Scholar 

  154. O'Connell MJ, Krien MJ, Hunter T (2003) Never say never. The NIMA-related protein kinases in mitotic control. Trends Cell Biol 13:221–228

    PubMed  Google Scholar 

  155. Oakley BR, Akkari YN (1999) Gamma-tubulin at ten: progress and prospects. Cell Struct Funct 24:365–372

    PubMed  CAS  Google Scholar 

  156. Oakley CE, Oakley BR (1989) Identification of gamma-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature 338:662–664

    PubMed  CAS  Google Scholar 

  157. Ohta Y, Ohba T, Miyamoto E (1990) Ca2+/calmodulin-dependent protein kinase II: localization in the interphase nucleus and the mitotic apparatus of mammalian cells. Proc Natl Acad Sci USA 87:5341–5345

    PubMed  CAS  Google Scholar 

  158. Okuda M (2002) The role of nucleophosmin in centrosome duplication. Oncogene 21:6170–6174

    PubMed  CAS  Google Scholar 

  159. Okuda M, Horn HF, Tarapore P, Tokuyama Y, Smulian AG, Chan PK, Knudsen ES, Hofmann IA, Snyder JD, Bove KE, Fukasawa K (2000) Nucleophosmin/B23 is a target of CDK2/cyclin E in centrosome duplication. Cell 103:127–140

    PubMed  CAS  Google Scholar 

  160. Ortega S, Prieto I, Odajima J, Martin A, Dubus P, Sotillo R, Barbero JL, Malumbres M, Barbacid M (2003) Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nat Genet 35:25–31

    PubMed  CAS  Google Scholar 

  161. Ou Y, Rattner JB (2004) The centrosome in higher organisms: structure, composition, and duplication. Int Rev Cytol 238:119–182

    PubMed  CAS  Google Scholar 

  162. Ou Y, Zhang M, Rattner JB (2004) The centrosome: the centriole-PCM coalition. Cell Motil Cytoskeleton 57:1–7

    CAS  Google Scholar 

  163. Palazzo RE, Vogel JM, Schnackenberg BJ, Hull DR, Wu X (2000) Centrosome maturation. Curr Top Dev Biol 49:449–470

    PubMed  CAS  Google Scholar 

  164. Paoletti A, Moudjou M, Paintrand M, Salisbury JL, Bornens M (1996) Most of centrin in animal cells is not centrosome-associated and centrosomal centrin is confined to the distal lumen of centrioles. J Cell Sci 109:3089–3102

    PubMed  CAS  Google Scholar 

  165. Paoletti A, Bordes N, Haddad R, Schwartz CL, Chang F, Bornens M (2003) Fission yeast cdc31p is a component of the half-bridge and controls SPB duplication. Mol Biol Cell 14:2793–2808

    PubMed  CAS  Google Scholar 

  166. Pelletier L, Ozlu N, Hannak E, Cowan C, Habermann B, Ruer M, Muller-Reichert T, Hyman AA (2004) The Caenorhabditis elegans centrosomal protein SPD-2 is required for both pericentriolar material recruitment and centriole duplication. Curr Biol 14:863–873

    PubMed  CAS  Google Scholar 

  167. Piel M, Meyer P, Khodjakov A, Rieder CL, Bornens M (2000) The respective contributions of the mother and daughter centrioles to centrosome activity and behavior in vertebrate cells. J Cell Biol 149:317–330

    PubMed  CAS  Google Scholar 

  168. Piel M, Nordberg J, Euteneuer U, Bornens M (2001) Centrosome-dependent exit of cytokinesis in animal cells. Science 291:1550–1553

    PubMed  CAS  Google Scholar 

  169. Pihan GA, Wallace J, Zhou Y, Doxsey SJ (2003) Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas. Cancer Res 63:1398–1404

    PubMed  CAS  Google Scholar 

  170. Pockwinse SM, Krockmalnic G, Doxsey SJ, Nickerson J, Lian JB, van Wijnen AJ, Stein JL, Stein GS, Penman S (1997) Cell cycle independent interaction of CDC2 with the centrosome, which is associated with the nuclear matrix-intermediate filament scaffold. Proc Natl Acad Sci USA 94:3022–3027

    PubMed  CAS  Google Scholar 

  171. Popov AV, Karsenti E (2003) Stu2p and XMAP215: turncoat microtubule-associated proteins? Trends Cell Biol 13:547–550

