Skip to main content

Two-Dimensional Dye Assemblies on Surfaces Studied by Scanning Tunneling Microscopy

  • Chapter
  • First Online:
Supermolecular Dye Chemistry

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 258))

Abstract

This chapter gives an overview of the ordering of dyes on atomically flat conductive surfaces as revealed by scanning tunneling microscopy. Scanning tunneling microscopy provides detailed insight into the arrangement of dyes on various surfaces and unravels novel properties which arise as a result of the interaction of the dyes with the substrate. These high-resolution studies have been motivated by the importance of interfacial layers in view of material and device properties. Typical examples are provided of popular dye systems, including conjugated oligomers and polymers. In addition, the supramolecular ordering of mixtures of dyes and two-dimensional chirality is discussed. Scanning tunneling microscopy goes beyond imaging and its ability to manipulate dye molecules, both mechanically and chemically, is discussed. Finally, the use of scanning tunneling microscopy as a spectroscopy tool for probing the electronic properties of dye layers on surfaces is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

C18I:

1-Iodooctadecane

DC:

Decacyclene

EC-STM:

Electrochemical scanning tunneling microscopy

HBC:

Hexabenzocoronene

HOMO:

Highest occupied molecular orbital

HOPG:

Highly oriented pyrolytic graphite

I--V:

Current--voltage

LDOS:

Local density of states

LUMO:

Lowest unoccupied molecular orbital

NTCDI:

Naphthalene tetracarboxylic diimide

PAH:

Polyaromatic hydrocarbon

PTCDA:

3,4,9,10-Perylene tetracarboxylic dianhydride

PTCDI:

3,4,9,10-Perylene tetracarboxylic diimide

SAM:

Self-assembled monolayer

SCE:

Saturated calomel electrode

STM:

Scanning tunneling microscopy

STS:

Scanning tunneling spectroscopy

UHV:

Ultrahigh vacuum

References

  1. (a) Binnig G, Rohrer H, Gerber C, Weibel E (1982) Phys Rev Lett 49:57; (b) Binnig G, Rohrer H (1982) Helv Phys Acta 55:726

    Google Scholar 

  2. Ohtani H, Wilson RJ, Chiang S, Mate CM (1988) Phys Rev Lett 60:2398

    Google Scholar 

  3. Forrest SR (1997) Chem Rev 97:1793

    Google Scholar 

  4. Foster JS, Frommer JE (1988) Nature 333:542

    Google Scholar 

  5. (a) Spong JK, Mizes HA, LaComb LJ Jr, Dovek MM, Frommer JE, Foster JS (1989) Nature 338:137; (b) Smith DPE, Horber H, Gerber C, Binning G (1989) Science 245:43; (c) Smith DPE, Horber JKH, Binnig G, Nejoh H (1990) Nature 344:641

    Google Scholar 

  6. McGonigal GC, Bernhardt RH, Thomson DJ (1990) Appl Phys Lett 57:28

    Google Scholar 

  7. Rabe J, Buchholz S (1991) Science 253:424

    Google Scholar 

  8. Tao NJ (1996) Phys Rev Lett 76:4066

    Google Scholar 

  9. Itaya K (1998) Prog Surf Sci 97:1129

    Google Scholar 

  10. Kunitake M, Akiba U, Batina N, Itaya K (1997) Langmuir 13:1607

    Google Scholar 

  11. He Y, Ye T, Borguet E (2002) J Am Chem Soc 124:11964

    Google Scholar 

  12. Chiang S (1997) Chem Rev 97:1086

    Google Scholar 

  13. Barlow SM, Raval R (2003) Surf Sci Rep 50:210

    Google Scholar 

  14. Rosei F, Schunack M, Naitoh Y, Jiang P, Gourdon A, Laegsgaard E, Stensgaard I, Joachim C, Besenbacher F (2003) Prog Surf Sci 71:95

