Skip to main content

Scanning Probe Microscopy Studies of Surface-Immobilised DNA/Oligonucleotide Molecules

  • Chapter
  • First Online:
Immobilisation of DNA on Chips I

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 260))

Abstract

Although most in vivo biomolecular recognition occurs in solution, in many practical situations (e.g., diagnostics, drug discovery and biosensing) biomolecular recognition occurs between “target” biomolecules immobilised on surfaces and “probe” complementary biomolecules approaching the surface from solution. DNA-based devices are by far the most common biomolecular and cellular planar biodevices with a still-commanding growth rate. A second, but chronologically older, interest derives from the need to understand the fundamentals of biomolecular interactions at single molecule level and in large supramolecular assemblies. Again, DNA molecules are not only essential objects of study, but also more attractive candidates as the building blocks of artificial biomolecular devices than, e.g., proteins, because of their relative simplicity and robustness. Among the many microscopy-based techniques for the study of biomolecular interactions on surfaces, scanning probe microscopies, and especially the atomic force microscopies (AFM), are the most used because of their molecular and sub-molecular level resolution and in situ imaging capability. Apart from the high resolution mapping of surface nanotopographies, AFM can be used for the quantification and visualisation of the distribution of chemistry, hydrophobicity and local mechanical properties on surfaces, and for the fabrication of nanostructures on surfaces. The present article, which reviews from classical and latest developments regarding AFM studies of DNA molecules immobilised on surfaces, is organised along the nature of DNA aggregates on surfaces, i.e., single molecules, self-assembled layers and amorphous layers, with the last two emerging areas receiving a relatively higher emphasis. Within these three areas of application, the material is organised along the main functions of the AFM, namely imaging, probing biomolecular interactions and fabrication of nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thomson-ISI Web-of-knowledge, http://isi6.isiknowledge.com/portal.cgi

  2. Jena BP, Hörber HJK (2002) Biological probe microscopy in aqueous fluids. Atomic force microscopy in cell biology. Academic, San Diego

    Google Scholar 

  3. Hansma HG (2001) Annu Rev Phys Chem 52:71–92

    Article  CAS  Google Scholar 

  4. Hansma HG, Pietrasanta LI, Auerbach ID, Sorenson C, Golan R, Holden PA (2000) J Biomater Sci Polym Ed 11(7):675–683

    Article  CAS  Google Scholar 

  5. Bowen WR, Lovitt RW, Wright CJ (2000) Biotech Lett 22(11):893–903

    CAS  Google Scholar 

  6. Lyubchenko YL, Jacobs BL, Lindsay SM, Stasiak A (1995) Scan Microscopy 9(3):705–727

    CAS  Google Scholar 

  7. Yang J, Tamm LK, Somlyo AP, Shao Z (1993) J Microscopy 171:183–198

    CAS  Google Scholar 

  8. Blackford BL, Jericho MH, Mulhern PJ (1991) Scan Microscopy 5(4):907–918

    Google Scholar 

  9. Binnig G, Rohrer H, Gerber Ch, Weibel E (1982) Phys Rev Lett 49:57–61

    Article  Google Scholar 

  10. Binnig G, Quate CF, Gerber Ch (1986) Phys Rev Lett 56:930

    Article  Google Scholar 

  11. URL: http://www.jpk.com/tutorial/spm\_family.htm

  12. Albrecht TR, Grütter P, Horne D, Rugar D (1991) J Appl Phys 69:668

    Article  Google Scholar 

  13. Feldman K, Fritz M, Hähner G, Marti A, Spencer ND (1998) Tribol Intern 31(1–3):99–105

    CAS  Google Scholar 

  14. Gibson CT, Watson GS, Myhra S (1997) Wear 213(1–2):72–79

    CAS  Google Scholar 

  15. Meyer E, Luthi R, Howald L, Bammerlin M, Guggisberg M, Guntherodt H J, Scandella L, Gobrecht J, Schumacher A, Prins R (1996) Friction force spectroscopy. In: Persson BNJ, Tosatti E (eds) Physics of sliding friction. Kluwer, Dordrecht

