Skip to main content

Model-based Inference of Gene Expression Dynamics from Sequence Information

  • Chapter
  • First Online:
Biotechnology for the Future

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 100))

Abstract

A dynamic model of prokaryotic gene expression is developed that makes considerable use of gene sequence information. The main contribution arises from the fact that the combined gene expression model allows us to access the impact of altering a nucleotide sequence on the dynamics of gene expression rates mechanistically. The high level of detail of the mathematical model is considered as an important step towards bringing together the tremendous amount of biological in-depth knowledge that has been accumulated at the molecular level, using a systems level analysis (in the sense of a bottom-up, inductive approach). This enables to the model to provide highly detailed insights into the various steps of the protein expression process and it allows us to access possible targets for model-based design. Taken as a whole, the mathematical gene expression model presented in this study provides a comprehensive framework for a thorough analysis of sequence-related effects on the stages of mRNA synthesis, mRNA degradation and ribosomal translation, as well as their nonlinear interconnectedness. Therefore, it may be useful in the rational design of recombinant bacterial protein synthesis systems, the modulation of enzyme activities in pathway design, in vitro protein biosynthesis, and RNA-based vaccination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

a i :

number of codons representing a particular amino acid i

A:

number of naturally occurring amino acids

c:

codon usage

C:

metabolite concentration (μM)

d:

spacing between ribosomes and degradosomes, and between SD sequence and translational start codons

D:

promoter contained on DNA template

f:

fraction of single-stranded bases within the 23 bases subsequent to the Shine-Dalgarno sequence

f j,i :

relative portion of base j contained in transcript i (%)

G :

free energy (kJ/mol)

J :

number of base triplets of a mRNA

k i :

respective rate constant

K :

last codon of a coding region

K a :

association constant

K d :

dissociation constant

K I :

inhibition constant for respective metabolite (μM)

K M :

Michaelis-Menten constant for respective substrate (μM)

L j :

physical diameter of a ribosome and degradosome, respectively

m :

mass (g)

m i :

ratio of RNA species i to total measured RNA (g/g)

m i,j :

element of matrix M

m j :

reference state of a ribosome and a degradosome, respectively

M :

mRNA

M :

number of mRNA molecules

M :

mRNA matrix

n :

number

n i :

transcript length for RNA species i (kb)

n cod :

number of base triplets used to denote a state

N :

number of ribonucleic bases

N A :

Avogadro number

R :

number of RNA species synthesized from a given DNA template

S :

number of segments

t :

time (min)

T :

number of tRNA species

T :

temperature (K)

T :

time (s)

V :

reaction rate (μM/min)

V :

volume (μl)

V P :

relative protein expression rate (%)

X :

measured radioactivity (dpm/μL)

z :

position of endonucleolytic cleavage site

Z :

number of fragments of a mRNA obtained by endonucleolytic cleavage

η:

fractional codon usage

μ:

specific growth rate (h−1)

Φ:

efficiency factor

ϕ:

T7 transcription terminator

ϕ10:

T7 promoter

φ:

energy charge

aq:

aqueous

avg:

average

cell:

referring to a single cell

CR:

catabolite repression

d:

degradation

D:

refers to promoter sequence of a DNA

D0:

refers to a degradosome association site

dto:

ditto

eff:

effective

eq:

thermodynamic equilibrium

exp:

experimentally determined

f:

formyl-

f:

forward reaction

i :

count index

in:

entering equilibrium computation

I:

induction

j :

count index

k :

count index

m:

methionine

NTP:

nucleoside triphosphate

out:

outcome of equilibrium computation

qss:

quasi-stationary state

r:

reverse reaction

R0:

refers to a ribosome binding site

s :

count index

sim:

predicted from simulation

t:

denotes total concentration

un:

unbound

′:

refers to new codon grid representation

0:

initial condition

0:

standard condition

A:

refers to the A-site of a ribosome

D:

degradosome

M:

mRNA

M:

methionine

max:

maximum value

P:

refers to the P-site of a ribosome

R:

ribosome

R* :

ribosome bound to the initiation codon prior to IF2-dissociation

30S:

small prokaryotic ribosomal subunit

30SIC:

30S initiation complex

50S:

large prokaryotic ribosomal subunit

70S:

free, undissociated prokaryotic ribosome

70SIC:

70S initiation complex

A:

adenine

aa:

amino acid(s)

aa-tRNA:

aminoacyl-tRNA

Ac:

acetate

Ack:

acetate kinase

AcP:

acetyl phosphate

ACSL:

Advanced Continuous Simulation Language

Adk:

adenylate kinase

ADP:

adenosine diphosphate

Ala:

alanine

AMP:

adenosine monophosphate

Arg:

arginine

ARS:

aminoacyl-tRNA-synthetase

Asn:

asparagine

Asp:

aspartic acid

ass:

association

ATP:

adenosine triphosphate

AUG:

translational start codon

bp:

base pairs

BSA:

bovine serum albumin

C:

cytosine

CDP:

cytosine diphosphate

CMP:

cytosine monophosphate

CTP:

cytosine triphosphate

Cys:

cysteine

DNA:

deoxyribonucleic acid

E:

enzyme

EC:

Enzyme Commission

EF:

translational elongation factor

EMBL:

European Molecular Biology Laboratory

endo:

endonucleolytic

exo:

exonucleolytic

F:

folded conformation of the ribosome binding site

fMet-tRNA f M :

N-formylmethionyl-tRNA

Frag:

mRNA fragment

G:

guanine

GDP:

guanosine diphosphate

GFP:

green fluorescent protein

Gln:

glutamine

Glu:

glutamic acid

Gly:

glycine

GMP:

guanosine monophosphate

GTP:

guanosine triphosphate

h:

hour

His:

histidine

IC:

initiation complex

IF:

translational initiation factor

IF2D:

IF2-dependent GTP hydrolysis

Ile:

isoleucine

K:

Kelvin

kb:

kilobases

kDa:

kiloDalton (1 Da ≙ 1 g/mol)

kJ:

kiloJoule

Leu:

leucine

Lys:

lysine

Met:

methionine

min:

minute

mRNA:

messenger RNA

mv:

degradosome movement

Ndk:

nucleoside diphosphate kinase

NDP:

nucleoside diphosphate

Nmk:

nucleoside monophosphate kinase

NMP:

nucleoside monophosphate

nt:

nucleotide(s)

NTP:

nucleoside triphosphate

P:

promoter

PAGE:

polyacryl amide gel electrophoresis

PAP I:

poly-adenylate phosphorylase

pelB:

pelB leader sequence

Phe:

phenylalanine

Pi:

inorganic phosphate

PNPase:

polynucleotide phosphorylase

PPi:

inorganic pyrophosphate

PPK:

polyphosphate kinase

Pro:

proline

RBS:

ribosome binding site

rDNA:

recombinant DNA

RF:

translational termination factor

RFH:

a particular translational termination factor

RNA:

ribonucleic acid

RNAP:

DNA-dependent RNA polymerase

RNase:

ribonuclease

RP:

ribosomal protein

RRF:

ribosome release factor

rRNA:

ribosomal RNA

s:

second

S1:

ribosomal protein S1 (contained in 30S ribosomal subunit)

Ser:

serine

SNP:

single-nucleotide polymorphism

ssRNA:

single-stranded RNA

T:

terminator

T:

thymine

T:

tRNA

T3:

ternary complex (consists of one copy of EFTu, GTP, and aa-tRNA)

TC:

transcription

TCA:

tricarboxylic acid

TCE:

transcription elongation

TCI:

transcription initiation

TCT:

transcription termination

TE:

termination efficiency

THF:

H4-folate

Thr:

threonine

TL:

translation

TLE:

translation elongation

TLI:

translation initiation

TLT:

translation termination

tmRNA:

transfer-messenger RNA

Tris:

tris(hydroxymethyl)aminomethane

tRNA:

transfer RNA

Trp:

tryptophan

Tyr:

tyrosine

U:

unit

U:

uracil

UDP:

uracil diphosphate

UMP:

uracil monophosphate

UTP:

uracil triphosphate

Val:

valine

References

  1. Coburn GA, Mackie GA (1999) Proc Nucleic Acid Res Mol Biol 62:55

    CAS  Google Scholar 

  2. Chaney WG, Morris AJ (1979) Arch Biochem Biophys 194:283

    CAS  Google Scholar 

  3. Ho T, Wagner G (2004) J Biomol NMR 28:357

    Google Scholar 

  4. Shen LX, Basilon JP, Stanton VP (1999) PNAS 96 14:7871

    Google Scholar 

  5. Oresic M, Shalloway D (1998) J Mol Biol 281:31

    CAS  Google Scholar 

  6. Gordon R (1969) J Theor Biol 22:515

    CAS  Google Scholar 

  7. Vassart G, Dumont JE, Cantraine FRL (1971) Biochim Biophys Acta 247:471

    CAS  Google Scholar 

  8. Bergmann JE, Lodish HF (1979) J Biol Chem 254:11927

    CAS  Google Scholar 

  9. Liljenstrom H, Blomberg C (1987) J Theor Biol 129:41

    CAS  Google Scholar 

  10. Harley CB, Pollard JW, Stanners CP, Goldstein S (1981) J Biol Chem 256:10786

    CAS  Google Scholar 

  11. Menninger JR (1983) J Mol Biol 171:383

    CAS  Google Scholar 

  12. Liljenstrom H, von Heijne G (1987) J Theor Biol 124:43

    CAS  Google Scholar 

  13. Bagnoli F, Liò P (1995) J Theor Biol 173:271

    CAS  Google Scholar 

  14. Li K, Kisilevsky R, Wasan MT, Hammond G (1972) Biochim Biophys Acta 272:451

    CAS  Google Scholar 

  15. Singh UN (1969) J Theor Biol 25:444

    CAS  Google Scholar 

  16. Singh UN (1996) J Theor Biol 179:147

    CAS  Google Scholar 

  17. Carrier TA, Keasling JD (1997) J Theor Biol 189:195

    CAS  Google Scholar 

  18. Gouy M, Grantham R (1980) FEBS Lett 115:151

    CAS  Google Scholar 

  19. Lee SB, Bailey JE (1984) Biotechnol Bioeng 26:66

    CAS  Google Scholar 

  20. Biblia TA, Flickinger MC (1992) Biotechnol Bioeng 39:251

    Google Scholar 

  21. Kremling A, Gilles ED (2001) Metabolic Engineering 3:138

    CAS  Google Scholar 

  22. Hargrove JL, Schmidt FH (1989) Faseb J 3:2360

    CAS  Google Scholar 

  23. Hatzimanikatis V, Lee KH (1999) Metab Eng 1:275

    CAS  Google Scholar 

  24. Ledley TS, Ledley FD (1994) Hum Gene Ther 5:579

    Google Scholar 

  25. Aiba S, Humphrey AE, Millis NF (1973). Biochemical engineering. Academic Press, New York

    Google Scholar 

  26. Lee SB, Bailey JE (1984) Biotechnol Bioeng 26:1372

    CAS  Google Scholar 