    Google Scholar 

  15. Möbius M, Karl N (1992) J Cryst Growth 116:492

    Google Scholar 

  16. Hoshino A, Isoda S, Kurata H, Kobayashi T (1994) J Appl Phys 76:4113

    Google Scholar 

  17. Ludwig C, Gompf B, Glatz W, Petersen J, Eisenmenger W, Möbius M, Zimmermann U, Karl N (1992) Z Phys B 86:397

    Google Scholar 

  18. Ludwig C, Gompf B, Petersen J, Strohmaier R, Eisenmenger W (1994) Z Phys B 93:365

    Google Scholar 

  19. Seidel C, Awater C, Liu XD, Ellerbrake R, Fuchs H (1996) Surf Sci 397:123

    Google Scholar 

  20. Schmitz-Hübsch T, Fritz T, Staub R, Back A, Armstrong NR, Leo K (1999) Surf Sci 437:163

    Google Scholar 

  21. Gloeckel K, Seidel C, Soukopp A, Sokolowski M, Umbach E, Boehringer M, Berndt R, Schneider WD (1998) Surf Sci 405:1

    Google Scholar 

  22. Staub R, Toerker M, Fritz T, Schmitz-Hübsch, Sellam F, Leo K (2000) Surf Sci 445:368

    Google Scholar 

  23. Eremtchenko M, Schaefer JA, Tautz FS (2003) Nature 425:602

    Google Scholar 

  24. Uder B, Ludwig C, Petersen J, Gompf B, Eisenmenger WZ (1995) Phys B 97:389

    Google Scholar 

  25. Keeling DL, Oxtoby NS, Wilson C, Humphry MJ, Champness NR, Beton PH (2003) Nano Lett 3:9

    Google Scholar 

  26. Kaneda Y, Stawasz ME, Sampson DL, Parkinson BA (2001) Langmuir 17:6185

    Google Scholar 

  27. (a) Gimzewski JK, Stoll E, Schlittler RR (1987) Surf Sci 181:267; (b) Lippel PH, Wilson RJ, Miller MD, Wöll C, Chiang S (1989) Phys Rev Lett 62:171

    Google Scholar 

  28. Lu X, Hipps KW, Wang XD, Mazur U (1996) J Am Chem Soc 118:7197

    Google Scholar 

  29. Hipps KW, Lu X, Wang XD, Mazur U (1996) J Phys Chem 100:11207

    Google Scholar 

  30. Lu X, Hipps KW (1997) J Phys Chem B 101:11207

    Google Scholar 

  31. Strohmaier R, Ludwig C, Petersen J, Gompf B, Eisenmenger W (1996) J Vac Sci Technol B 14:1079

    Google Scholar 

  32. Lackinger M, Hietschold M (2002) Surf Sci 520:619

    Google Scholar 

  33. Scudeiro L, Barlow DE, Hipps KW (2000) J Phys Chem B 104:11899

    Google Scholar 

  34. Scudeiro L, Balrow DE, Mazur U, Hipps KW (2001) J Am Chem Soc 123:4073

    Google Scholar 

  35. Yoshimoto S, Tada A, Suto K, Narita R, Itaya K (2003) Langmuir 19:672

    Google Scholar 

  36. Yoshimoto S, Tada A, Suto K, Itaya K (2003) J Phys Chem B 107:5836

    Google Scholar 

  37. Yoshimoto S, Tada A, Suto K, Yau SL, Itaya K (2004) Langmuir 20:3159

    Google Scholar 

  38. Yanagi H, Schlettwein D, Nakayama H, Nishino T (2000) Phys Rev B 61:1959

    Google Scholar 

  39. Berner S, Brunner M, Ramoino L, Suzuki H, Güntherodt HJ, Jung TA (2001) Chem Phys Lett 348:175

    Google Scholar 

  40. Suzuki H, Berner S, Brunner M, Yanagi H, Schlettwein D, Jung TA, Guentherodt HJ (2001) Thin Solid Films 393:325

    Google Scholar 

  41. Yanagi H, Ikuta K, Mukai H, Shibutani T (2002) Nano Lett 2:951

    Google Scholar 

  42. Suzuki H, Miki H, Yokoyama S, Mashiko S (2003) J Phys Chem 107:3659

    Google Scholar 

  43. Berner S, de Wild M, Ramoino L, Ivan S, Baratoff A, Güntherodt HJ, Suzuki H, Schlettwein D, Jung TA (2003) Phys Rev B 68:115410

