Skip to main content

Crosslinking of Vinylidene Fluoride-Containing Fluoropolymers

  • Chapter
  • First Online:
Crosslinking in Materials Science

Part of the book series: Advances in Polymer Science ((POLYMER,volume 184))

Abstract

Fluoropolymers are well-known for their good properties in terms of chemical, thermal and electrical stabilities, inertness to acids, bases, solvents and oils, and high resistance to ageing and oxidation. Polyvinylidene fluoride (PVDF) is useful as a homopolymer endowed with interesting characteristics. It contains a high crystallinity rate, but is base sensitive. In addition, VDF can be co- or terpolymerized with several fluorinated monomers, rendering them suitable as elastomers and various examples of synthesis of VDF-copolymers are also presented. This review also focusses on binary and tertiary systems containing VDF. Several curing systems for these VDF-containing copolymers have been investigated, especially diamines and their derivatives, aromatic polyhydroxy compounds, peroxides with coagents, such as triallylisocyanurate, radiations, and thiol-ene systems. The best vulcanizate properties are obtained by a two-step process. First, the material is press cured at different times and temperatures, then, it is post cured in air or under nitrogen at higher temperature and time, and under atmospheric pressure. Poly(VDF-co-HFP) copolymers can react with primary, secondary or tertiary monoamines, but they are mainly crosslinked by diamines such as hexamethylene diamine (HMDA), their carbamates (HMDA-C), and derivatives. A mechanism of crosslinking is identified by Infrared and 19F NMR spectroscopies, and was evidenced to proceed in three main steps. First, a VDF unit undergoes a dehydrofluorination in the presence of the diamine, then the Michael addition occurs onto the double bonds to form crosslinking, while HF is eliminated from crosslinks in the presence of HF scavengers. The crosslinking mechanism with bisphenols takes place also in three main steps (dehydrofluorination, then substitution of a fluorine atom by a bisphenol, and elimination of HF). The most efficient crosslinking bisphenol is bisphenol AF . A fluoropolymer crosslinked with peroxide/coagent systems needs to be functionalized or halogenated to insure a free radical attack from peroxide. The peroxide is introduced with a coagent that enhances the crosslinking efficiency, and the most efficient one is triallylisocyanurate (TAIC). The crosslinking mechanism of the peroxide/triallylisocyanurate system proceeds in three main steps. The crosslinking reaction occurs from a macroradical arising from the functional or halogenated polymer which is added onto the three double bonds of the TAIC. A fourth way to crosslink VDF-based fluoropolymers deals with high energy radiation, such as X and γ (60Co or 137Cs)-rays, and charged particles (β-particles and electrons). Three different reactions are possible after irradiation of a PVDF, and the one that leads to crosslinking is the recombination between two macroradicals. The irradiation dose used on the VDF-based copolymer has an influence on the thermal and mechanical properties. Finally, a crosslinking system also used to vulcanizate hydrogenated elastomers concerns a thiol-ene system which requires a mercapto function born by the VDF-based polymer. Crosslinking occurs via a non-conjugated diene. The mechanical properties (tensile strength, elongation at break, hardness, elongation modulus, compression set resistance …) of the three main crosslinking systems of fluoroelastomers are compared. Finally, the main applications of crosslinked VDF-based fluoropolymers are summarized which include tubing in the aircraft building industry, sealing, tube or irregular-profile items of any dimension, films with good adhesion to metallic or rigid surfaces, multilayer insulator systems for electrical conductors, captors, sensors, and detectors, and membranes for electrochemical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

BTPPC:

benzyltriphenylphosphonium chloride

CTFE:

chlorotrifluoroethylene

DBU:

1,8-diazabicyclo[5-4-0]-undec-7-ene

DETA:

diethylene triamine

DMAC:

dimethylacetamide

d.o.g.:

degree of grafting

DSC:

differential scanning calorimetry

DTA:

differential thermal analysis

EDA (-C):

ethylene diamine (carbamate)