  27. Chen W, Bailey JE, Lee SB (1991) Biotechnol Bioeng 38:679

    CAS  Google Scholar 

  28. Simha R, Zimmerman JM, Moacanin J (1963) J Chem Phys 39:1239

    CAS  Google Scholar 

  29. Zimmerman JM, Simha R (1965) J Theor Biol 9:156

    CAS  Google Scholar 

  30. Silberberg A, Simha R (1968) Biopolymers 6:479

    CAS  Google Scholar 

  31. Gerst I, Levine SN (1965) J Theor Biol 9:16

    CAS  Google Scholar 

  32. Godefroy-Colburn T, Thach RE (1981) J Biol Chem 256:11762

    CAS  Google Scholar 

  33. Pipkin AC, Gibbs JH (1966) Biopolymers 4:3

    CAS  Google Scholar 

  34. MacDonald CT, Gibbs JH, Pipkin AC (1968) Biopolymers 6:1

    CAS  Google Scholar 

  35. MacDonald CT, Gibbs JH (1969) Biopolymers 7:707

    CAS  Google Scholar 

  36. von Heijne G, Nilsson L, Blomberg C (1977) J Theor Biol 68:321

    Google Scholar 

  37. von Heijne G, Nilsson L, Blomberg C (1978) Eur J Biochem 92:397

    Google Scholar 

  38. Heinrich R, Rapaport TA (1980) J Theor Biol 86:279

    CAS  Google Scholar 

  39. Chela-Flores J, Liquori AM, Florio A (1988) J Theor Biol 134:319

    CAS  Google Scholar 

  40. Mahaffy JM (1993) J Theor Biol 162:153

    CAS  Google Scholar 

  41. Zhang S, Goldman E, Zubay G (1994) J Theor Biol 170:339

    CAS  Google Scholar 

  42. Götz P, Reuss M (1997) J Biotechnol 58:101

    Google Scholar 

  43. Drew DA (2001) Bull Math Biol 63:329

    CAS  Google Scholar 

  44. Arnold SG, Siemann M, Scharnweber K, Werner M, Baumann S, Reuss M (2001) Biotechnol Bioeng 72:548

    CAS  Google Scholar 

  45. Gunderson SI, Chapman KA, Burgess RR (1987) Biochemistry 26:1539

    CAS  Google Scholar 

  46. Blank A, Gallant JA, Burgess RR, Loeb LA (1986) Biochemistry 25:5920

    CAS  Google Scholar 

  47. Guajardo R, Lopez P, Dreyfus M, Sousa R (1998) J Mol Biol 281:777

    CAS  Google Scholar 

  48. Kolchanov NA, Ananko EA, Podkolodnaya OA, Ignatieva EV, Stepanenko IL, Kel-Margoulis OV, Kel AE, Merkulova TI, Goryachkovskaya TN, Busygina TV, Kolpakov FA, Podkolodny NL, Naumochkin AN, Romashchenko AG (1999) Nucl Acids Res 27:303

    CAS  Google Scholar 

  49. Wingender E, Chen X, Hehl R, Karas H, Liebich I, Matys V, Meinhardt T, Prü M, Reuter I, Schacherer F (2000) Nucl Acids Res 28:316

    CAS  Google Scholar 

  50. Sousa R (1996) Trends Biochem Sci 21:186

    CAS  Google Scholar 

  51. Blundell M, Craig E, Kennell D (1972) Nature New Biol 238:46

    CAS  Google Scholar 

  52. Petersen C (1993) In: Belasco JG, Brawerman G (eds) Control of messenger RNA stability. Academic, San Diego, CA, p 117