    Google Scholar 

  44. Lackinger M, Müller T, Gopakumar TG, Müller F, Hietschold M, Flynn GW (2004) J Phys Chem B 108:2279

    Google Scholar 

  45. Yokoyama T, Yokoyama S, Okuno Y, Mashiko S (2001) Nature 413:619

    Google Scholar 

  46. Lei SB, Wang C, Yin SX, Wang HN, Wu F, Liu HW, Xu B, Wan LJ, Bai CL (2001) J Phys Chem B 105:10838

    Google Scholar 

  47. Qiu X, Wang C, Zeng Q, Xu B, Yin S, Wang H, Xu S, Bai C (2000) J Am Chem Soc 122:5550

    Google Scholar 

  48. Jung TA, Schlittler RR, Gimzewski JK, Tang H, Joachim C (1996) Science 271:181

    Google Scholar 

  49. Jung TA, Schlittler RR, Gimzewski JK (1997) Nature 386:696

    Google Scholar 

  50. Moresco F, Meyer G, Rieder KH, Ping J, Tang H, Joachim C (2002) Surf Sci 499:94

    Google Scholar 

  51. Yokoyama T, Yokoyama S, Kamikado T, Mashiko S (2001) J Chem Phys 115:3814

    Google Scholar 

  52. Batina N, Yamada T, Itaya K (1995) Langmuir 11:4568

    Google Scholar 

  53. Askadskaya L, Boeffel C, Rabe JP (1993) Ber Bunsen-Ges Phys Chem 97:517

    Google Scholar 

  54. Charra F, Cousty J (1998) Phys Rev Lett 80:1682

    Google Scholar 

  55. Wu P, Zeng Q, Xu S, Wang C, Yin S, Bai CL (2001) Chem Phys Chem 12:750

    Google Scholar 

  56. Katsonis N, Marchenko A, Fichou D (2003) J Am Chem Soc 125:13682

    Google Scholar 

  57. Walzer K, Sternberg M, Hietschold M (1998) Surf Sci 415:376

    Google Scholar 

  58. Lackinger M, Griessl S, Heckl WM, Hietschold M (2002) J Phys Chem B 106:4482

    Google Scholar 

  59. Yoshimoto S, Narita R, Itaya K (2002) Chem Lett 356

    Google Scholar 

  60. Yoshimoto S, Narita R, Wakisaka M, Itaya K (2002) J Electroanal Chem 532:331

    Google Scholar 

  61. Stabel A, Herwig P, Müllen K, Rabe J (1995) Angew Chem Int Ed Engl 34:1609

    Google Scholar 

  62. Ito S, Wehmeier M, Brand JD, Küble C, Epsch R, Rabe JP, Müllen K (2000) Chem Eur J 6:4327

    Google Scholar 

  63. Samori P, Fechtenkötter A, Jäckel F, Böhme T, Müllen K, Rabe JP (2001) J Am Chem Soc 123:11462

    Google Scholar 

  64. Iyer VS, Yoshimura K, Enkelmann V, Epsch R, Rabe JP, Müllen K (1998) Angew Chem Int Ed Engl 37:2696

    Google Scholar 

  65. Ito S, Herwig PT, Böhme T, Rabe JP, Rettig W, Müllen K (2000) J Am Chem Soc 122:7698

    Google Scholar 

  66. Samori P, Severin N, Simpson CD, Müllen K, Rabe JP (2002) J Am Chem Soc 124:9454

    Google Scholar 

  67. Samori P, Yin X, Tchebotareva N, Wang Z, Pakula T, Jäckel F, Watson MD, Venturini A, Müllen K, Rabe JP (2004) J Am Chem Soc 126:3567

