Advertisement

Crosslinking of Vinylidene Fluoride-Containing Fluoropolymers

  • A. Taguet
  • B. AmeduriEmail author
  • B. Boutevin
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 184)

Abstract

Fluoropolymers are well-known for their good properties in terms of chemical, thermal and electrical stabilities, inertness to acids, bases, solvents and oils, and high resistance to ageing and oxidation. Polyvinylidene fluoride (PVDF) is useful as a homopolymer endowed with interesting characteristics. It contains a high crystallinity rate, but is base sensitive. In addition, VDF can be co- or terpolymerized with several fluorinated monomers, rendering them suitable as elastomers and various examples of synthesis of VDF-copolymers are also presented. This review also focusses on binary and tertiary systems containing VDF. Several curing systems for these VDF-containing copolymers have been investigated, especially diamines and their derivatives, aromatic polyhydroxy compounds, peroxides with coagents, such as triallylisocyanurate, radiations, and thiol-ene systems. The best vulcanizate properties are obtained by a two-step process. First, the material is press cured at different times and temperatures, then, it is post cured in air or under nitrogen at higher temperature and time, and under atmospheric pressure. Poly(VDF-co-HFP) copolymers can react with primary, secondary or tertiary monoamines, but they are mainly crosslinked by diamines such as hexamethylene diamine (HMDA), their carbamates (HMDA-C), and derivatives. A mechanism of crosslinking is identified by Infrared and 19F NMR spectroscopies, and was evidenced to proceed in three main steps. First, a VDF unit undergoes a dehydrofluorination in the presence of the diamine, then the Michael addition occurs onto the double bonds to form crosslinking, while HF is eliminated from crosslinks in the presence of HF scavengers. The crosslinking mechanism with bisphenols takes place also in three main steps (dehydrofluorination, then substitution of a fluorine atom by a bisphenol, and elimination of HF). The most efficient crosslinking bisphenol is bisphenol AF . A fluoropolymer crosslinked with peroxide/coagent systems needs to be functionalized or halogenated to insure a free radical attack from peroxide. The peroxide is introduced with a coagent that enhances the crosslinking efficiency, and the most efficient one is triallylisocyanurate (TAIC). The crosslinking mechanism of the peroxide/triallylisocyanurate system proceeds in three main steps. The crosslinking reaction occurs from a macroradical arising from the functional or halogenated polymer which is added onto the three double bonds of the TAIC. A fourth way to crosslink VDF-based fluoropolymers deals with high energy radiation, such as X and γ (60Co or 137Cs)-rays, and charged particles (β-particles and electrons). Three different reactions are possible after irradiation of a PVDF, and the one that leads to crosslinking is the recombination between two macroradicals. The irradiation dose used on the VDF-based copolymer has an influence on the thermal and mechanical properties. Finally, a crosslinking system also used to vulcanizate hydrogenated elastomers concerns a thiol-ene system which requires a mercapto function born by the VDF-based polymer. Crosslinking occurs via a non-conjugated diene. The mechanical properties (tensile strength, elongation at break, hardness, elongation modulus, compression set resistance …) of the three main crosslinking systems of fluoroelastomers are compared. Finally, the main applications of crosslinked VDF-based fluoropolymers are summarized which include tubing in the aircraft building industry, sealing, tube or irregular-profile items of any dimension, films with good adhesion to metallic or rigid surfaces, multilayer insulator systems for electrical conductors, captors, sensors, and detectors, and membranes for electrochemical applications.

Crosslinking VDF-containing copolymers Amines Bisphenols Peroxides/Triallylisocyanurate 

Abbreviations

BTPPC

benzyltriphenylphosphonium chloride

CTFE

chlorotrifluoroethylene

DBU

1,8-diazabicyclo[5-4-0]-undec-7-ene

DETA

diethylene triamine

DMAC

dimethylacetamide

d.o.g.

degree of grafting

DSC

differential scanning calorimetry

DTA

differential thermal analysis

EDA (-C)

ethylene diamine (carbamate)

HBTBP

hexamethylene-N,N′bis(tert-butylperoxycarbamate)