    Google Scholar 

  53. Court D (1993) In: Belasco JG, Brawerman G (eds) Control of messenger RNA stability. Academic, San Diego, CA, p 117

    Google Scholar 

  54. Rauhut R, Klug G (1999) FEMS Microbiol Rev 23:353

    CAS  Google Scholar 

  55. Carpousis AJ, Van Houwe G, Ehretsmann C, Krisch HM (1994) Cell 76:889

    CAS  Google Scholar 

  56. Py B, Higgins CF, Krisch HM, Carpousis AJ (1996) Nature 381:169

    CAS  Google Scholar 

  57. Miczak A, Kaberdin VR, Wei CL, Lin-Chao S (1996) Proc Natl Acad Sci USA

    Google Scholar 

  58. McDowall KJ, Lin-Chao S, Cohen SN (1994) J Biol Chem 269:10790

    CAS  Google Scholar 

  59. Bouvet P, Belasco JG (1992) Nature 360:488

    CAS  Google Scholar 

  60. Regnier P, Arraiano CM (2000) BioEssays 22:235

    CAS  Google Scholar 

  61. Belasco J, Higgins C (1988) Gene 72:15

    CAS  Google Scholar 

  62. Wagner LA, Gesteland RF, Dayhuff TJ, Weiss RB (1994) J Bacteriol 176:1683

    CAS  Google Scholar 

  63. Morse DE, Guertin M (1971) Nature New Biol 232:165

    CAS  Google Scholar 

  64. Kennell D, Simmons C (1972) J Mol Biol 70:451

    CAS  Google Scholar 

  65. Lopez P J, Marchand I, Yarchuk O, Dreyfus M (1998) Proc Natl Acad Sci USA 95:6067

    CAS  Google Scholar 

  66. Rigney DR (1979) J Theor Biol 79:247

    CAS  Google Scholar 

  67. Lim LW, Kennell D (1979) J Mol Biol 135:369

    CAS  Google Scholar 

  68. Liang S-T, Ehrenberg M, Dennis P, Bremer H (1999) J Mol Biol 288:521

    CAS  Google Scholar 

  69. Kennell D, Riezman H (1977) J Mol Biol 114:1

    CAS  Google Scholar 

  70. Kennell DE (1990) In: Reznikoff UW, Gold L (eds) Maximizing gene expression. Butterworths, Boston, MA, p 101

    Google Scholar 

  71. Cannistraro VJ, Subbarao MN, Kennell D (1986) J Mol Biol 192:257

    CAS  Google Scholar 

  72. Schulz VP, Reznikoff WS (1990) J Mol Biol 211:427

    CAS  Google Scholar 

  73. McCormick JR, Zengel JM, Lindahl L (1991) Nucl Acids Res 19:2767

    CAS  Google Scholar 

  74. Schneider E, Blundell M, Kennell D (1978) Mol Gen Genet 160:121

    CAS  Google Scholar 

  75. Cannistraro VJ, Kennell D (1985) J Mol Biol 182:241

    CAS  Google Scholar 

  76. Subbarao, MN, Kennell D (1988) J Bacteriol 170:2860

    CAS  Google Scholar 

  77. Yarchuk O, Iost I, Dreyfus M (1991) Biochimie 73:1533

    CAS  Google Scholar 

  78. Liou G-G, Jane W-N, Cohen SN, Lin N-S, Lin-Chao S (2001) Proc Natl Acad Sci USA 98:63

    CAS  Google Scholar 

  79. Gouy M, Gautier C (1982) Nucl Acids Res 10:7055

    CAS  Google Scholar 

  80. Ikemura T (1981) J Mol Biol 151:389

    CAS  Google Scholar 

  81. Pedersen S (1984) EMBO J 3:2895

    CAS  Google Scholar 

  82. Liljenstrom H, von Heijne G (1987) J Theor Biol 124:43–55

    CAS  Google Scholar 

  83. Sørensen MA, Pedersen S (1991) J Mol Biol 222:265

    Google Scholar 

  84. Varenne S, Buc J, Lloubes R, Lazdunski C (1984) J Mol Biol 180:549

    CAS  Google Scholar 

  85. Wolin SL, Walter P (1988) EMBO J 7:3559

    CAS  Google Scholar 

  86. Dahlberg AE, Lund E, Kjeldgaard NO (1973) J Mol Biol 78:627

    CAS  Google Scholar 

  87. Spirin AS, Lishnevskaya EB (1971) FEBS Lett 14:114

    CAS  Google Scholar 

  88. Naaktgeboren N, Roobol K, Voorma HO (1977) Eur J Biochem 72:49

    CAS  Google Scholar 

  89. Chaires JB, Pande C, Wishnia A (1981) J Biol Chem 256:6600

    CAS  Google Scholar 

  90. Weiel J, Hershey JWB (1982) J Biol Chem 257:1215

    CAS  Google Scholar 

  91. Goss DJ, Parkhurst LJ, Wahba AJ (1982) J Biol Chem 257:10119

    CAS  Google Scholar 

  92. Zucker FH, Hershey JWB (1986) 25:3682

    Google Scholar 

  93. Gualerzi C, Pon CL (1990) Biochemistry 29:5881

    CAS  Google Scholar 

  94. Ellis S, Conway TW (1984) J Biol Chem 259:7607

    CAS  Google Scholar 

  95. Wintermeyer W, Gualerzi C (1983) Biochemistry 22:690

    CAS  Google Scholar 

  96. Tomsic J, Vitali LA, Daviter T, Savelsbergh A, Spurio R, Striebeck P, Wintermeyer W, Rodnina M, Gualerzi CO (2000) EMBO J 19:2127