    Google Scholar 

  68. Tchebotareva N, Yin X, Watson MD, Samori P, Rabe JP, Müllen K (2003) J Am Chem Soc 125:9734

    Google Scholar 

  69. Watson MD, Jäckel F, Severin N, Rabe JP, Müllen K (2004) J Am Chem Soc 126:1402

    Google Scholar 

  70. Schunack M, Petersen L, Kühnle A, Lægsgaard E, Stensgaard I, Johannsen I, Besenbacher F (2001) Phys Rev Lett 88:456

    Google Scholar 

  71. Schunack M, Lægsgaard E, Stensgaard I, Johannsen I, Besenbacher F (2001) Angew Chem Int Ed Engl 40:2623

    Google Scholar 

  72. Schunack M, Lægsgaard E, Stensgaard I, Besenbacher F (2002) J Chem Phys 117:8493

    Google Scholar 

  73. Langlais VJ, Schlittler RR, Tang H, Gourdon A, Joachim C, Gimzewski JK (1999) Phys Rev Lett 83:2809

    Google Scholar 

  74. Schunack M, Rosei F, Naitoh Y, Jiang P, Gourdon A, Joachim C, Besenbacher F (2002) J Chem Phys 117:6259

    Google Scholar 

  75. Rosei F, Schunack M, Jiang P, Gourdon A, Lægsgaard E, Stensgaard I, Joachim C, Besenbacher F (2002) Science 296:328

    Google Scholar 

  76. Otero R, Naitoh Y, Rosei F, Jiang P, Thostrup P, Gourdon A, Lægsgaard E, Stensgaard I, Joachim C, Besenbacher F (2004) Angew Chem Int Ed Engl 116:2144

    Google Scholar 

  77. Wilson JR, Meijer G, Bethune DS, Johnson RD, Chambliss DD, de Vries MS, Hunziker HE, Wendt HR (1990) Nature 348:621

    Google Scholar 

  78. Sakurai T, Wang XD, Xue QK, Hasegawa Y, Hashizume T, Shinohara H (1996) Prog Surf Sci 51:263

    Google Scholar 

  79. Kuk Y, Kim DK, Suh YD, Park KH, Oh HP, Kim SK (1993) Phys Rev Lett 70:1948

    Google Scholar 

  80. Jehoulet C, Obeng YS, Kim YT, Zhou F, Bard AJ (1992) J Am Chem Soc 114:4237

    Google Scholar 

  81. Marchenko A, Cousty J (2002) Surf Sci 513:233

    Google Scholar 

  82. Uemura S, Samori P, Kunitake M, Hirayama C, Rabe JP (2002) J Mater Chem 12:3366

    Google Scholar 

  83. Chen T, Howells S, Gallagher M, Darid D, Lamb LD, Huffman D, Workman RK (1992) Phys Rev B 45:14441

    Google Scholar 

  84. Katsonis N, Marchenko A, Fichou D (2004) Adv Mater 16:309

    Google Scholar 

  85. Matsumoto M, Inukai J, Tsutsumi E, Yoshimoto S, Itaya K, Ito O, Fujiwara K, Murata M, Murata Y, Komatsu K (2004) Langmuir 20:1245

    Google Scholar 

  86. Kunitake M, Uemura S, Ito O, Fujiwara K, Murata Y, Komatsu K (2002) Angew Chem Int Ed Engl 41:969

    Google Scholar 

  87. Stawasz ME, Sampson DL, Parkinson BA (2000) Langmuir 16:2326

    Google Scholar 

  88. Takeda N, Stawasz ME, Parkinson BA (2001) J Electroanal Chem 498:19

    Google Scholar 

  89. De Feyter S, Gesquière A, De Schryver FC, Keller U, Müllen K (2002) Chem Mater 14:989

    Google Scholar 

  90. Pan LL, Zeng QD, Lu J, Wu DX, Xu SD, Tan ZY, Wan LJ, Wang C, Bai CL (2004) Surf Sci 559:70

    Google Scholar 

  91. Abdel-Mottaleb MMS, Gomar-Nadal E, De Feyter S, Zdanowska M, Veciana J, Rovira C, Amabilino DB, De Schryver FC (2003) Nano Lett 3:1375