HFP

hexafluoropropene

HMDA

hexamethylene diamine

HMDA-C

hexamethylene diamine carbamate

HPFP

1H-pentafluoropropene

MBTBP

methylene bis-4-cyclohexyl-N,N′(tert-butylperoxycarbamate)

ODR

oscillating disc rheometer

PMVE

perfluoro(methyl vinyl ether)

PVDF

polyvinylidene fluoride

t1/2

half life

TAC

triallylcyanurate

TAIC

triallylisocyanurate

TFE

tetrafluoroethylene

THF

tetrahydrofurane

VDF

vinylidene fluoride

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Montermoso JC (1961) Rubber Chem Techn 34:1521 CrossRefGoogle Scholar
  2. 2.
    Cooper JR (1968) High Polymers 23:273 Google Scholar
  3. 3.
    Schmiegel WW, Logothetis AL (1984) ACS Symp Series, No. 260, Polymers for Fibers and Elastomers 260:159 Google Scholar
  4. 4.
    Anderson RF, Punserson JO (1979) Organofluorine Chemicals and Their Industrial Applications, Banks RE (ed). Horwood, Chichester Google Scholar
  5. 5.
    Abu-Isa IA, Trexler HE (1985) Rubber Chem Techn 58:326 CrossRefGoogle Scholar
  6. 6.
    Frapin B (1987) Revue Generale des Caoutchoucs & Plastiques 672:125 Google Scholar
  7. 7.
    Wall L (1972) Fluoropolymers. Wiley, New York Google Scholar
  8. 8.
    Banks RE, Smart BE, Tatlow JC (1994) (eds) Organofluorine Chemistry: Principles and Commercial Applications. Wiley, New York Google Scholar
  9. 9.
    Scheirs J (1997) Modern Fluoropolymers. Wiley, New York Google Scholar
  10. 10.
    Ajroldi G (1997) Chimica e l'Industria 79:483 Google Scholar
  11. 11.
    Hougham G, Cassidy PE, Johns K, Davidson T (1999) (eds) Fluoropolymers 2: Properties. Kluwer Academic/Plenum Publishers, New York Google Scholar
  12. 12.
    Johns K, Stead G (2000) J Fluorine Chem 104:5 CrossRefGoogle Scholar
  13. 13.
    Imae T (2003) Current Opinion in Colloid & Interface Science 8:307 CrossRefGoogle Scholar
  14. 14.
    Ameduri B, Boutevin B (2004) Well-Architectured Fluoropolymers: Synthesis, Properties and Applications. Elsevier, Amsterdam Google Scholar
  15. 15.
    Schmiegel WW (2004) Kaut Gum Kunst 57:313 Google Scholar
  16. 16.
    Ogunniyi DS (1999) Prog Rubber Plastics Techn 15:95 Google Scholar
  17. 17.
    Pruett RL, Barr JT, Rapp KE, Bahner CT, Gibson JD, Lafferty RH (1950) J Am Chem Soc 72:3646 CrossRefGoogle Scholar
  18. 18.
    Moran AL, Kane RP, Smith JF (1959) J Ind Eng Chem 51:831 CrossRefGoogle Scholar
  19. 19.
    Smith JF (1960) Rubber World 142:102 Google Scholar
  20. 20.
    Paciorek KL, Mitchell LC, Lenk CT (1960) J Polym Sc 45:405 CrossRefGoogle Scholar
  21. 21.
    Smith JF, Perkins GT (1961) Rubber and Plastics Age 42:59 Google Scholar
  22. 22.
    Paciorek KL, Merkl BA, Lenk CT (1962) J Org Chem 27:266 CrossRefGoogle Scholar
  23. 23.
    Paciorek KL, Lajiness WG, Lenk CT (1962) J Polym Sc 60:141 CrossRefGoogle Scholar
  24. 24.
    Thomas DK (1964) J Appl Polym Sc 8:1415 CrossRefGoogle Scholar
  25. 25.
    Thomas DK (1969) GB Patent 1 175 417 Google Scholar
  26. 26.
    Moran AL, Pattison DB (1971) Rubber Age 103:37 Google Scholar