    Google Scholar 

  16. Singer IL (1994) Dissipative process in tribology. In: Dowson D, Meyer E, Overney R, Frommer J (eds) Proceedings 20th Leed-Lyon Symposium on Tribology. Villeurbanne 7–10 September 1993

    Google Scholar 

  17. Beake BD, Leggett JG (2000) Langmuir 16:735

    Article  CAS  Google Scholar 

  18. Ling JSG, Leggett GJ (1997) Polymer 38:2617

    Article  CAS  Google Scholar 

  19. Noy A, Frisbie CD, Rozsnyai LF, Wrighton MS, Lieber CM (1995) J Am Chem Soc 117:7943

    Article  CAS  Google Scholar 

  20. Wilbur JL, Biebuyck HA, MacDonald JC, Whitesides GM (1995) Langmuir 11:825

    Article  CAS  Google Scholar 

  21. Brewer NJ, Beake BD Leggett JG (2001) Langmuir 17:1970

    Article  CAS  Google Scholar 

  22. Beake BD, Ling JSG, Leggett GJ (2000) Polymer 41:2241

    Article  CAS  Google Scholar 

  23. Grafström S, Neitezt M, Hagen T, Ackermann J, Neumann R, Probst O, Wörtge M (1993) Nanotech 4:143

    Google Scholar 

  24. Hähner G, Marti A, Spencer ND (1997) Tribol Lett 3:359

    Google Scholar 

  25. Magonov SN, Reneker DH (1997) Annu Rev Mater Sci 27:175

    CAS  Google Scholar 

  26. Frisbie CD, Rozsnyai A, Noy A, Wrighton MS, Lieber CM (1994) Science 265:2071–2074

    CAS  Google Scholar 

  27. Amrein M, Müller DJ (1999) Nanobio 4:229–256

    CAS  Google Scholar 

  28. Carrillo A, Gujraty KV, Kane RS (2004) In: Muller U, Nicolau DV (eds) Microarray technology and applications, Chap 3. Springer, Berlin Heidelberg New York

    Google Scholar 

  29. Hanson KL, Filipponi L, Nicolau DV (2004) In: Muller U, Nicolau DV (eds) Microarray technology and applications, Chap 2. Springer, Berlin Heidelberg New York

