Skip to main content

Multivariate Sensing

  • Chapter
  • First Online:
Principles of Chemical Sensors

Abstract

The number and types of sensors that are available for most sensing situations are very large; the computational capacity is abundant and cheap. Miniaturization is a strong trend in the chemical sensor field. The stage is then set for extraction of information from data by means of computational multivariate analysis.

The two terms have different meaning.By data we mean raw output from the sensor, usually in the form of an electrical signal. In a well-behaved individual sensor, the relationship between the output signal and the concentration of a specific analyte is defined and reproducible. This is what we have learned so far from the discussion of the principles of the individual sensors in the preceding chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

C :

Concentration

D :

Desired output

d :

Distance or diameter

f(or F):

Frequency

m :

Number of input elements

N :

Number of sensors

n :

Number of nodes

\(\Re\) :

Response function

\(S(\omega)\) :

Cross-energy spectral density

t :

Retention time

V :

Linear velocity

\(W_{n}\) :

Weighing factors

X :

Sensor response

Y :

Actual output

\(\lambda\) :

Wavelength

\(\eta\) :

Adjustable learning rate

\(\tau\) :

Delay time

\(\gamma^2\) :

Coherence

References

  • Atema, J. (1996) Biol. Bull. 191, 129–138.

    Article  Google Scholar 

  • Cantor, R.S., Ishida, H., and Janata, J. (2008) Anal. Chem. 1012–1018.

    Google Scholar 

  • DiNatale, C., Marco, S., David, F., and D'Amico, A. (1992) Sens. Act. B 8, 187–189.

    Article  Google Scholar 

  • Hartmann, W.M. (1998) Signals, Sounds and Sensation. Springer Verlag.

    Google Scholar 

  • Haykin, S. (1999) Neural Networks, 2nd ed. Prentice Hall.

    Google Scholar 

  • Hierlemann, A., Schweizer-Berberich, M., Weimar, U., Kraus, G., Pfau, A., and Göpel, W. (1996) Pattern recognition and multicomponent analysis. In: Baltes, H., Gx00F6pel, W., and Hesse, J. (Eds.) Sensor Update, Vol. 2. VCH, Weinheim, pp. 119–180.

    Google Scholar 

  • Jurs, P.C., Bakken, G.A., and McClelland, H.E. (2000) Chem. Rev. 100, 2649–2678.

    Article  CAS  Google Scholar 

  • Kikas, T., Ishida, H., Webster, D.R., and Janata, J. (2001a) Anal. Chem. 73, 3662–3668.

    Article  CAS  Google Scholar 

  • Kikas, T., Janata, P., Ishida, H., and Janata, J. (2001b) Anal. Chem. 73, 3662–3668.

    Article  CAS  Google Scholar 

  • Kummer, A.M., Burg, T.P., and Hierlemann, A. (2006) Anal. Chem. 78, 279–290.

    Article  CAS  Google Scholar 

  • Nakamoto, T., Ishida, H., and Moriizumi, T. (1996) Sens. Act. B 35, 32–36.

    Article  Google Scholar 

  • Osbourn, G.C. and Martinez, R.F. (1995) Patt. Recogn. 28, 1793.

    Article  Google Scholar 

  • Osbourn, G.C., Bartholomew, J.W., Ricco, A.J., and Frye, G.C. (1998) Acc. Chem. Res. 31, 207–305.

    Article  Google Scholar 

  • Ricco, A.J., Crooks, R.M., and Osbourn, G.C. (1998) Acc. Chem. Res. 31, 289.

    Article  CAS  Google Scholar 

  • Suslick, K.S. (2004) MRS Bull. 720–725.

    Google Scholar 

  • Weissburg, M.J., Dusenbery, D.B., Ishida, H., Janata, J., Keller, T., Roberts, P.J.W., and Webster, D.R. (2002) Environ. Fluid Mech. 2, 65–94.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiˇí Janata .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Janata, J. (2009). Multivariate Sensing. In: Principles of Chemical Sensors. Springer, Boston, MA. https://doi.org/10.1007/b136378_10

Download citation

Publish with us

Policies and ethics