  27. 27.
    Smith TL, Chu WH (1972) J Polym Sc, Polym Phys Ed 10:133 Google Scholar
  28. 28.
    Arnold RG, Barney AL, Thompson DC (1973) Rubber Chem Techn 46:619 CrossRefGoogle Scholar
  29. 29.
    Knight GJ, Wright WW (1973) British Polym J 5:395 CrossRefGoogle Scholar
  30. 30.
    Ogunniyi DS (1988) Rubber Chem Techn 61:735 CrossRefGoogle Scholar
  31. 31.
    Schonhorn H, Luongo JP (1989) J Adh Sc Techn 3:277 CrossRefGoogle Scholar
  32. 32.
    Schmiegel WW (1978) Kaut Gum Kunst 31:137 Google Scholar
  33. 33.
    Schmiegel WW (1979) Angew Makromol Chem 76/77:39 Google Scholar
  34. 34.
    Pianca M, Bonardelli P, Tato M, Cirillo G, Moggi G (1987) Polymer 28:224 CrossRefGoogle Scholar
  35. 35.
    Logothetis AL (1989) Progress in Polymer Science 14:251 CrossRefGoogle Scholar
  36. 36.
    Carlson DP, Schmiegel WW (1989) Eur Patent 333062 Google Scholar
  37. 37.
    Arcella V, Brinati G, Apostolo M (April 1997) Chem Ind p 490 Google Scholar
  38. 38.
    Schmiegel WW (2002) US Patent 2003065132 Google Scholar
  39. 39.
    Kojima G, Wachi H (1978) Rubber Chem Techn 51:940 CrossRefGoogle Scholar
  40. 40.
    Finlay JB, Hallenbeck A, MacLachlan JD (1978) J Elast Plast 10:3 Google Scholar
  41. 41.
    Apotheker D, Krusic PJ (1980) US Patent 4214060 Google Scholar
  42. 42.
    Ameduri BM, Armand M, Boucher M, Manseri A (2001) PCT WO2001096268 Google Scholar
  43. 43.
    Coggio WD, Scott PJ, Hintzer K, Hare ED (2004) US Patent 2004014900 Google Scholar
  44. 44.
    Ameduri B, Boutevin B, Kostov GK, Petrova P (1999) Designed Monomers and Polymers 2:267 CrossRefGoogle Scholar
  45. 45.
    Clark DT, Brennan WJ (1988) J El Spectr Rel Phen 47:93 CrossRefGoogle Scholar
  46. 46.
    Suther JL, Laghari JR (1991) J Mat Sc Let 10:786 CrossRefGoogle Scholar
  47. 47.
    Betz N, Petersohn E, Le Moel A (1996) Nuclear Instruments & Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms 116:207 CrossRefGoogle Scholar
  48. 48.
    Banik I, Bhowmick AK (2000) Rad Phys Chem 58:293 CrossRefGoogle Scholar
  49. 49.
    Banik I, Bhowmick AK (2000) J Mat Sc 35:3579 CrossRefGoogle Scholar
  50. 50.
    Ameduri B, Boutevin B, Kostov G (2001) Prog Polym Sc 26:105 CrossRefGoogle Scholar
  51. 51.
    Nasef MM, Dahlan KZM (2003) Nuclear Instruments & Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms 201:604 CrossRefGoogle Scholar
  52. 52.
    Soresi B, Quartarone E, Mustarelli P, Magistris A, Chiodelli G (2004) Solid State Ionics 166:383 CrossRefGoogle Scholar
  53. 53.
    Lee WA, Rutherford RA (1975) The glass transition temperatures of polymers. In: Brandrup J, Immergut EH (eds) Polymer Handbook. Wiley-Interscience, New York Google Scholar
  54. 54.
    Seilers DA (1997) PVDF in the chemical processing industry. In: Scheirs J (ed) Modern Fluoropolymers. Wiley, New York, p 487 Google Scholar
  55. 55.
    Smith S (1982) Fluorelastomers. In: Banks RE (ed) Preparation, Properties, and Industrial Applications of Organofluorine Compounds. Ellis Harwood, Chichester, p 235 Google Scholar