    Google Scholar 

  30. Allen MJ, Bradbury EM, Balhorn R (1997) Nucl Acids Res 25(11):2221–2226

    Article  CAS  Google Scholar 

  31. Bezanilla M, Manne S, Laney DE, Lyubchenko YL, Hansma HG (1995) Langmuir 11:655–659

    Article  CAS  Google Scholar 

  32. Shao Z, Mou J, Czajkowsky DM, Yang J, Yuan J-Y (1996) Adv Phys 45:1–86

    Article  CAS  Google Scholar 

  33. Shlyakhtenko LS, Gall AA, Filonov A, Cerovac Z, Lushnikov A, Lyubchenko YL (2003) Ultramicroscopy 97:279–287

    CAS  Google Scholar 

  34. Lyubchenko Y, Shlyakhtenko L, Harrington R, Oden P, Lindsay S (1993) PNAS 90:2137–2140

    CAS  Google Scholar 

  35. Möller R, Csáki A, Köhler M, Fritzsche W (2000) Nucl Acids Res 28:1–5

    Google Scholar 

  36. Ivanova EP, Pham DK, Brack N, Pigram P, Nicolau DV (2004) Biosens Bioelectr 19:1363–1370

    CAS  Google Scholar 

  37. Koch T, Jacobsen N, Fensholdt J, Boas U, Fenger M, Jakobsen MH (2000) Bioconj Chem 11:474

    CAS  Google Scholar 

  38. Fixe F, Dufva M, Telleman P, Christensen CBV (2004) Lab on Chip 4:191

    CAS  Google Scholar 

  39. Kohsaka H, Taniguchi A, Richman DD, Carson DA (1993) Nucl Acids Res 21:3469

    CAS  Google Scholar 

  40. Running JA, Urdea MS (1990) BioTechniques 8:276

    CAS  Google Scholar 

  41. Beecher JE, McGall GH, Goldberg M (1997) Polym Mater Sci Eng 76:394

    Google Scholar 

  42. Beecher JE, McGall GH, Goldberg M (1997) Polym Mater Sci Eng 76:597

    CAS  Google Scholar 

  43. Matson RS, Rampal J, Pentoney SL, Anderson PD, Coassin P (1995) Anal Biochem 224:110

    Article  CAS  Google Scholar 

  44. Sreekumar A, Nyati MK, Varambally S, Barrette TR, Ghosh D, Lawrence TS, Chinnaiyan AM (2001) Can Res 61:7585

    CAS  Google Scholar 

  45. Weiler J, Hoheisel JD (1996) Anal Biochem 243:218

    Article  CAS  Google Scholar 

  46. http://www2.muw.edu/∼rwhitwam/ABZDNA.html

  47. http://www.ndsu.nodak.edu/instruct/mcclean/plsc731/dna/dna4.htm

  48. Sinden RR, Potaman VN, Oussatcheva EA, Pearson CE, Lyubchenko YL, Shlyakhtenko LS (2002) J Biosci 27(1):53–65

    CAS  Google Scholar 

  49. Clausen-Schaumann H, Rief M, Tolksdorf C, Gaub HE (2000) Biophys J 78(4):1997–2007