    PubMed  CAS  Google Scholar 

  172. Poss KD, Nechiporuk A, Hillam AM, Johnson SL, Keating MT (2002) Mps1 defines a proximal blastemal proliferative compartment essential for zebrafish fin regeneration. Development 129:5141–5149

    PubMed  CAS  Google Scholar 

  173. Purohit A, Tynan SH, Vallee R, Doxsey SJ (1999) Direct interaction of pericentrin with cytoplasmic dynein light intermediate chain contributes to mitotic spindle organization. J Cell Biol 147:481–491

    PubMed  CAS  Google Scholar 

  174. Quintyne NJ, Reing JE, Hoffelder DR, Gollin SM, Saunders WS (2005) Spindle multipolarity is prevented by centrosomal clustering. Science 307:127–129

    PubMed  CAS  Google Scholar 

  175. Raynaud-Messina B, Mazzolini L, Moisand A, Cirinesi AM, Wright M (2004) Elongation of centriolar microtubule triplets contributes to the formation of the mitotic spindle in gamma-tubulin-depleted cells. J Cell Sci 117:5497–5507

    PubMed  CAS  Google Scholar 

  176. Roghi C, Giet R, Uzbekov R, Morin N, Chartrain I, Le Guellec R, Couturier A, Doree M, Philippe M, Prigent C (1998) The Xenopus protein kinase pEg2 associates with the centrosome in a cell cycle-dependent manner, binds to the spindle microtubules and is involved in bipolar mitotic spindle assembly. J Cell Sci 111:557–572

    PubMed  CAS  Google Scholar 

  177. Ruiz F, Beisson J, Rossier J, Dupuis-Williams P (1999) Basal body duplication in Paramecium requires gamma-tubulin. Curr Biol 9:43–46

    PubMed  CAS  Google Scholar 

  178. Rusan NM, Wadsworth P (2005) Centrosome fragments and microtubules are transported asymmetrically away from division plane in anaphase. J Cell Biol 168:21–28

    PubMed  CAS  Google Scholar 

  179. Salisbury JL (1995) Centrin, centrosomes, and mitotic spindle poles. Curr Opin Cell Biol 7:39–45

    PubMed  CAS  Google Scholar 

  180. Salisbury JL, Suino KM, Busby R, Springett M (2002) Centrin-2 is required for centriole duplication in mammalian cells. Curr Biol 12:1287–1292

    PubMed  CAS  Google Scholar 

  181. Schiebel E, Bornens M (1995) In search of a function for centrins. Trends Cell Biol 5:197–201

    PubMed  CAS  Google Scholar 

  182. Schliwa M, Euteneuer U, Graf R, Ueda M (1999) Centrosomes, microtubules and cell migration. Biochem Soc Symp 65:223–231

    PubMed  CAS  Google Scholar 

  183. Schmidt DJ, Rose DJ, Saxton WM, Strome S (2005) Functional analysis of cytoplasmic dynein heavy chain in Caenorhabditis elegans with fast-acting temperature-sensitive mutations. Mol Biol Cell 16:1200–1212

    PubMed  CAS  Google Scholar 

  184. Shang Y, Li B, Gorovsky MA (2002) Tetrahymena thermophila contains a conventional gamma-tubulin that is differentially required for the maintenance of different microtubule-organizing centers. J Cell Biol 158:1195–1206

    PubMed  CAS  Google Scholar 

  185. Sluder G, Nordberg JJ (2004) The good, the bad and the ugly: the practical consequences of centrosome amplification. Curr Opin Cell Biol 16:49–54

    PubMed  CAS  Google Scholar 

  186. Snell WJ, Pan J, Wang Q (2004) Cilia and flagella revealed: from flagellar assembly in Chlamydomonas to human obesity disorders. Cell 117:693–697

    PubMed  CAS  Google Scholar 

  187. Stearns T, Kirschner M (1994) In vitro reconstitution of centrosome assembly and function: The central role of gamma-tubulin. Cell 76:623–637

    PubMed  CAS  Google Scholar 

  188. Stearns T, Evans L, Kirschner M (1991) Gamma-tubulin is a highly conserved component of the centrosome. Cell 65:825–836

    PubMed  CAS  Google Scholar 

  189. Steffen W, Fajer EA, Linck RW (1994) Centrosomal components immunologically related to tektins from ciliary and flagellar microtubules. J Cell Sci 107:2095–2105