  56. 56.
    England DC, Uschold RE, Starkweather H, Pariser R (1983) Proc of the Robert A. Welch Foundation Conf on Chemical Research, Houston, Texas, vol. 26, p 192 Google Scholar
  57. 57.
    Uschold RE (1985) Polym J 17:253 CrossRefGoogle Scholar
  58. 58.
    Logothetis AL (1994) Fluoroelastomers. In: Banks RE, Tatlow JC (eds) Organofluorine Chemistry: Principles and Commercial Applications. Wiley, New York, p 373 Google Scholar
  59. 59.
    Bowers S (1997) Proc of Fluoroelastomers. In: Scheirs J (ed) Modern Fluoropolymers. Wiley, New York, p 115 Google Scholar
  60. 60.
    Tournut C (1994) Macromol Symp 82:99; Tournut C (1997) Thermoplastic copolymers of vinylidene fluoride, Modern Fluoropolymers. In: Scheirs J (ed) Modern Fluoropolymers. Wiley, New York, p 577 Google Scholar
  61. 61.
    Lynn MM, Worm AT (1987) Encycl Polym Sci Eng 7:257 Google Scholar
  62. 62.
    Cook D, Lynn M (1990) Rapra Review Reports 3:32/1 Google Scholar
  63. 63.
    Arcella V, Ferro R (1997) Fluorocarbon elastomers. In: Scheirs J (ed) Modern Fluoropolymers. Wiley, New York, p 71 Google Scholar
  64. 64.
    Van Cleeff A (1997) Fluoroelastomers. In: Scheirs J (ed) Modern Fluoropolymers. Wiley, New York, p 597 Google Scholar
  65. 65.
    Logothetis AL (1997) Perfluoroelastomers and their Functionalization. Macromolecular Design of Polymeric Materials. M. Dekker Inc., New York, p 447 Google Scholar
  66. 66.
    Ameduri B, Boutevin B (2005) J Fluorine Chem 126:221 CrossRefGoogle Scholar
  67. 67.
    Schmiegel WW (2003) Proceedings of ACS Rubber Technology Conference, Cleveland, USA, Oct 14–17 Google Scholar
  68. 68.
    Sorokin AD, Volkova EV, Naberezhnykh RA (1972) Radiat Khim 2:295 Google Scholar
  69. 69.
    Baradie B, Shoichet MS (2002) Macromolecules 35:3569 CrossRefGoogle Scholar
  70. 70.
    Guiot J (2003) PhD Thesis, University of Montpellier Google Scholar
  71. 71.
    Souzy R, Ameduri B, Boutevin B (2004) Macromol Chem Phys 205:476 CrossRefGoogle Scholar
  72. 72.
    Sianesi D, Caporiccio G (1968) J Polym Sc, Part A1: Polym Chem 6:335 CrossRefGoogle Scholar
  73. 73.
    Caporiccio G, Sianesi D (1970) Chimica e l'Industria 52:37 Google Scholar
  74. 74.
    Ameduri B, Bauduin G (2003) J Polym Sc, Part A: Polym Chem 41:3109 Google Scholar
  75. 75.
    Yagi T, Tatemoto M (1979) Polym J 11:429 CrossRefGoogle Scholar
  76. 76.
    Usmanov KU, Yul'chibaev AA, Mukhamadaliev N, Sarros TK (1975) Izvestiya Vysshikh Uchebnykh Zavedenii, Khimiya i Khimicheskaya Tekhnologiya (Chem. Abstr. 83, 28687) 18:464 Google Scholar
  77. 77.
    Otazaghine B, Ameduri B (2000) The 16th Int Symp in Fluorine Chemistry. Durham, United Kingdom and Otazaghine B, Sauguet L, Ameduri B (2005) J Fluorine Chem (in press) Google Scholar
  78. 78.
    Moggi G, Bonardelli P, Bart JCJ (1984) J Polym Sc, Polym Phys Ed 22:357 Google Scholar
  79. 79.
    Dohany RE, Dukert AA, Preston SS (1989) Encycl Polym Sci Technol 17:532 Google Scholar