    CAS  Google Scholar 

  50. Leger JF, Romano G, Sakar A, Robert J, Bourdieu L, Chatenay D, Marko JF (1999) Phys Rev Lett 83:1066–1069

    CAS  Google Scholar 

  51. Bouchiat C, Wang MD, Allemand JF, Strick T, Block SM, Croquette V (1999) Biophys J 76:409–413

    CAS  Google Scholar 

  52. Strick T, Allemand JF, Croquette V, Bensimon D (2000) Prog Biophys Mol Biol 74:115–140

    CAS  Google Scholar 

  53. Cherny DI, Foucade A, Svinarchuck F, Nielson PE, Malvy C, Delain E (1998) Biophys J 74:1015–1023

    CAS  Google Scholar 

  54. Jing J, Reed J, Huang J, Hu XH, Clarke V, Edington J, Housman D, Anantharaman TS, Huff EJ, Mishra B, Porter B, Shenker A, Wolfson E, Hiort C, Kantor R, Aston C, Shwartz DC (1998) PNAS 95:72–75

    Article  Google Scholar 

  55. Seong GH, Niimi T, Yanagida Y, Kobatake E, Aizawa M (2000) Anal Chem 72:1288–1293

    Article  CAS  Google Scholar 

  56. Taylor JR, Fang MM, Nie S (2000) Anal Chem 72:1979–1986

    Article  CAS  Google Scholar 

  57. Alivisatos AP, Johnsson KP, Peng X, Wilson TE, Loweth CJ, Bruchez-Jr MP, Schultz PG (1996) Nature 382:609–611

    Article  CAS  Google Scholar 

  58. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) Nature 382:607–609

    Article  CAS  Google Scholar 

  59. Winfree E, Liu F, Wenzler LA, Seeman NC (1998) Nature 394:539–544

    Article  CAS  Google Scholar 

  60. Richter J, Mertig M, Pompe W, Monch I, Schackert HK (2001) Appl Phys Lett 78:536–538

    Article  CAS  Google Scholar 

  61. Keren K, Krueger M, Gilad R, Ben-Yoseph G, Sivan U, Braun E (2002) Science 297:72–75

    Article  CAS  Google Scholar 

  62. Wang J (2000) Nucl Acids Res 28(16):3011–3016

    Article  CAS  Google Scholar 

  63. MacKerell-Jr AD, Lee GU (1999) Eur Biophys J 28:415–426

    CAS  Google Scholar 

  64. Hughes SD, Woolley AT (2003) Biomed Microdev 5(1):69–74

    Article  CAS  Google Scholar 

  65. Argaman M, Golan R, Thomson NH, Hansma HG (1997) Nucl Acid Res 23(21):4379–4384

    Google Scholar 

  66. Drake B, Prater CB, Weisenhorn AL, Gould SA, Albrecht TR, Quate CF, Cannell DS, Hansma HG, Hansma PK (1989) Science 243:1586–1589