HBTBP:

hexamethylene-N,N′bis(tert-butylperoxycarbamate)

HFP:

hexafluoropropene

HMDA:

hexamethylene diamine

HMDA-C:

hexamethylene diamine carbamate

HPFP:

1H-pentafluoropropene

MBTBP:

methylene bis-4-cyclohexyl-N,N′(tert-butylperoxycarbamate)

ODR:

oscillating disc rheometer

PMVE:

perfluoro(methyl vinyl ether)

PVDF:

polyvinylidene fluoride

t1/2 :

half life

TAC:

triallylcyanurate

TAIC:

triallylisocyanurate

TFE:

tetrafluoroethylene

THF:

tetrahydrofurane

VDF:

vinylidene fluoride

References

  1. Montermoso JC (1961) Rubber Chem Techn 34:1521

    Article  CAS  Google Scholar 

  2. Cooper JR (1968) High Polymers 23:273

    CAS  Google Scholar 

  3. Schmiegel WW, Logothetis AL (1984) ACS Symp Series, No. 260, Polymers for Fibers and Elastomers 260:159

    Google Scholar 

  4. Anderson RF, Punserson JO (1979) Organofluorine Chemicals and Their Industrial Applications, Banks RE (ed). Horwood, Chichester

    Google Scholar 

  5. Abu-Isa IA, Trexler HE (1985) Rubber Chem Techn 58:326

    Article  CAS  Google Scholar 

  6. Frapin B (1987) Revue Generale des Caoutchoucs & Plastiques 672:125

    CAS  Google Scholar 

  7. Wall L (1972) Fluoropolymers. Wiley, New York

    Google Scholar 

  8. Banks RE, Smart BE, Tatlow JC (1994) (eds) Organofluorine Chemistry: Principles and Commercial Applications. Wiley, New York

    Google Scholar 

  9. Scheirs J (1997) Modern Fluoropolymers. Wiley, New York

    Google Scholar 

  10. Ajroldi G (1997) Chimica e l'Industria 79:483

    CAS  Google Scholar 

  11. Hougham G, Cassidy PE, Johns K, Davidson T (1999) (eds) Fluoropolymers 2: Properties. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  12. Johns K, Stead G (2000) J Fluorine Chem 104:5

    Article  CAS  Google Scholar 

  13. Imae T (2003) Current Opinion in Colloid & Interface Science 8:307

    Article  CAS  Google Scholar 

  14. Ameduri B, Boutevin B (2004) Well-Architectured Fluoropolymers: Synthesis, Properties and Applications. Elsevier, Amsterdam