  80. 80.
    Bonardelli P, Moggi G, Turturro A (1986) Polymer 27:905 CrossRefGoogle Scholar
  81. 81.
    Naberezhnykh RA, Sorokin AD, Volkova EV, Fokin AV (1974) Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya:232 Google Scholar
  82. 82.
    Moggi G, Bonardelli P, Russo S (1983) Con Ital Sci Macromol 6th 2:405 Google Scholar
  83. 83.
    Gelin MP, Ameduri BJ (2005) J Fluorine Chem 126:577 CrossRefGoogle Scholar
  84. 84.
    Otazaghine B, Sauguet L, Ameduri B (in press) Eur Polym J Google Scholar
  85. 85.
    Ameduri BM, Manseri A, Boucher M (2002) PCT WO2002050142 Google Scholar
  86. 86.
    Guiot J, Ameduri B, Boutevin B (2002) J Polym Sc, Part A: Polym Chem 40:3634 Google Scholar
  87. 87.
    a) Sauguet L, Guiot J, Neouze MA, Ameduri B, Boutevin B (2005) J Polym Sc Polym Chem 43:917; b) Coggio W. Proceedings of “Fluoropolymers 2004” Conference, Savannyh, Ga, USA, October 7–9 Google Scholar
  88. 88.
    Ameduri B, Bauduin G, Boutevin B, Kostov G, Petrova P (1999) Macromolecules 32:4544 CrossRefGoogle Scholar
  89. 89.
    Souzy R, Guiot J, Ameduri B, Boutevin B, Paleta O (2003) Macromolecules 36:9390 CrossRefGoogle Scholar
  90. 90.
    Khodzhaev SG, Yusupbekova FZ, Yul'chibaev AA (1981) Sbornik Nauchnykh Trudov. Tashkentskii Gosudarstvennyi Universitet im. V. I. Lenina (Chem. Abstr. 97, 163545) 667:34 Google Scholar
  91. 91.
    Guiot J, Ameduri B, Boutevin B, Lannuzel T (2003) Eur Polym J 39:887 CrossRefGoogle Scholar
  92. 92.
    Souzy R, Ameduri B, Boutevin B (2004) J Polym Sc, Part A: Polym Chem 42:5077 Google Scholar
  93. 93.
    Souzy R, Ameduri B, Boutevin B, Capron P, Gebel G (2005) Fuel Cell (in press) Google Scholar
  94. 94.
    Lannuzel T, Ameduri B, Guiot J, Boutevin B (2004) French Patent 20042852316 Google Scholar
  95. 95.
    Dittman AL, Passino HJ, Wrightson JM (1954) US Patent 2689241 Google Scholar
  96. 96.
    Dixon S, Rexford DR, Rugg JS (1957) J Indus Eng Chem 49:1687 CrossRefGoogle Scholar
  97. 97.
    Rugg JS, Stevenson AC, Rexford DS (1957) Rubber World 82:102 Google Scholar
  98. 98.
    Pailthorp JR, Schroeder HE (1961) US Patent 2968649 Google Scholar
  99. 99.
    Rexford DR (1962) US Patent 3051677 Google Scholar
  100. 100.
    Conroy ME, Honn FJ, Robb LE, Wolf DR (1955) Rubber Age 76:543 Google Scholar
  101. 101.
    Griffis CB, Montermoso JC (1955) Rubber Age 77:559 Google Scholar
  102. 102.
    Jackson WW, Hale D (1955) Rubber Age 77:865 Google Scholar
  103. 103.
    Ameduri B, Boutevin B, Armand M, Boucher M (2001) WO 049758 Google Scholar
  104. 104.
    Worm AT, Vladimirovich N, Volkova MA (2001) US Patent 6294627 Google Scholar
  105. 105.
    a) Bach D, Van Gool G, Steffens J (2003) Proceedings of “International Rubber Technology Conference 2003”, Cleveland, OH, Oct. 14-17, and b) Dyneon Fluoroelastomer LTFE 6400X (2003) Technical Information brochure Google Scholar
  106. 106.
    Sianesi D, Bernardi C, Diotalleri G (1967) US Patent 3333106 Google Scholar