    CAS  Google Scholar 

  67. Hansma HG, Hoh JH (1994) Annu Rev Biophys Biophys Chem 23:115–139

    CAS  Google Scholar 

  68. Fritz M, Radmacher M, Clevelend JP, Allersma MW, Stewart RJ, Gieselmann, R, Janmey P, Schmidt CF, Hansma PK (1995) Langmuir 11:3529–3535

    Article  CAS  Google Scholar 

  69. Thomson NH, Fritz M, Radmacher M, Cleveland JP, Schmidt C, Hansma PK (1996) Biophys J 70:2421–2431

    CAS  Google Scholar 

  70. Bezanilla M, Drake B, Nudler E, Kashlev M, Hansma PK, Hansma HG (1994) Biophys J 67:2454–2459

    CAS  Google Scholar 

  71. Hansma HG, Revenko I, Kim K, Laney DE (1996) Nucl Acids Res 24(4):713–720

    Article  CAS  Google Scholar 

  72. Grange W, Strunz T, Schumakovitch I, Guntherodt HJ, Hegner M (2001) Single Mol 2:75–78

    Article  CAS  Google Scholar 

  73. Shlyakhtenko LS, Potaman VN, Sinden RS, Gall AA, Lyubchenko YL (2000) Nucl Acid Res 28(1):3472–3477

    CAS  Google Scholar 

  74. Holliday R (1964) Genet Res 5:282–304

    Google Scholar 

  75. Ortiz-Lombardia M, Gonzalez A, Eritja R, Aymamy J, Azorin F, Coll M (1999) Nature Struct Biol 6:913–917

    CAS  Google Scholar 

  76. Kasas S, Thomson NH, Smith BL, Hansma HG, Zhu X, Guthold M, Bustamante C, Kool ET, Keshlev M, Hansma PK (1997) Biochem 36:461–468

    CAS  Google Scholar 

  77. Sinden RR (1999) Am J Hum Genet 64:346–353

    Article  CAS  Google Scholar 

  78. Sinden RR (1994) DNA structure and functions. Academic, San Diego

    Google Scholar 

  79. Pastre D, Pietrement O, Fusil P, Landousy F, Jeusset J, David MO, Hamon C, Le Cam E, Zozime A (2003) Biophys J 85(4):2507–2518

    CAS  Google Scholar 

  80. Lyubchenko Y, Shlyakhtenko L (1999) Technical bulletin. BioForce Laboratory, Ames, IA

    Google Scholar 

  81. Shlyakhtenko L, Gall AA, Weimer JJ, Hawn DD, Lyubchenko Y (1999) Biophys J 77:568–576

    CAS  Google Scholar 

  82. Hansma HG, Kim KJ, Laney DE, Garcia RA, Argaman M, Allen MJ, Parsons SM (1997) J Struct Biol 119:99–108

    Article  CAS  Google Scholar 

  83. Nakamura J, Walker VE, Upton PB, Chiang SY, Kow YW, Swenberg JA (1998) Cancer Res 58:222–225

    CAS  Google Scholar 

  84. Sun HB, Qian L, Yokota H (2001) Anal Chem 73:2229–2232

    CAS  Google Scholar 

  85. Bustamante C, Rivetti C, Keller DJ (1997) Curr Opin Struct Biol 7:709–716

    Article  CAS  Google Scholar 

  86. Feng XZ, Bash R, Balagurumoorthy P, Lohr D, Harrington RE, Lindsay SM (2000) Nucl Acids Res 28(2):593–596

    Article  CAS  Google Scholar 

  87. Metzler R, Hanke A (2005) Knots, bubbles, unwinding, and breathing: probing the topology of DNA and other biomolecules. In: Rieth M, Schommers W (eds) Handbook of theoretical and computational nanotechnology. American Scientific, California (in press)