    Google Scholar 

  92. Gomar-Nadal E, Abdel-Mottaleb MMS, De Feyter S, Veciana J, Rovira C, Amabilino DB, De Schryver FC (2003) Chem Commun 906

    Google Scholar 

  93. Lu J, Zeng QD, Wang C, Wang LJ, Bai CL (2003) Chem Lett 32:856

    Google Scholar 

  94. Wang D, Wan LJ, Wang C, Bai CL (2002) J Phys Chem B 106:4223

    Google Scholar 

  95. Su GJ, Yin SX, Wan LJ, Zhao JC, Bai CL (2003) Chem Phys Lett 370:268

    Google Scholar 

  96. Su GJ, Yin SX, Wan LJ, Zhao JC, Bai CL (2004) Surf Sci 551:204

    Google Scholar 

  97. Petersen J, Strohmaier R, Gompf B, Eisenmenger W (1997) Surf Sci 389:329

    Google Scholar 

  98. Janssens G, Touhari F, Gerritsen JW, van Kempen H, Callant P, Deroover G, Vanenbroucke D (2001) Chem Phys Lett 344:1

    Google Scholar 

  99. Samori P, Francke V, Enkelmann V, Müllen K, Rabe JP (2003) Chem Mater 15:1032

    Google Scholar 

  100. Höger S, Bonrad K, Mourran A, Beginn U, Möller M (2001) J Am Chem Soc 123:5651

    Google Scholar 

  101. Bäuerle P, Fischer T, Bidlingmaier B, Stabel A, Rabe JP (1995) Angew Chem Int Ed Engl 34:303

    Google Scholar 

  102. Azumi R, Götz G, Debaerdemaeker T, Bäuerle P (2000) Chem Eur J 6:735

    Google Scholar 

  103. Kirschbaum T, Azumi R, Mena-Osteritz E, Bäuerle P (1999) New J Chem 241

    Google Scholar 

  104. Stecher R, Gompf B, Muenter JRS, Effenberger F (1999) Adv Mater 11:927

    Google Scholar 

  105. Stecher R, Drewnick F, Gompf B (1999) Langmuir 15:6490

    Google Scholar 

  106. Azumi R, Götz G, Bäuerle P (1999) Synt Met 101:569

    Google Scholar 

  107. Vollmer MS, Effenberger F, Stecher R, Gompf B, Eisenmenger W (1999) Chem Eur J 5:96

    Google Scholar 

  108. Soukopp A, Glöckler K, Bäuerle P, Sokolowski M, Umbach E (1996) Adv Mater 8:902

    Google Scholar 

  109. Seidel C, Soukopp A, Li R, Bäuerle P, Umbach E (1997) Surf Sci 374:17

    Google Scholar 

  110. Gesquière A, Abdel-Mottaleb MMS, De Feyter S, De Schryver FC, Schoonbeek F, van Esch J, Kellogg RM, Feringa BL, Calderone A, Lazzaroni R, Brédas JL (2000) Langmuir 16:10385

    Google Scholar 

  111. Gesquière A, De Feyter S, De Schryver FC, Schoonbeek F, van Esch J, Kellogg RM, Feringa BL (2001) Nano Lett 1:201

    Google Scholar 

  112. Krömer J, Rios-Carreras Idoia, Fuhrmann G, Musch C, Wunderlin M, Debaerdemaeker T, Mena-Osteritz E, Bäuerle P (2000) Angew Chem Int Ed Engl 39:3481

    Google Scholar 

  113. Mena-Osteritz E, Bäuerle P (2001) Adv Mater 13:243

    Google Scholar 

  114. Gesquière A, Jonkheijm P, Schenning APHJ, Mena-Osteritz E, Bäuerle P, De Feyter S, De Schryver FC, Meijer EW (2003) J Mater Chem 13:2164

    Google Scholar 

  115. Gesquière A, Jonkheijm P, Hoeben FJM, Schenning APHJ, De Feyter S, De Schryver FC, Meijer EW (2004) Nano Lett 4:1175