    Google Scholar 

  15. Schmiegel WW (2004) Kaut Gum Kunst 57:313

    CAS  Google Scholar 

  16. Ogunniyi DS (1999) Prog Rubber Plastics Techn 15:95

    CAS  Google Scholar 

  17. Pruett RL, Barr JT, Rapp KE, Bahner CT, Gibson JD, Lafferty RH (1950) J Am Chem Soc 72:3646

    Article  CAS  Google Scholar 

  18. Moran AL, Kane RP, Smith JF (1959) J Ind Eng Chem 51:831

    Article  CAS  Google Scholar 

  19. Smith JF (1960) Rubber World 142:102

    CAS  Google Scholar 

  20. Paciorek KL, Mitchell LC, Lenk CT (1960) J Polym Sc 45:405

    Article  CAS  Google Scholar 

  21. Smith JF, Perkins GT (1961) Rubber and Plastics Age 42:59

    CAS  Google Scholar 

  22. Paciorek KL, Merkl BA, Lenk CT (1962) J Org Chem 27:266

    Article  CAS  Google Scholar 

  23. Paciorek KL, Lajiness WG, Lenk CT (1962) J Polym Sc 60:141

    Article  CAS  Google Scholar 

  24. Thomas DK (1964) J Appl Polym Sc 8:1415

    Article  CAS  Google Scholar 

  25. Thomas DK (1969) GB Patent 1 175 417

    Google Scholar 

  26. Moran AL, Pattison DB (1971) Rubber Age 103:37

    CAS  Google Scholar 

  27. Smith TL, Chu WH (1972) J Polym Sc, Polym Phys Ed 10:133

    CAS  Google Scholar 

  28. Arnold RG, Barney AL, Thompson DC (1973) Rubber Chem Techn 46:619

    Article  CAS  Google Scholar 

  29. Knight GJ, Wright WW (1973) British Polym J 5:395

    Article  CAS  Google Scholar 

  30. Ogunniyi DS (1988) Rubber Chem Techn 61:735

    Article  CAS  Google Scholar 

  31. Schonhorn H, Luongo JP (1989) J Adh Sc Techn 3:277

    Article  CAS  Google Scholar 

  32. Schmiegel WW (1978) Kaut Gum Kunst 31:137

    CAS  Google Scholar 

  33. Schmiegel WW (1979) Angew Makromol Chem 76/77:39

    Google Scholar 

  34. Pianca M, Bonardelli P, Tato M, Cirillo G, Moggi G (1987) Polymer 28:224

    Article  CAS  Google Scholar 

  35. Logothetis AL (1989) Progress in Polymer Science 14:251

    Article  CAS  Google Scholar 

  36. Carlson DP, Schmiegel WW (1989) Eur Patent 333062

    Google Scholar 

  37. Arcella V, Brinati G, Apostolo M (April 1997) Chem Ind p 490

    Google Scholar 

  38. Schmiegel WW (2002) US Patent 2003065132

    Google Scholar 

  39. Kojima G, Wachi H (1978) Rubber Chem Techn 51:940

    Article  CAS  Google Scholar 

  40. Finlay JB, Hallenbeck A, MacLachlan JD (1978) J Elast Plast 10:3

    CAS  Google Scholar 

  41. Apotheker D, Krusic PJ (1980) US Patent 4214060

    Google Scholar 

  42. Ameduri BM, Armand M, Boucher M, Manseri A (2001) PCT WO2001096268

    Google Scholar 

  43. Coggio WD, Scott PJ, Hintzer K, Hare ED (2004) US Patent 2004014900

    Google Scholar 

  44. Ameduri B, Boutevin B, Kostov GK, Petrova P (1999) Designed Monomers and Polymers 2:267

    Article  CAS  Google Scholar 

  45. Clark DT, Brennan WJ (1988) J El Spectr Rel Phen 47:93

    Article  CAS  Google Scholar 

  46. Suther JL, Laghari JR (1991) J Mat Sc Let 10:786

    Article  CAS  Google Scholar 

  47. Betz N, Petersohn E, Le Moel A (1996) Nuclear Instruments & Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms 116:207

    Article  CAS  Google Scholar 

  48. Banik I, Bhowmick AK (2000) Rad Phys Chem 58:293

    Article  CAS  Google Scholar 

  49. Banik I, Bhowmick AK (2000) J Mat Sc 35:3579

    Article  CAS  Google Scholar 

  50. Ameduri B, Boutevin B, Kostov G (2001) Prog Polym Sc 26:105

    Article  CAS  Google Scholar 

  51. Nasef MM, Dahlan KZM (2003) Nuclear Instruments & Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms 201:604

    Article  CAS  Google Scholar 

  52. Soresi B, Quartarone E, Mustarelli P, Magistris A, Chiodelli G (2004) Solid State Ionics 166:383

    Article  CAS  Google Scholar 

  53. Lee WA, Rutherford RA (1975) The glass transition temperatures of polymers. In: Brandrup J, Immergut EH (eds) Polymer Handbook. Wiley-Interscience, New York

    Google Scholar 

  54. Seilers DA (1997) PVDF in the chemical processing industry. In: Scheirs J (ed) Modern Fluoropolymers. Wiley, New York, p 487

    Google Scholar 

  55. Smith S (1982) Fluorelastomers. In: Banks RE (ed) Preparation, Properties, and Industrial Applications of Organofluorine Compounds. Ellis Harwood, Chichester, p 235