    CAS  Google Scholar 

  97. Canonaco MA, Calogero RA, Gualerzi CO (1986) J Mol Biol 192:257

    Google Scholar 

  98. Pon CL, Paci M, Pawlik RT, Gualerzi CO (1985) J Biol Chem 260:8918

    CAS  Google Scholar 

  99. Blumberg BM, Nakamoto T, Kezdy FJ (1979) Proc Natl Acad Sci USA 76:251

    CAS  Google Scholar 

  100. Gualerzi C, Risuleo G, Pon CL (1977) Biochemistry 16:1684

    CAS  Google Scholar 

  101. Bremer H, Dennis PP (1996) In: Neidhardt FC, Curtiss III R, Ingraham JL, Lin ECC, Brooks Low K, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium, Cellular and molecular microbiology. American Society for Microbiology, Washington DC, p 1553

    Google Scholar 

  102. Jakubowski H (1988) J Theor Biol 133:363

    CAS  Google Scholar 

  103. de Smit MH, van Duin J (1994) J Mol Biol 244:144

    Google Scholar 

  104. Nierhaus KH (1996) Angew Chem 108:2342

    Google Scholar 

  105. Rohrbach MS, Bodley JW (1976) Biochemistry 15:4565

    CAS  Google Scholar 

  106. Hwang YW, Miller DL (1985) J Biol Chem 21:11498

    Google Scholar 

  107. Airas RK (1990) Eur J Biochem 192:401

    CAS  Google Scholar 

  108. Airas RK (1992) Eur J Biochem 210:443

    CAS  Google Scholar 

  109. Pavlov MY, Ehrenberg M (1996) Arch Biochem Biophys 328:9

    CAS  Google Scholar 

  110. Gast F-U (1987) Mechanistische Untersuchungen zur Fehlerkorrektur bei der ribosomalen Proteinsynthese. PhD thesis, University of Hannover, Germany