  107. 107.
    Migmierina A, Ceccato G (1969) 4th Int Sun Rubber Symp 2:65 Google Scholar
  108. 108.
    Ogunniyi DS (1989) Prog Rubber Plast Techn 5:16 Google Scholar
  109. 109.
    Schmiegel WW (2000) US Patent 2000011072 Google Scholar
  110. 110.
    Barney AL, Kalb GH, Khan AA (1971) Rubber Chem Techn 44:660 CrossRefGoogle Scholar
  111. 111.
    Smith JF (1959) Rubber World 140:263 Google Scholar
  112. 112.
    Hepburn C, Ogunniyi DS (1985) Proc Int Rubber Conference. Kyoto, Japan Google Scholar
  113. 113.
    Ogunniyi DS, Hepburn C (1986) Plastics and Rubber Processing and Applications 6:3 Google Scholar
  114. 114.
    Smith J (1961) J Appl Polym Sc 5:460 CrossRefGoogle Scholar
  115. 115.
    Albin LD (1982) Rubber Chem Techn 55:902 CrossRefGoogle Scholar
  116. 116.
    Wright WW (1974) British Polym J 6:147 CrossRefGoogle Scholar
  117. 117.
    Bryan CJ (1977) Rubber Chem Techn 50:83 CrossRefGoogle Scholar
  118. 118.
    Kalfayan SH, Silver RH, Liu SS (1976) Rubber Chem Techn 49:1001 CrossRefGoogle Scholar
  119. 119.
    Ogunniyi DS, Hepburn C (1995) Iranian J Polymer Science & Technology (English Edition) 4:242 Google Scholar
  120. 120.
    Barton JM (1978) British Polym J 10:151 CrossRefGoogle Scholar
  121. 121.
    Bentley FE (1957) PhD Thesis, University of Florida Google Scholar
  122. 122.
    Mullins L (1959) J Appl Polym Sc 2:1 CrossRefGoogle Scholar
  123. 123.
    Smith TL (1967) J Polym Sc, Polym Symp 841 Google Scholar
  124. 124.
    Van der Hoff BME, Buckler EJ (1967) J Macromol Sci, Part A 1:747 CrossRefGoogle Scholar
  125. 125.
    Moran AL, Kane RP, Smith JF (1959) J Chem Eng Data 4:276 CrossRefGoogle Scholar
  126. 126.
    O'Brien EL, Beringer FM, Mesrobian RB (1957) J Am Chem Soc 79:6238 CrossRefGoogle Scholar
  127. 127.
    Pedersen CJ (1958) J Org Chem 23:255 CrossRefGoogle Scholar
  128. 128.
    Pedersen CJ (1958) J Org Chem 23:252 CrossRefGoogle Scholar
  129. 129.
    O'Brien EL, Beringer FM, Mesrobian RB (1959) J Am Chem Soc 81:1506 CrossRefGoogle Scholar
  130. 130.
    Spain RG (1958) Division of Rubber Chemistry, Am Chem Soc Meeting. Cincinnati Google Scholar
  131. 131.
    Flisi U, Giunchi G, Geri S (1976) Kaut Gum Kunst 29:118 Google Scholar
  132. 132.
    Schmiegel WW (1985) US Patent 4496682 Google Scholar
  133. 133.
    Taguet A, Ameduri B, Boutevin B submitted in J Polym Sci, Part A: Polym Chem Google Scholar
  134. 134.
    Apotheker D, Finlay JB, Krusic PJ, Logothetis AL (1982) Rubber Chem Techn 55:1004 CrossRefGoogle Scholar
  135. 135.
    Schmiegel WW (1975) US Patent 3872065 Google Scholar
  136. 136.
    Schmiegel WW (1975) US Patent 1413837 Google Scholar
  137. 137.
    Schmiegel WW (1984) US Patent 127318 Google Scholar
  138. 138.
    Hung MH, Schmiegel WW (2001) US Patent 2001081464 Google Scholar
  139. 139.
    Arcella V, Albano M, Barchiesi E, Brinati G, Chiodini G (1993) Rubber World 207:18 Google Scholar
  140. 140.