    Google Scholar 

  56. England DC, Uschold RE, Starkweather H, Pariser R (1983) Proc of the Robert A. Welch Foundation Conf on Chemical Research, Houston, Texas, vol. 26, p 192

    Google Scholar 

  57. Uschold RE (1985) Polym J 17:253

    Article  CAS  Google Scholar 

  58. Logothetis AL (1994) Fluoroelastomers. In: Banks RE, Tatlow JC (eds) Organofluorine Chemistry: Principles and Commercial Applications. Wiley, New York, p 373

    Google Scholar 

  59. Bowers S (1997) Proc of Fluoroelastomers. In: Scheirs J (ed) Modern Fluoropolymers. Wiley, New York, p 115

    Google Scholar 

  60. Tournut C (1994) Macromol Symp 82:99; Tournut C (1997) Thermoplastic copolymers of vinylidene fluoride, Modern Fluoropolymers. In: Scheirs J (ed) Modern Fluoropolymers. Wiley, New York, p 577

    Google Scholar 

  61. Lynn MM, Worm AT (1987) Encycl Polym Sci Eng 7:257

    CAS  Google Scholar 

  62. Cook D, Lynn M (1990) Rapra Review Reports 3:32/1

    CAS  Google Scholar 

  63. Arcella V, Ferro R (1997) Fluorocarbon elastomers. In: Scheirs J (ed) Modern Fluoropolymers. Wiley, New York, p 71

    Google Scholar 

  64. Van Cleeff A (1997) Fluoroelastomers. In: Scheirs J (ed) Modern Fluoropolymers. Wiley, New York, p 597

    Google Scholar 

  65. Logothetis AL (1997) Perfluoroelastomers and their Functionalization. Macromolecular Design of Polymeric Materials. M. Dekker Inc., New York, p 447

    Google Scholar 

  66. Ameduri B, Boutevin B (2005) J Fluorine Chem 126:221

    Article  CAS  Google Scholar 

  67. Schmiegel WW (2003) Proceedings of ACS Rubber Technology Conference, Cleveland, USA, Oct 14–17

    Google Scholar 

  68. Sorokin AD, Volkova EV, Naberezhnykh RA (1972) Radiat Khim 2:295

    CAS  Google Scholar 

  69. Baradie B, Shoichet MS (2002) Macromolecules 35:3569

    Article  CAS  Google Scholar 

  70. Guiot J (2003) PhD Thesis, University of Montpellier

    Google Scholar 

  71. Souzy R, Ameduri B, Boutevin B (2004) Macromol Chem Phys 205:476

    Article  CAS  Google Scholar 

  72. Sianesi D, Caporiccio G (1968) J Polym Sc, Part A1: Polym Chem 6:335

    Article  Google Scholar 

  73. Caporiccio G, Sianesi D (1970) Chimica e l'Industria 52:37

    CAS  Google Scholar 

  74. Ameduri B, Bauduin G (2003) J Polym Sc, Part A: Polym Chem 41:3109

    CAS  Google Scholar 

  75. Yagi T, Tatemoto M (1979) Polym J 11:429

    Article  CAS  Google Scholar 

  76. Usmanov KU, Yul'chibaev AA, Mukhamadaliev N, Sarros TK (1975) Izvestiya Vysshikh Uchebnykh Zavedenii, Khimiya i Khimicheskaya Tekhnologiya (Chem. Abstr. 83, 28687) 18:464

    Google Scholar 

  77. Otazaghine B, Ameduri B (2000) The 16th Int Symp in Fluorine Chemistry. Durham, United Kingdom and Otazaghine B, Sauguet L, Ameduri B (2005) J Fluorine Chem (in press)