    Google Scholar 

  111. Pingoud A, Gast F-U, Peters F (1990) Biochim Biophys Acta 1050:252

    CAS  Google Scholar 

  112. Saifullin SR, Potapov AP (1995) Mol Biol (Mosk) 29:421

    CAS  Google Scholar 

  113. Saifullin SR, Potapov AP (1995) Mol Biol (Mosk) 29:434

    CAS  Google Scholar 

  114. Pape T, Wintermeyer W, Rodnina MV (1998) EMBO J 17:7490

    CAS  Google Scholar 

  115. Pingoud A, Urbanke C, Krauss G, Peters F, Maas G (1977) Eur J Biochem 78:403

    CAS  Google Scholar 

  116. Romero G, Chau V, Biltonen RI (1985) J Biol Chem 260:6167

    CAS  Google Scholar 

  117. Dong H, Nilsson I, Kurland CG (1996) J Mol Biol 260:649

    CAS  Google Scholar 

  118. Solomovici J, Lesnik T, Reiss C (1997) J Theor Biol 185:511

    CAS  Google Scholar 

  119. Ruusala T, Ehrenberg M, Kurland CG (1982) EMBO J 1:75

    CAS  Google Scholar 

  120. Pavlov MY, Freistroffer DV, MacDougall J, Buckingham RH, Ehrenberg M (1997) EMBO J 16:4134

    CAS  Google Scholar 

  121. Freistroffer DV, Pavlov MY, MacDougall J, Buckingham RH, Ehrenberg M (1997) EMBO J 16:4126

    CAS  Google Scholar 

  122. Voet D, Voet JG (1994) Biochemie. VCH Verlags-GmbH, Weinheim, Germany

    Google Scholar 

  123. Hirshfield IN, Yeh F-M (1976) Biochim Biophys Acta 435:306

    CAS  Google Scholar 

  124. Schulman LH, Pelka H (1988) Science 242:765

    CAS  Google Scholar 

  125. Schulman LH (1991) Prog Nucleic Acid Re 41:23

    Article  CAS  Google Scholar 

  126. Noren CJ, Anthony-Cahill SJ, Griffith MC, Schultz PG (1989) Science 244:182

    CAS  Google Scholar 

  127. Hanes J, Plückthun A (1997) Proc Natl Acad Sci USA 94:4937

    CAS  Google Scholar 

  128. Zubay G (1973) Annu Rev Genet 7:267

    CAS  Google Scholar 

  129. Pratt JM (1984) In: Hames BD, Higgins SJ (eds) Transcription and translation: a practical approach. IRL, Oxford, p 179

    Google Scholar 

  130. Kim DM, Choi TK, Yokoyama S (1996) Eur J Biochem 239:881

    CAS  Google Scholar 

  131. Patnaik R, Swartz J (1998) Biotechniques 24:862

    CAS  Google Scholar 

  132. Kigawa T, Yabuki T, Yoshida Y, Tsutsui M, Ito Y, Shibata T, Yokoyama CS (1999) FEBS Lett 442:15

    CAS  Google Scholar 

  133. Chekulayeva MN, Kurnasov OV, Shirokov VA, Spirin AS (2001) Biochem Biophys Res Commun 280:914

    CAS  Google Scholar 

  134. Golomb M, Chamberlin M (1974) J Biol Chem 249:2858

    CAS  Google Scholar 

  135. Janson CA, Cleland WW (1974) J Biol Chem 249:2567

    CAS  Google Scholar 

  136. Reich JG, Selkov EE (1981). Energy metabolism of the cell: a theoretical treatise. Academic, London

    Google Scholar 

  137. Oestreich CH, Jones MM (1966) Biochemistry 5:2926

    CAS  Google Scholar 

  138. Schindler P, Baumann S, Siemann M, Reuss M (1999) BioTech Int J 11:12

    Google Scholar 

  139. Oelschlaeger P, Lange S, Schmitt J, Siemann M, Reuss M, Schmid RD (2003) Appl Microbiol Biotechnol 61:123

    CAS  Google Scholar 

  140. Geigenmüller U, Nierhaus KH (1990) EMBO J 9:4527

    Google Scholar 

  141. Katanaev VS, Spirin S, Reuss M, Siemann M (1996) FEBS Lett 397:54

    Google Scholar 

  142. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  143. Mailinger W, Baumeister A, Reuss M, Rizzi M (1998) J Biotechnol 63:155

    CAS  Google Scholar 

  144. Lippmann F, Tuttle LT (1945) J Biol Chem 159:2193:3865

    Google Scholar 

  145. Sen R, Dasguta D (1993) Biochem Biophys Res Commun 195:616

    CAS  Google Scholar 

  146. Rose T, Brune M, Wittinghofer A, Le Blay K, Surewics WK, Mantsch HH, Barzu O, Gilles AM (1991) J Biol Chem 266:10781

    CAS  Google Scholar 

  147. Mauch K, Arnold S, Posten C, Reuss M (1997) Computer algebra systems in model-building and model-analysis for bioprocesses. 15th IMACS World Congress 2:171–178

    Google Scholar 

  148. Schmid LW (1999) Reaktionskinetische Modellierung der prokaryotischen in vitro Translation. Studienarbeit am Institut für Bioverfahrenstechnik, Universität Stuttgart

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Reuss .

Editor information

J. Nielsen

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Arnold, S., Siemann-Herzberg, M., Schmid, J., Reuss, M. Model-based Inference of Gene Expression Dynamics from Sequence Information. In: Nielsen, J. (eds) Biotechnology for the Future. Advances in Biochemical Engineering/Biotechnology, vol 100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b136414

Download citation

Publish with us

Policies and ethics