    Google Scholar 

  88. Strunz T, Oroszlan K, Schafer R, Guntherodt HJ (1999) PNAS 96:11277

    Article  CAS  Google Scholar 

  89. Williams MC, Rouzina I, Bloomfield VA (2002) Acc Chem Res 35:159

    Article  CAS  Google Scholar 

  90. Baumann CG, Bloomfield VA, Smith SB, Bustamante C, Wang MD, Block SM (2000) Biophys J 78:1965–1978

    CAS  Google Scholar 

  91. Bensimon D, Simon AJ, Croquette V, Bensimon A (1995) Phys Rev Lett 74:4754–4757

    Article  CAS  Google Scholar 

  92. Cluzel P, Lebrun A, Heller C, Lavery R, Viovy J-L, Chatenay D, Caron F (1996) Science 271:792–794

    CAS  Google Scholar 

  93. Ahsan A, Rudnick J, Bruinsma R (1998) Biophys J 74:132–137

    CAS  Google Scholar 

  94. Konrad MW, Bolonick JI (1996) J Am Chem Soc 118:10989–10994

    Article  CAS  Google Scholar 

  95. Kosikov KM, Gorin AA, Zhurkin VB, Olson WK (1999) J Mol Biol 289:1301–1326

    Article  CAS  Google Scholar 

  96. Lebrun A, Lavery R (1996) Nucl Acids Res 24:2260–2267

    Article  CAS  Google Scholar 

  97. Marko JF (1997) Europhys Lett 38:183–188

    Article  CAS  Google Scholar 

  98. Marko J F (1998) Phys Rev E 57:2134–2149

    Article  CAS  Google Scholar 

  99. Allemand JF, Bensimon D, Lavery R, Croquette V (1998) PNAS 95:14152–14157

    Article  CAS  Google Scholar 

  100. Lee GU, Chrisey LA, Colton RJ (1994) Science 266:771

    CAS  Google Scholar 

  101. Strick TR, Allemand JF, Bensimon D, Bensimon A, Croquette V (1996) Science 271:1835–1837

    CAS  Google Scholar 

  102. Strick, TR, Allemand J-F, Bensimon D, Croquette V (1998) Biophys J 74:2016–2028

    CAS  Google Scholar 

  103. Bockelmann U, Essevaz-Roulet B, Heslot F (1997) Phys Rev Lett 79:4489–4492

    Article  CAS  Google Scholar 

  104. Nogues C, Cohen SR, Daube SS, Naaman R (2004) PCCP 6:4459–4466

    CAS  Google Scholar 

  105. Watanabe H, Manabe C, Shigematsu T, Shimotani K, Shimizu M (2001) Appl Phys Lett 79(15):2462–2464

    Article  CAS  Google Scholar 

  106. Anselmetti D, Fritz J, Smith B, Fernandez-Busquets X (2000) D Single Mol 1:53–58

    CAS  Google Scholar 

  107. Ouyang JQ, Hu J, Chen SF, Sun JL, Li MQ (1997) J Vac Sci Technol B 15:1385

    CAS  Google Scholar 

  108. Hu J, Zhang Y, Li B, Gao HB, Hartmann U, Li MQ (2004) Surf Interface Anal 36:124–126

    Article  CAS  Google Scholar 

  109. Hu J, Zhang Y, Gao HB, Li MQ, Hartmann U (2002) Nano Lett 2:55

    CAS  Google Scholar 

  110. Pum D, Neubauer A, Gyorvary E, Sara M, Sleytr UB (2000) Nanotech 11:100–107

    Article  CAS  Google Scholar 

  111. Debabov VG (2004) Mol Biol 38(4):482–493

    Article  CAS  Google Scholar 

  112. Meyer RK, Aebi U (1990) J Cell Biol 110:2013–2024

    Article  CAS  Google Scholar 

  113. Taylor KA, Taylor DW (1999) J Struct Biol 128:75–81

    Article  CAS  Google Scholar 

  114. Mao C, Sun W, Seeman NC (1999) J Am Chem Soc 121:5437

    CAS  Google Scholar 

  115. Seeman NC (2001) Nano lett 1:22

    Article  CAS  Google Scholar 

  116. Mao C, LaBean T, Reif JH, Seeman NC (2000) Nature 407:493

    CAS  Google Scholar 

  117. Kanno T, Tanaka T, Miyoshi N, Kawai T (2000) Jpn J Appl Phys 39:L269

    CAS  Google Scholar 

  118. Cai L, Tabata H, Kawai T (2000) Appl Phys Lett 77:3105

    Article  CAS  Google Scholar 

  119. Lenigk R, Carles M, Ip NY, Sucher NJ (2001) Langmuir 17:2497–2501

    Article  CAS  Google Scholar 

  120. Boncheva M, Scheibler L, Lincoln P, Vogel H, Akerman B (1999) Langmuir 15:4317–4320

    Article  CAS  Google Scholar 

  121. Demers LM, Ginger DS, Park SJ, Li Z, Chung SW, Mirkin CA (2002) Science 296:1836

    Article  CAS  Google Scholar 

  122. Fang Y, Hoh JH (1998) Nucl Acids Res 26(2):588–593

    Article  CAS  Google Scholar 

  123. Han WH, Lindsay SM, Dlakic M, Harington RE (1997) Nature 386:563

    CAS  Google Scholar 

  124. Fang Y, Spisz TS, Hoh JH (1999) Nucl Acids Res 27(8):1943–1949

    Article  CAS  Google Scholar 

  125. Klein DCG, Gurevich L, Janssen JW, Kouwenhoven LP, Carbeck JD, Sohn LL (2001) Appl Phys Lett 78(16):2396

    Article  CAS  Google Scholar 

  126. Vesenka J, Henderson E, Marsh T (2002) In: Fritzsche W (ed) Workshop on DNA-based molecular construction, Jena, Germany, May 2002. AIP Conf Proc 640:109–122