    Google Scholar 

  78. Moggi G, Bonardelli P, Bart JCJ (1984) J Polym Sc, Polym Phys Ed 22:357

    CAS  Google Scholar 

  79. Dohany RE, Dukert AA, Preston SS (1989) Encycl Polym Sci Technol 17:532

    Google Scholar 

  80. Bonardelli P, Moggi G, Turturro A (1986) Polymer 27:905

    Article  CAS  Google Scholar 

  81. Naberezhnykh RA, Sorokin AD, Volkova EV, Fokin AV (1974) Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya:232

    Google Scholar 

  82. Moggi G, Bonardelli P, Russo S (1983) Con Ital Sci Macromol 6th 2:405

    CAS  Google Scholar 

  83. Gelin MP, Ameduri BJ (2005) J Fluorine Chem 126:577

    Article  CAS  Google Scholar 

  84. Otazaghine B, Sauguet L, Ameduri B (in press) Eur Polym J

    Google Scholar 

  85. Ameduri BM, Manseri A, Boucher M (2002) PCT WO2002050142

    Google Scholar 

  86. Guiot J, Ameduri B, Boutevin B (2002) J Polym Sc, Part A: Polym Chem 40:3634

    CAS  Google Scholar 

  87. a) Sauguet L, Guiot J, Neouze MA, Ameduri B, Boutevin B (2005) J Polym Sc Polym Chem 43:917; b) Coggio W. Proceedings of “Fluoropolymers 2004” Conference, Savannyh, Ga, USA, October 7–9

    Google Scholar 

  88. Ameduri B, Bauduin G, Boutevin B, Kostov G, Petrova P (1999) Macromolecules 32:4544

    Article  CAS  Google Scholar 

  89. Souzy R, Guiot J, Ameduri B, Boutevin B, Paleta O (2003) Macromolecules 36:9390

    Article  CAS  Google Scholar 

  90. Khodzhaev SG, Yusupbekova FZ, Yul'chibaev AA (1981) Sbornik Nauchnykh Trudov. Tashkentskii Gosudarstvennyi Universitet im. V. I. Lenina (Chem. Abstr. 97, 163545) 667:34

    Google Scholar 

  91. Guiot J, Ameduri B, Boutevin B, Lannuzel T (2003) Eur Polym J 39:887

    Article  CAS  Google Scholar 

  92. Souzy R, Ameduri B, Boutevin B (2004) J Polym Sc, Part A: Polym Chem 42:5077

    CAS  Google Scholar 

  93. Souzy R, Ameduri B, Boutevin B, Capron P, Gebel G (2005) Fuel Cell (in press)

    Google Scholar 

  94. Lannuzel T, Ameduri B, Guiot J, Boutevin B (2004) French Patent 20042852316

    Google Scholar 

  95. Dittman AL, Passino HJ, Wrightson JM (1954) US Patent 2689241

    Google Scholar 

  96. Dixon S, Rexford DR, Rugg JS (1957) J Indus Eng Chem 49:1687

    Article  CAS  Google Scholar 

  97. Rugg JS, Stevenson AC, Rexford DS (1957) Rubber World 82:102

    Google Scholar 

  98. Pailthorp JR, Schroeder HE (1961) US Patent 2968649

    Google Scholar 

  99. Rexford DR (1962) US Patent 3051677

    Google Scholar 

  100. Conroy ME, Honn FJ, Robb LE, Wolf DR (1955) Rubber Age 76:543

    CAS  Google Scholar 

  101. Griffis CB, Montermoso JC (1955) Rubber Age 77:559

    CAS  Google Scholar 

  102. Jackson WW, Hale D (1955) Rubber Age 77:865

    CAS  Google Scholar 

  103. Ameduri B, Boutevin B, Armand M, Boucher M (2001) WO 049758

    Google Scholar 

  104. Worm AT, Vladimirovich N, Volkova MA (2001) US Patent 6294627

    Google Scholar 

  105. a) Bach D, Van Gool G, Steffens J (2003) Proceedings of “International Rubber Technology Conference 2003”, Cleveland, OH, Oct. 14-17, and b) Dyneon Fluoroelastomer LTFE 6400X (2003) Technical Information brochure