    PubMed  CAS  Google Scholar 

  190. Stephens RE, Lemieux NA (1998) Tektins as structural determinants in basal bodies. Cell Motil Cytoskeleton 40:379–392

    CAS  Google Scholar 

  191. Stephens RE, Oleszko-Szuts S, Linck RW (1989) Retention of ciliary ninefold structure after removal of microtubules. J Cell Sci 92:391–402

    PubMed  Google Scholar 

  192. Stucke VM, Sillje HH, Arnaud L, Nigg EA (2002) Human Mps1 kinase is required for the spindle assembly checkpoint but not for centrosome duplication. EMBO J 21:1723–1732

    PubMed  CAS  Google Scholar 

  193. Stucke VM, Baumann C, Nigg EA (2004) Kinetochore localization and microtubule interaction of the human spindle checkpoint kinase Mps1. Chromosoma 113:1–15

    PubMed  CAS  Google Scholar 

  194. Sunkel CE, Glover DM (1988) polo, a mitotic mutant of Drosophila displaying abnormal spindle poles. J Cell Sci 89:25–38

    PubMed  Google Scholar 

  195. Takahashi M, Shibata H, Shimakawa M, Miyamoto M, Mukai H, Ono Y (1999) Characterization of a novel giant scaffolding protein, CG-NAP, that anchors multiple signaling enzymes to centrosome and the Golgi apparatus. J Biol Chem 274:17267–17274

    PubMed  CAS  Google Scholar 

  196. Takahashi M, Yamagiwa A, Nishimura T, Mukai H, Ono Y (2002) Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring gamma-tubulin ring complex. Mol Biol Cell 13:3235–3245

    PubMed  CAS  Google Scholar 

  197. Tarapore P, Fukasawa K (2002) Loss of p53 and centrosome hyperamplification. Oncogene 21:6234–6240

    PubMed  CAS  Google Scholar 

  198. Tarapore P, Horn HF, Tokuyama Y, Fukasawa K (2001a) Direct regulation of the centrosome duplication cycle by the p53-p21Waf1/Cip1 pathway. Oncogene 20:3173–3184

    CAS  Google Scholar 

  199. Tarapore P, Tokuyama Y, Horn HF, Fukasawa K (2001b) Difference in the centrosome duplication regulatory activity among p53 ‘hot spot’ mutants: potential role of Ser 315 phosphorylation-dependent centrosome binding of p53. Oncogene 20:6851–6863

    CAS  Google Scholar 

  200. Tarapore P, Okuda M, Fukasawa K (2002) A mammalian in vitro centriole duplication system: evidence for involvement of CDK2/cyclin E and nucleophosmin/B23 in centrosome duplication. Cell Cycle 1:75–81

    CAS  Google Scholar 

  201. Thomas RC, Edwards MJ, Marks R (1996) Translocation of the retinoblastoma gene during mitosis. Exp Cell Res 223:227–232

    PubMed  CAS  Google Scholar 

  202. Tokuyama Y, Horn HF, Kawamura K, Tarapore P, Fukasawa K (2001) Specific phosphorylation of nucleophosmin on Thr199 by cyclin-dependent kinase 2-cyclin E and its role in centrosome duplication. J Biol Chem 276:21529–21537

    PubMed  CAS  Google Scholar 

  203. Twomey C, Wattam SL, Pillai MR, Rapley J, Baxter JE, Fry AM (2004) Nek2B stimulates zygotic centrosome assembly in Xenopus laevis in a kinase-independent manner. Dev Biol 265:384–398

    PubMed  CAS  Google Scholar 

  204. Uto K, Sagata N (2000) Nek2B, a novel maternal form of Nek2 kinase is essential for the assembly or maintenance of centrosomes in early Xenopus embryos. EMBO J 19:1816–1826

    PubMed  CAS  Google Scholar 

  205. Vaisberg EA, Koonce MP, McIntosh JR (1993) Cytoplasmic dynein plays a role in mammalian mitotic spindle formation. J Cell Biol 123:849–858

    PubMed  CAS  Google Scholar 

  206. van Vugt MA, van de Weerdt BC, Vader G, Janssen H, Calafat J, Klompmaker R, Wolthuis RM, Medema RH (2004) Polo-like kinase-1 is required for bipolar spindle formation but is dispensable for anaphase promoting complex/Cdc20 activation and initiation of cytokinesis. J Biol Chem 279:36841–36854

    PubMed  Google Scholar 

  207. Vidwans SJ, Wong ML, O'Farrell PH (1999) Mitotic regulators govern progress through steps in the centrosome duplication cycle. J Cell Biol 147:1371–1378