    Google Scholar 

  127. Marsh TC, Vesenka J, Henderson E (1995) Nucl Acids Res 23(4):696–700

    CAS  Google Scholar 

  128. Bhaumik A, Ramakanth M, Brar LK, Raychaudhuri AK, Rondelez F, Chatterji D (2004) Langmuir 20:5891–5896

    Article  CAS  Google Scholar 

  129. Liu M, Amro NA, Chow CS, Liu G (2002) Nano lett 2(8):863–867

    Article  CAS  Google Scholar 

  130. Danielsen S, Varum KM, Stokke BT (2004) Biomacromol 5:928–936

    CAS  Google Scholar 

  131. Rackstraw BJ, Martin AL, Stolnik S, Roberts CJ, Garnett MC, Davies MC, Tendler SJB (2001) Langmuir 17:3185–3193

    Article  CAS  Google Scholar 

  132. Nakamura F, Mitsui K, Hara M (2001) Riken Review 37:63

    CAS  Google Scholar 

  133. Niemeyer CM, Adler M, Pignataro B, Lenhert S, Gao S, Chi L, Fuchs H, Blohm D (1999) Nucl Acids Res 27(23):4553–4561

    Article  CAS  Google Scholar 

  134. Chen J, Seeman NC (1991) Nature 350:631

    Article  CAS  Google Scholar 

  135. Seeman NC (1998) DNA Annu Rev Biophys Biomol Struct 27:225–248

    CAS  Google Scholar 

  136. Yang X, Wenzler L, Qi J, Li X, Seeman N (1998) J Am Chem Soc 120:9779–9786

    CAS  Google Scholar 

  137. Sha RJ, Liu FR, Seeman NC (2002) Biochem 41(19):5950–5955

    CAS  Google Scholar 

  138. Winfree E, Sun W, Seeman NC (1998) Nature 394:539–544

    Article  CAS  Google Scholar 

  139. LaBean T, Yan H, Kopatsch J, Liu F, Winfree E, Reif JH, Seeman NC (2000) J Am Chem Soc 122:1848–1860

    Article  CAS  Google Scholar 

  140. Liu D, Wang M, Deng Z, Walulu R, Mao C (2004) J Am Chem Soc 126(8):2324–2325

    CAS  Google Scholar 

  141. Yan H, Feng L, LaBean TH, Reif JH (2003) Ninth international meeting on DNA-based computers (DNA9), Madison, Wisconsin, 2–4 June 2003

    Google Scholar 

  142. Li Y, Tseng YD, Kwon SY, D'Espaux L, Bunch S, McEuen PL, Luo D (2004) Nature Mater 3:38

    CAS  Google Scholar 

  143. Reif J (ed)(2004) Foundations of nanoscience: Self-assembled architectures and devices (FNANO 2004), Snowbird, Utah, 21–23 April 2004. ScienceTechnica ( http://www. cs.duke.edu/∼reif/FNANO/FNANO04/ )

  144. Brun Y, Gopalakrishnan M, Reishus D, Shaw B, Chelyapov N, Aldeman L (2004)In: Reif J (ed) Foundations of nanoscience: Self-assembled architectures and devices (FNANO 2004) Snowbird, Utah, 21–23 April 2004. ScienceTechnica, p 2

    Google Scholar 

  145. Yan H, Park SH, Finkelstein G, Reif JH, LaBean TH (2003) Science 301:1882

    Article  CAS  Google Scholar 

  146. Xiao S, Liu F, Rosen AE, Hainfeld JF, Seeman NC, Musier-Forsyth K, Kiehl RA (2002) J Nanoparticle Res 4:313–317

    Article  CAS  Google Scholar 

  147. Adleman L (1994) Science 266:1021–1023

    CAS  Google Scholar 

  148. Winfree E (1998) Algorithmic self-assembly of DNA. California Institute of Technology, PhD thesis

    Google Scholar 

  149. Wang H (1963) Proceedings of symposium on the mathematical theory of automata. Polytechnic, Brooklyn, NY, pp 23–55

    Google Scholar 

  150. Carbone A, Seeman N (2002) Circuits and programmable self-assembling DNA structures PNAS 99(20):12577–12582

    CAS  Google Scholar 

  151. Schulman R, Lee S, Papadakis N, Winfree E (2004) In: Proceedings DNA computers 9, Madison, 2–4 June 2003. Lect Notes Comp Sci 2943:108–125