    Google Scholar 

  106. Sianesi D, Bernardi C, Diotalleri G (1967) US Patent 3333106

    Google Scholar 

  107. Migmierina A, Ceccato G (1969) 4th Int Sun Rubber Symp 2:65

    Google Scholar 

  108. Ogunniyi DS (1989) Prog Rubber Plast Techn 5:16

    CAS  Google Scholar 

  109. Schmiegel WW (2000) US Patent 2000011072

    Google Scholar 

  110. Barney AL, Kalb GH, Khan AA (1971) Rubber Chem Techn 44:660

    Article  CAS  Google Scholar 

  111. Smith JF (1959) Rubber World 140:263

    CAS  Google Scholar 

  112. Hepburn C, Ogunniyi DS (1985) Proc Int Rubber Conference. Kyoto, Japan

    Google Scholar 

  113. Ogunniyi DS, Hepburn C (1986) Plastics and Rubber Processing and Applications 6:3

    CAS  Google Scholar 

  114. Smith J (1961) J Appl Polym Sc 5:460

    Article  Google Scholar 

  115. Albin LD (1982) Rubber Chem Techn 55:902

    Article  CAS  Google Scholar 

  116. Wright WW (1974) British Polym J 6:147

    Article  CAS  Google Scholar 

  117. Bryan CJ (1977) Rubber Chem Techn 50:83

    Article  CAS  Google Scholar 

  118. Kalfayan SH, Silver RH, Liu SS (1976) Rubber Chem Techn 49:1001

    Article  CAS  Google Scholar 

  119. Ogunniyi DS, Hepburn C (1995) Iranian J Polymer Science & Technology (English Edition) 4:242

    CAS  Google Scholar 

  120. Barton JM (1978) British Polym J 10:151

    Article  CAS  Google Scholar 

  121. Bentley FE (1957) PhD Thesis, University of Florida

    Google Scholar 

  122. Mullins L (1959) J Appl Polym Sc 2:1

    Article  CAS  Google Scholar 

  123. Smith TL (1967) J Polym Sc, Polym Symp 841

    Google Scholar 

  124. Van der Hoff BME, Buckler EJ (1967) J Macromol Sci, Part A 1:747

    Article  Google Scholar 

  125. Moran AL, Kane RP, Smith JF (1959) J Chem Eng Data 4:276

    Article  CAS  Google Scholar 

  126. O'Brien EL, Beringer FM, Mesrobian RB (1957) J Am Chem Soc 79:6238

    Article  Google Scholar 

  127. Pedersen CJ (1958) J Org Chem 23:255

    Article  CAS  Google Scholar 

  128. Pedersen CJ (1958) J Org Chem 23:252

    Article  CAS  Google Scholar 

  129. O'Brien EL, Beringer FM, Mesrobian RB (1959) J Am Chem Soc 81:1506

    Article  Google Scholar 

  130. Spain RG (1958) Division of Rubber Chemistry, Am Chem Soc Meeting. Cincinnati

    Google Scholar 

  131. Flisi U, Giunchi G, Geri S (1976) Kaut Gum Kunst 29:118

    CAS  Google Scholar 

  132. Schmiegel WW (1985) US Patent 4496682

    Google Scholar 

  133. Taguet A, Ameduri B, Boutevin B submitted in J Polym Sci, Part A: Polym Chem

    Google Scholar 

  134. Apotheker D, Finlay JB, Krusic PJ, Logothetis AL (1982) Rubber Chem Techn 55:1004

    Article  CAS  Google Scholar 

  135. Schmiegel WW (1975) US Patent 3872065

    Google Scholar 

  136. Schmiegel WW (1975) US Patent 1413837

    Google Scholar 

  137. Schmiegel WW (1984) US Patent 127318

    Google Scholar 

  138. Hung MH, Schmiegel WW (2001) US Patent 2001081464