    Braden M, Fletcher WP (1955) Transactions, Institution of the Rubber Industry 31:155 Google Scholar
  141. 141.
    Udagawa R (2001) Eur Patent 2001081391 Google Scholar
  142. 142.
    Staccione A, Albano M (2003) Eur Patent 1347012 Google Scholar
  143. 143.
    Davis RA, Tigner RG (1970) US Patent 3505416 Google Scholar
  144. 144.
    Kryukova AB, Demidova NM, Khmelevskaya VM, Sankina GA, Dontsov AA, Chulyukina AV, Kosteltsev VV, Zavyalova AD, Savchenkova GL, et al. (1993) Russ Patent 1815268 Google Scholar
  145. 145.
    Shimizu T, Enokida T, Naraki A, Tatsu H (2000) Jpn Patent 2000230096 Google Scholar
  146. 146.
    Saito M, Kamya H, Miwa T, Hirai H (1994) Jpn Patent 06306245 Google Scholar
  147. 147.
    Bowers S, Schmiegel WW (2000) PCT WO2000011050 Google Scholar
  148. 148.
    Schmiegel WW (2003) US Patent 2003208003 Google Scholar
  149. 149.
    Banks RE, Birchall JM, Haszeldine RN, Nicholson WJ (1982) J Fluorine Chem 20:133 CrossRefGoogle Scholar
  150. 150.
    Gafurov AK, Isamukhamedov SI, Yul'chibaev AA, Usmanov KU (1978) Uzbekskii Khimicheskii Zhurnal:25 Google Scholar
  151. 151.
    Funaki A, Kato K, Takakura T, Myake H (1994) Jpn Patent 06306196 Google Scholar
  152. 152.
    Tamura M, Miyake H (1998) Jpn Patent 10158376 Google Scholar
  153. 153.
    Tatemoto M, Nagakawa T (1979) US Patent 4158678 Google Scholar
  154. 154.
    Tatemoto M (1979) IX Int Symp on Fluorine Chemistry, Avignon, France Google Scholar
  155. 155.
    Tatemoto M, Suzuki T, Tomota M, Furukawa Y, Ueta Y (1981) US patent 4243770 Google Scholar
  156. 156.
    Tatemoto M, Morita S (1982) US Patent 4361678 Google Scholar
  157. 157.
    Oka M, Tatemoto M (1984) Contemp Top Polym Sc 4:763 Google Scholar
  158. 158.
    Ishiwari K, Sakakura A, Yuhara S, Yagi T, Tatemoto M (1985) Int Rubber Conference, Kyoto, Japan Google Scholar
  159. 159.
    Erdos P, Balazs G, Doszlop S, Varga J (1985) Periodica Polytechnica, Chemical Engineering 29:165 Google Scholar
  160. 160.
    Ogunniyi DS, Hepburn C (2003) Iranian Polymer J 12:367 Google Scholar
  161. 161.
    Bristow GM (1976) Natural Rubber Technology 7 3:61 Google Scholar
  162. 162.
    Florin RE, Wall LA (1961) J Res Nat Bur Stand 65A:375 Google Scholar
  163. 163.
    Yoshida T, Florin RE, Wall LA (1965) J Polym Sc, Part A: General Papers 3:1685 CrossRefGoogle Scholar
  164. 164.
    Lyons BJ (March 1984) The Crosslinking of Fluoropolymer with Ionising Radiation. Second Int Conf on Radiation Processing for Plastics and Rubbers, Canterbury, UK Google Scholar
  165. 165.
    Lyons BJ (1994) Radiat Phys Chem 45:158 Google Scholar
  166. 166.
    Lyons BJ (1997) The Radiation Crosslinking of Fluoropolymers. In: Scheirs J (ed) Modern Fluoroelastomer. Wiley, New York, p 335 Google Scholar
  167. 167.
    Logothetis AL (1999) Polym Int 48:993 CrossRefGoogle Scholar
  168. 168.
    Forsythe JS, Hill DJT, Whittaker AK, Logothetis AL (1999) Polym Int 48:1004 CrossRefGoogle Scholar
  169. 169.