    Google Scholar 

  116. Jonkheijm P, Miura A, Zdanowska M, Hoeben FJM, De Feyter S, Schenning APHJ, De Schryver FC, Meijer EW (2004) Angew Chem Int Ed Engl 43:74

    Google Scholar 

  117. Miura A, Chen Z, De Feyter S, Zdanowska M, Uji-i H, Jonkheijm P, Schenning APHJ, Meijer EW, Würthner F, De Schryver FC (2003) J Am Chem Soc 125:14968

    Google Scholar 

  118. Lehn JM (1993) Science 260:1762

    Google Scholar 

  119. Bäuerle P (1993) Adv Mater 5:879

    Google Scholar 

  120. Samori P, Francke V, Müllen K, Rabe JP (1999) Chem Eur J 5:2312

    Google Scholar 

  121. Mena-Osteritz E, Meyer A, Langeveld-Voss BMW, Janssen RAJ, Meijer EW, Bäuerle P (2000) Angew Chem Int Ed Engl 39:2680

    Google Scholar 

  122. Grévin B, Rannou P, Payerne R, Pron A, Travers JP (2003) J Chem Phys 118:7097

    Google Scholar 

  123. Grévin B, Rannou P, Payerne R, Pron A, Travers JP (2003) Adv Mater 15:881

    Google Scholar 

  124. Lei SB, Wan LJ, Wang C, Bai CL (2004) Adv Mater 16:828

    Google Scholar 

  125. Lu J, Lei SB, Zeng QD, Kang SZ, Wang C, Wan LJ, Bai CL (2004) J Phys Chem 108:5161

    Google Scholar 

  126. Theobald J, Oxtoby NS, Phillips MA, Champness NR, Beton PH (2003) Nature 424:1029

    Google Scholar 

  127. de Wild M, Berner S, Suzuki H, Yanagi H, Schlettwein D, Ivan S, Baratoff A, Guentherodt HJ, Jung TA (2002) Chem Phys Chem 10:881

    Google Scholar 

  128. Pan GB, Lu JM, Zhang HM, Wan LJ, Zheng QY, Bai CL (2003) Angew Chem Int Ed Engl 42:2747

    Google Scholar 

  129. Freund J, Probst O, Grafström S, Dey S, Kowalski J, Neumann R, Wörtge M, zu Pulitz G (1994) J Vac Sci Technol B 12:1914

    Google Scholar 

  130. De Feyter S, Miura A, Yao S, Chen Z, Würthner F, Jonkheijm P, Schenning APHJ, Meijer EW, De Schryver FC (2005) Nano Lett 5:77

    Google Scholar 

  131. Hipps KW, Scudiero L, Barlow DE, Cooke MP Jr (2002) J Am Chem Soc 124:2126

    Google Scholar 

  132. Scudiero L, Hipps KW, Barlow DE (2003) J Phys Chem B 107:2903

    Google Scholar 

  133. Suta K, Yoshimoto S, Itaya K (2003) J Am Chem Soc 125:14976

    Google Scholar 

  134. Xu B, Yin S, Wang C, Qiu X, Zeng Q, Bai CL (2000) J Phys Chem B 104:10502

    Google Scholar 

  135. Yin S, Wang C, Xu B, Bai CL (2002) J Phys Chem B 106:9044

    Google Scholar 

  136. Lei SB, Yin SX, Wang C, Wan LJ, Bai CL (2004) J Phys Chem B 108:224

    Google Scholar 

  137. Lei SB, Wang C, Wan LJ, Bai CL (2004) J Phys Chem B 108:1173

    Google Scholar 

  138. Lei SB, Wang C, Yin SX, Bai CL (2001) J Phys Chem B 105:12272

    Google Scholar 

  139. Ludwig C, Strohmaier R, Peterson J, Gompf B, Eisenmenger W (1994) J Vac Sci Technol B 12:1963

    Google Scholar 

  140. Lei SB, Yin SX, Wang C, Wan LJ, Bai CL (2002) Chem Mater 14:2837

    Google Scholar 

  141. De Feyter S, Larsson M, Schuurmans N, Verkuijl B, Zoriniants G, Gesquière A, Abdel-Mottaleb MM, van Esch J, Feringa BL, van Stam J, De Schryver F (2003) Chem Eur J 9:1198