    Google Scholar 

  139. Arcella V, Albano M, Barchiesi E, Brinati G, Chiodini G (1993) Rubber World 207:18

    CAS  Google Scholar 

  140. Braden M, Fletcher WP (1955) Transactions, Institution of the Rubber Industry 31:155

    CAS  Google Scholar 

  141. Udagawa R (2001) Eur Patent 2001081391

    Google Scholar 

  142. Staccione A, Albano M (2003) Eur Patent 1347012

    Google Scholar 

  143. Davis RA, Tigner RG (1970) US Patent 3505416

    Google Scholar 

  144. Kryukova AB, Demidova NM, Khmelevskaya VM, Sankina GA, Dontsov AA, Chulyukina AV, Kosteltsev VV, Zavyalova AD, Savchenkova GL, et al. (1993) Russ Patent 1815268

    Google Scholar 

  145. Shimizu T, Enokida T, Naraki A, Tatsu H (2000) Jpn Patent 2000230096

    Google Scholar 

  146. Saito M, Kamya H, Miwa T, Hirai H (1994) Jpn Patent 06306245

    Google Scholar 

  147. Bowers S, Schmiegel WW (2000) PCT WO2000011050

    Google Scholar 

  148. Schmiegel WW (2003) US Patent 2003208003

    Google Scholar 

  149. Banks RE, Birchall JM, Haszeldine RN, Nicholson WJ (1982) J Fluorine Chem 20:133

    Article  CAS  Google Scholar 

  150. Gafurov AK, Isamukhamedov SI, Yul'chibaev AA, Usmanov KU (1978) Uzbekskii Khimicheskii Zhurnal:25

    Google Scholar 

  151. Funaki A, Kato K, Takakura T, Myake H (1994) Jpn Patent 06306196

    Google Scholar 

  152. Tamura M, Miyake H (1998) Jpn Patent 10158376

    Google Scholar 

  153. Tatemoto M, Nagakawa T (1979) US Patent 4158678

    Google Scholar 

  154. Tatemoto M (1979) IX Int Symp on Fluorine Chemistry, Avignon, France

    Google Scholar 

  155. Tatemoto M, Suzuki T, Tomota M, Furukawa Y, Ueta Y (1981) US patent 4243770

    Google Scholar 

  156. Tatemoto M, Morita S (1982) US Patent 4361678

    Google Scholar 

  157. Oka M, Tatemoto M (1984) Contemp Top Polym Sc 4:763

    CAS  Google Scholar 

  158. Ishiwari K, Sakakura A, Yuhara S, Yagi T, Tatemoto M (1985) Int Rubber Conference, Kyoto, Japan

    Google Scholar 

  159. Erdos P, Balazs G, Doszlop S, Varga J (1985) Periodica Polytechnica, Chemical Engineering 29:165

    CAS  Google Scholar 

  160. Ogunniyi DS, Hepburn C (2003) Iranian Polymer J 12:367

    CAS  Google Scholar 

  161. Bristow GM (1976) Natural Rubber Technology 7 3:61

    Google Scholar 

  162. Florin RE, Wall LA (1961) J Res Nat Bur Stand 65A:375

    CAS  Google Scholar 

  163. Yoshida T, Florin RE, Wall LA (1965) J Polym Sc, Part A: General Papers 3:1685

    Article  CAS  Google Scholar 

  164. Lyons BJ (March 1984) The Crosslinking of Fluoropolymer with Ionising Radiation. Second Int Conf on Radiation Processing for Plastics and Rubbers, Canterbury, UK

    Google Scholar 

  165. Lyons BJ (1994) Radiat Phys Chem 45:158

    Google Scholar 

  166. Lyons BJ (1997) The Radiation Crosslinking of Fluoropolymers. In: Scheirs J (ed) Modern Fluoroelastomer. Wiley, New York, p 335