    Google Scholar 

  152. Yan H, LaBean TH, Feng L, Reif JH (2003) PNAS 100(14):8103–8108

    Article  CAS  Google Scholar 

  153. Schwartz PV (2001) Langmuir 17:5971–5977

    Article  CAS  Google Scholar 

  154. Zhou D, Sinniah K, Abell C, Rayment T (2002) Langmuir 18:8278–8281

    CAS  Google Scholar 

  155. Schena M, Shalon D, Davis RW, Brown PO (1995) Science 270:467

    CAS  Google Scholar 

  156. Schena M, Shalon D, Heller R, Chai A, Brown PO, Davis RW (1996) PNAS 93:10614–10619

    Article  CAS  Google Scholar 

  157. Garno JC, Amro NA, Wadu-Mesthrige K, Liu GY (2002) Langmuir 18(21):8186–8192

    Article  CAS  Google Scholar 

  158. Hilliard LR, Zhao XJ, Tan WH (2002) Anal Chim Acta 470(1):51–56

    Article  CAS  Google Scholar 

  159. Rogers YH, Jiang-Baucom P, Huang JZ, Bogdanov V, Andersen S, Boyce-Jacino MT (1999) Anal Biochem 266:23–30

    Article  CAS  Google Scholar 

  160. Delpech MC, Coutinho FMB, Habibe MES (2002) Polym Test 21:411–415

    CAS  Google Scholar 

  161. Steel AB, Levicky RL, Herne TM, Tarlov MJ (2000) Biophys J 79:975–981

    CAS  Google Scholar 

  162. Casero E, Darder M, Diaz DJ, Pariente F, Martin-Gago JA, Abruna H, Lorenzo E (2003) Langmuir 19:6230

    Article  CAS  Google Scholar 

  163. Sawant PD, Watson GS, Nicolau-Jr DV, Myhra S, Nicolau DV (2005) J Nanosci Nanotech 5(6):951–957

    Article  CAS  Google Scholar 

  164. Mazzola LT, Frank CW, Fodor SPA, Mosher C, Lartius R, Henderson E (1999) Biophys J 76:2922–2933

    Article  CAS  Google Scholar 

  165. Jin Y, Wang K, Tan W, Wu P, Wang Q, Huang H, Huang S, Tang Z, Guo Q (2004) Anal Chem 76:5721–5725

    Article  CAS  Google Scholar 

  166. Nicolau DV, Pham DK, Ivanova EP, Wright JP, Lenigk R, Smekal T, Grodzinski P (2005) Small 1:610

    Article  CAS  Google Scholar 

  167. Wang J, Bard AJ (2001) Anal Chem 73(10):2207

    CAS  Google Scholar 

  168. O'Brien JC, Stickney JT, Porter MD (2000) J Am Chem Soc 122:5004

    Article  CAS  Google Scholar 

  169. O'Brien, JC, Stickney, JT, Porter, MD (2000) Langmuir 16:9559

    Google Scholar 

  170. Elmas B, Camli ST, Tuncel M, Senel S, Tuncel A (2001) J Biomat Sci Polym Ed 12(3):283

    CAS  Google Scholar 

  171. Piner RD, Zhu J, Xu F, Hong S, Mirkin CA (1999) Science 283:661–663

    Article  CAS  Google Scholar 

  172. Hong SH, Mirkin CA (2000) Science 288:1808–1811

    Article  CAS  Google Scholar 

  173. Hong SH, Zhu J, Mirkin CA (1999) Langmuir 15:7897–7900

    CAS  Google Scholar 

  174. Hong SH, Zhu J, Mirkin CA (1999) Science 286:523–525

    Article  CAS  Google Scholar 

  175. Piner RP, Hong S, Mirkin CA (1999) Langmuir 15:5457–5460

    Article  CAS  Google Scholar 

  176. Ivanisevic A, Mirkin CA (2001) J Am Chem Soc 123:7887–7889

    CAS  Google Scholar 

  177. Wilson DL, Martin R, Hong S, Cronin-Golomb M, Mirkin CA, Kaplan DL (2002) Proc Natl Acad Sci 98:13660–13664

    Google Scholar 

  178. Su M, Liu X, Li S-Y, Dravid VP, Mirkin CA (2002) J Am Chem Soc 124:1560–1561

    CAS  Google Scholar 

  179. Nicolau DV, Demers LM, Ginger D (2004) Nanoarrays. In: Muller U, Nicolau DV (eds) Microarray technology and applications, Chap 6. Springer, Berlin Heidelberg New York

    Google Scholar 

  180. Zhang M, Bullen D, Chung S-W, Hong S, Ryu KS, Fan Z, Mirkin CA, Liu C (2002) Nanotech 13:212–217

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Defense Advanced Research Projects Agency and Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan V. Nicolau .

Editor information

Christine Wittmann

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Nicolau, D.V., Sawant, P.D. Scanning Probe Microscopy Studies of Surface-Immobilised DNA/Oligonucleotide Molecules. In: Wittmann, C. (eds) Immobilisation of DNA on Chips I. Topics in Current Chemistry, vol 260. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b136672

Download citation

Publish with us

Policies and ethics