    Forsythe JS, Hill DJT (2000) Prog Polym Sc 25:101; Dargaville TR, George GA, Hill DJJ, Whittaker AK (2003) Prog Polym Sci 28:1355 Google Scholar
  170. 170.
    Chapiro A (1962) (ed) Radiation Chemistry of Polymeric Systems. Wiley, New York Google Scholar
  171. 171.
    Mandelkern L (1972) Radiat Chem Macromol 1:287 Google Scholar
  172. 172.
    Florin RE (1972) Radiation Chemistry of Fluorocarbon Polymers. In: Wall LA (ed) Fluoropolymers. Wiley, New York, p 317 Google Scholar
  173. 173.
    Geymer DO (1973) Radiat Chem Macromol 2:3 Google Scholar
  174. 174.
    Okamoto J (1987) Rad Phys Chem 29:469 Google Scholar
  175. 175.
    Ivanov VS (1992) Radiation Chemistry of Polymers, New Concepts in Polymer Science. Wiley, New York Google Scholar
  176. 176.
    Singh A, Silverman J (1992) (ed) Progress in Polymer Processing, Vol. 3: Radiation Processing of Polymers Google Scholar
  177. 177.
    Gupta B, Scherer GG (1994) Chimia 48:127 Google Scholar
  178. 178.
    Uyama Y, Kato K, Ikada Y (1998) Adv Polym Sc 137:1 CrossRefGoogle Scholar
  179. 179.
    Zhen ZX (1990) Rad Phys Chem 35:194 Google Scholar
  180. 180.
    Daudin B, Legrand JF, Macchi F (1991) J Appl Phys 70:4037 CrossRefGoogle Scholar
  181. 181.
    Macchi F, Daudin B, Legrand JF (1990) Nuclear Instruments & Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms B46:324 CrossRefGoogle Scholar
  182. 182.
    Charlesby A (1960) Atomic Rad Polym Vol. I Google Scholar
  183. 183.
    Henne AL, Pelley RL (1952) J Am Chem Soc 74:1426 CrossRefGoogle Scholar
  184. 184.
    Knight GJ, Wright WW (1982) Polym Deg S4:465 CrossRefGoogle Scholar
  185. 185.
    Wlassics I, Giannetti E (1997) Can Patent 2182328 Google Scholar
  186. 186.
    Ogunniyi DS (1990) Elastomerics 122:22 Google Scholar
  187. 187.
    Harrell JR, Schmiegel WW (1975) US Patent 3859259 Google Scholar
  188. 188.
    Moran AL (1960) US Patent 2951832 Google Scholar
  189. 189.
    Allen CM, Hincklieff IR (1982) Eur Patent 53002 Google Scholar
  190. 190.
    Fogiel AW (1975) J Polym Sc, Polym Symp 53:333 CrossRefGoogle Scholar
  191. 191.
    Honn FJ, Sims WM (1960) US Patent 2965619 Google Scholar
  192. 192.
    Ehrlich GM, Puglia FJ (2002) US Patent 2002122950 Google Scholar
  193. 193.
    Baczek SK, McCain GH, Benezra LL, Covitch MJ (1983) US Patent 4391844 Google Scholar
  194. 194.
    Xu Y (1991) Ferroelectric Materials and their Application. Elsevier, Amsterdam Google Scholar
  195. 195.
    Yuan EL (1962) US Patent 3025183 Google Scholar
  196. 196.
    Lester PR (1990) Eur Pat 370149 Google Scholar
  197. 197.
    Katsurao T, Horie K, Nagai A, Ishikawa Y (2000) US Patent 6372388 Google Scholar
  198. 198.
    Coulon M, Silvert PY, Irissin-Mangata J, Ameduri B (2002) WO 082571 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2005

Authors and Affiliations

  1. 1.Laboratoire de Chimie MacromoléculaireEcole Nationale Supérieure de Chimie de Montpellier, Unité Mixte de Recherche 5076Montpellier Cedex5France

Personalised recommendations