    PubMed  CAS  Google Scholar 

  208. Vorobjev I, Nadezhdina E (1987) The centrosome and its role in the organization of microtubles. Int Rev Cytol 106:227–293

    PubMed  CAS  Google Scholar 

  209. Wang Y, Prives C (1995) Increased and altered DNA binding of human p53 by S and G2/M but not G1 cyclin-dependent kinases. Nature 376:88–91

    PubMed  CAS  Google Scholar 

  210. Warnke S, Kemmler S, Hames RS, Tsai HL, Hoffmann-Rohrer U, Fry AM, Hoffmann I (2004) Polo-like kinase-2 is required for centriole duplication in mammalian cells. Curr Biol 14:1200–1207

    PubMed  CAS  Google Scholar 

  211. White RA, Pan Z, Salisbury JL (2000) GFP-centrin as a marker for centriole dynamics in living cells. Microsc Res Tech 49:451–457

    PubMed  CAS  Google Scholar 

  212. Whitehead CM, Rattner JB (1998) Expanding the role of HsEg5 within the mitotic and post-mitotic phases of the cell cycle. J Cell Sci 111:2551–2561

    PubMed  CAS  Google Scholar 

  213. Winey M, Goetsch L, Baum P, Byers B (1991) MPS1 and MPS2: Novel yeast genes defining distinct steps of spindle pole body duplication. J Cell Biol 114:745–754

    PubMed  CAS  Google Scholar 

  214. Wong C, Stearns T (2003) Centrosome number is controlled by a centrosome-intrinsic block to reduplication. Nat Cell Biol 5:539–544

    PubMed  CAS  Google Scholar 

  215. Woo RA, Poon RY (2003) Cyclin-dependent kinases and S-phase control in mammalian cells. Cell Cycle 2:316–324

    PubMed  CAS  Google Scholar 

  216. Yao J, Fu C, Ding X, Guo Z, Zenreski A, Chen Y, Ahmed K, Liao J, Dou Z, Yao X (2004) Nek2A kinase regulates the localization of numatrin to centrosome in mitosis. FEBS Lett 575:112–118

    PubMed  CAS  Google Scholar 

  217. Yarm FR (2002) Plk phosphorylation regulates the microtubule-stabilizing protein TCTP. Mol Cell Biol 22:6209–6221

    PubMed  CAS  Google Scholar 

  218. Yoder JH, Han M (2001) Cytoplasmic dynein light intermediate chain is required for discrete aspects of mitosis in Caenorhabditis elegans. Mol Biol Cell 12:2921–2933

    PubMed  CAS  Google Scholar 

  219. Young A, Dictenberg JB, Purohit A, Tuft R, Doxsey SJ (2000) Cytoplasmic dynein-mediated assembly of pericentrin and γ-tubulin onto centrosomes. Mol Biol Cell 11:2047–2056

    PubMed  CAS  Google Scholar 

  220. Zhang H, Shi X, Paddon H, Hampong M, Dai W, Pelech S (2004) B23/nucleophosmin serine 4 phosphorylation mediates mitotic functions of polo-like kinase 1. J Biol Chem 279:35726–35734

    PubMed  CAS  Google Scholar 

  221. Zheng Y (2004) G protein control of microtubule assembly. Annu Rev Cell Dev Biol 20:867–894

    PubMed  CAS  Google Scholar 

  222. Zheng Y, Jung K, Oakley B (1991) Gamma-tubulin is present in Drosophila melanogaster and Homo sapiens and is associated with the centrosome. Cell 65:817–823

    PubMed  CAS  Google Scholar 

  223. Zheng Y, Wong M, Alberts B, Mitchison T (1995) Nucleation of microtubule assembly by a gamma-tubulin-containing ring complex. Nature 378:578–583

    PubMed  CAS  Google Scholar 

  224. Zimmerman WC, Sillibourne J, Rosa J, Doxsey SJ (2004) Mitosis-specific anchoring of gamma tubulin complexes by pericentrin controls spindle organization and mitotic entry. Mol Biol Cell 15:3642–3657

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Winey .

Editor information

Philipp Kaldis

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Mattison, C.P., Winey, M. The Centrosome Cycle. In: Kaldis, P. (eds) Cell Cycle Regulation. Results and Problems in Cell Differentiation, vol 42. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b136685

Download citation

Publish with us

Policies and ethics