    Google Scholar 

  142. Pérez-Garcia L, Amabilino DB (2002) Chem Soc Rev 31:342

    Google Scholar 

  143. Fasel R, Parschau M, Ernst KH (2003) Angew Chem Int Ed Engl 42:5178

    Google Scholar 

  144. Ernst KH, Kuster Y, Fasel R, Müller M, Ellerbeck U (2001) Chirality 13:675

    Google Scholar 

  145. Brian France C, Parkinson BA (2003) J Am Chem Soc 125:12712

    Google Scholar 

  146. Wei Y, Kannappan K, Flynn GW, Zimmt MB (2004) J Am Chem Soc 126:5318

    Google Scholar 

  147. Schunack M, Linderoth TR, Rosei F, Laegsgaard E, Stensgaard I, Besenbacher F (2002) Phys Rev Lett 88:156102

    Google Scholar 

  148. Weckesser J, Barth JV, Kern K (2001) Phys Rev B 64:161403

    Google Scholar 

  149. Weckesser J, Barth JV, Kern K (1999) J Chem Phys 110:5351

    Google Scholar 

  150. Gimzewski JK, Joachim C, Schlitter RR, Langlais V, Tang H, Johannsen I (1998) Science 281:531

    Google Scholar 

  151. Stabel A, Heinz R, De Schryver FC, Rabe JP (1995) J Phys Chem 99:505

    Google Scholar 

  152. Rabe JP, Buchholz S (1991) Phys Rev Lett 66:2096

    Google Scholar 

  153. Moresco F, Meyer G, Rieder KH, Tang H, Gourdon A, Joachim C (2001) Appl Phys Lett 78:306

    Google Scholar 

  154. Moresco F, Meyer G, Rieder KH, Tang H, Gourdon A, Joachim C (2001) Phys Rev Lett 86:672

    Google Scholar 

  155. Samori P, Engelkamp H, de Witte P, Rowan AE, Nolte RJM, Rabe JP (2001) Angew Chem Int Ed Engl 40:2348

    Google Scholar 

  156. Okawa Y, Aono M (2001) Nature 409:683

    Google Scholar 

  157. Miura A, De Feyter S, Abdel-Mottaleb MMS, Gesquière A, Grim PCM, Moessner G, Sieffert M, Klapper M, Müllen K, De Schryver FC (2003) Langmuir 19:6474

    Google Scholar 

  158. Akai-Kasaya M, Shimizu K, Watanbe Y, Saito A, Aono M, Kuwahara Y (2003) Phys Rev Lett 91:255501

    Google Scholar 

  159. Jäckel F, Wang Z, Watson MD, Müllen K, Rabe JP (2004) Chem Phys Lett 387:372

    Google Scholar 

  160. Mizutani W, Shigeno M, Kajimura K, Ono M (1992) Ultramicroscopy 42-44:236

    Google Scholar 

  161. Jäckel F, Watson MD, Müllen K, Rabe JP (2004) Phys Rev Lett 92:188303

    Google Scholar 

  162. Berndt R, Gaisch R, Gimzewski JK, Reihl B, Schlitter RR, Schneider WD, Tschudy M (1993) Science 262:1425

    Google Scholar 

  163. Touhari F, Stoffels EJAJ, Gerritsen JW, van Kempen H (2001) Appl Phys Lett 79:527

    Google Scholar 

  164. Dong ZC, Guo XL, Trifonov AS, Dorozhkin PS, Miki K, Kimura K, Yokoyama S, Mashiko S (2004) Phys Rev Lett 92:86801

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven De Feyter .

Editor information

Frank Würthner

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

De Feyter, S., De Schryver, F. Two-Dimensional Dye Assemblies on Surfaces Studied by Scanning Tunneling Microscopy . In: Würthner, F. (eds) Supermolecular Dye Chemistry. Topics in Current Chemistry, vol 258. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b136670

Download citation

Publish with us

Policies and ethics