    Google Scholar 

  167. Logothetis AL (1999) Polym Int 48:993

    Article  CAS  Google Scholar 

  168. Forsythe JS, Hill DJT, Whittaker AK, Logothetis AL (1999) Polym Int 48:1004

    Article  CAS  Google Scholar 

  169. Forsythe JS, Hill DJT (2000) Prog Polym Sc 25:101; Dargaville TR, George GA, Hill DJJ, Whittaker AK (2003) Prog Polym Sci 28:1355

    Google Scholar 

  170. Chapiro A (1962) (ed) Radiation Chemistry of Polymeric Systems. Wiley, New York

    Google Scholar 

  171. Mandelkern L (1972) Radiat Chem Macromol 1:287

    CAS  Google Scholar 

  172. Florin RE (1972) Radiation Chemistry of Fluorocarbon Polymers. In: Wall LA (ed) Fluoropolymers. Wiley, New York, p 317

    Google Scholar 

  173. Geymer DO (1973) Radiat Chem Macromol 2:3

    CAS  Google Scholar 

  174. Okamoto J (1987) Rad Phys Chem 29:469

    CAS  Google Scholar 

  175. Ivanov VS (1992) Radiation Chemistry of Polymers, New Concepts in Polymer Science. Wiley, New York

    Google Scholar 

  176. Singh A, Silverman J (1992) (ed) Progress in Polymer Processing, Vol. 3: Radiation Processing of Polymers

    Google Scholar 

  177. Gupta B, Scherer GG (1994) Chimia 48:127

    CAS  Google Scholar 

  178. Uyama Y, Kato K, Ikada Y (1998) Adv Polym Sc 137:1

    Article  CAS  Google Scholar 

  179. Zhen ZX (1990) Rad Phys Chem 35:194

    CAS  Google Scholar 

  180. Daudin B, Legrand JF, Macchi F (1991) J Appl Phys 70:4037

    Article  CAS  Google Scholar 

  181. Macchi F, Daudin B, Legrand JF (1990) Nuclear Instruments & Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms B46:324

    Article  CAS  Google Scholar 

  182. Charlesby A (1960) Atomic Rad Polym Vol. I

    Google Scholar 

  183. Henne AL, Pelley RL (1952) J Am Chem Soc 74:1426

    Article  CAS  Google Scholar 

  184. Knight GJ, Wright WW (1982) Polym Deg S4:465

    Article  Google Scholar 

  185. Wlassics I, Giannetti E (1997) Can Patent 2182328

    Google Scholar 

  186. Ogunniyi DS (1990) Elastomerics 122:22

    CAS  Google Scholar 

  187. Harrell JR, Schmiegel WW (1975) US Patent 3859259

    Google Scholar 

  188. Moran AL (1960) US Patent 2951832

    Google Scholar 

  189. Allen CM, Hincklieff IR (1982) Eur Patent 53002

    Google Scholar 

  190. Fogiel AW (1975) J Polym Sc, Polym Symp 53:333

    Article  CAS  Google Scholar 

  191. Honn FJ, Sims WM (1960) US Patent 2965619

    Google Scholar 

  192. Ehrlich GM, Puglia FJ (2002) US Patent 2002122950

    Google Scholar 

  193. Baczek SK, McCain GH, Benezra LL, Covitch MJ (1983) US Patent 4391844

    Google Scholar 

  194. Xu Y (1991) Ferroelectric Materials and their Application. Elsevier, Amsterdam

    Google Scholar 

  195. Yuan EL (1962) US Patent 3025183

    Google Scholar 

  196. Lester PR (1990) Eur Pat 370149

    Google Scholar 

  197. Katsurao T, Horie K, Nagai A, Ishikawa Y (2000) US Patent 6372388

    Google Scholar 

  198. Coulon M, Silvert PY, Irissin-Mangata J, Ameduri B (2002) WO 082571

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Ameduri .

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Taguet, A., Ameduri, B., Boutevin, B. (2005 ). Crosslinking of Vinylidene Fluoride-Containing Fluoropolymers. In: Crosslinking in Materials Science. Advances in Polymer Science, vol 184. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b136245

Download citation

Publish with us

Policies and ethics