Advertisement

Molecules as Wires: Molecule-Assisted Movement of Charge and Energy

  • Emily A. Weiss
  • Michael R. WasielewskiEmail author
  • Mark A. Ratner
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 257)

Abstract

In this chapter, we explore experimental and theoretical aspects of molecular wire-like charge transport from the mechanistic point of view. We discuss competition between coherent superexchange and sequential mechanisms of transport through donor-bridge-acceptor systems, where the donor and acceptor are either molecules or metal/semiconductor contacts. The focus is on the two major determinants of mechanism: electronic coupling and energy level matching. Some methods of calculating conductance are outlined, and the relationship between conductance in a metal/molecule/metal junction and electron transfer, where donor and acceptor have relatively discrete electronic energy levels is explored. Finally, we give several examples of chemical systems that have displayed wire-like behavior and discuss their characterization.

Molecular wire Superexchange Electron transfer Energy Transfer Electronic coupling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Emberly EG, Kirczenow G (1998) Phys Rev B 58:10911 Google Scholar
  2. 2.
    Nitzan A, Ratner MA (2003) Science 300:1384 Google Scholar
  3. 3.
    Davis WB, Svec WA, Ratner MA, Wasielewski MR (1998) Nature 396:60 Google Scholar
  4. 4.
    Schatz GC, Ratner MA (2002) Quantum mechanics in chemistry, 2 edn. Dover Publications, Mineola, New York Google Scholar
  5. 5.
    Linderberg J, Ohrn Y (2004) Propagators in quantum chemistry. Wiley, Hoboken, New Jersey Google Scholar
  6. 6.
    Pople JA, Beveridge DL (1970) Approximate molecular orbital theory. McGraw-Hill, New York Google Scholar
  7. 7.
    Jortner J (1976) J Chem Phys 64:4860 Google Scholar
  8. 8.
    Marcus RA, Sutin N (1986) Biochim Biophys Acta 811:265 Google Scholar
  9. 9.
    Kramers HA (1934) Physica 1:182 Google Scholar
  10. 10.
    Anderson PW (1950) Phys Rev 79:350 Google Scholar
  11. 11.
    Anderson PW (1959) Phys Rev 115:2 Google Scholar
  12. 12.
    Nitzan A (2001) Ann Rev Phys Chem 52:681 Google Scholar
  13. 13.
    Berlin YA, Burin AL, Ratner MA (2002) Chem Phys 275:61 Google Scholar
  14. 14.
    Grozema FC, Berlin YA, Siebbeles LDA (2000) J Am Chem Soc 122:10903 Google Scholar
  15. 15.
    Finklea HO, Hanshewm DD (1992) J Am Chem Soc 114:3173 Google Scholar
  16. 16.
    Slowiski K, Chamberlain RV, Miller CJ, Majda M (1997) J Am Chem Soc 119:11910 Google Scholar
  17. 17.
    Chidsey CED (1991) Science 251:919 Google Scholar
  18. 18.
    Leland BA, Joran AD, Felker PM, Hopfield JJ, Zewail AH, Dervan PB (1985) J Phys Chem 89:5571 Google Scholar
  19. 19.
    Oevering H, Paddon-Row MN, Heppener M, Oliver AM, Costaris E, Verhoeven JW, Hush NS (1987) J Am Chem Soc 109:3258 Google Scholar
  20. 20.
    Paulson B, Pramod K, Eaton P, Closs GL, Miller JR (1993) J Phys Chem 97:13402 Google Scholar
  21. 21.
    Closs GL, Miller JR (1988) Science 240:440 Google Scholar
  22. 22.
    Klan P, Wagner PJ (1998) J Am Chem Soc 120:2198 Google Scholar
  23. 23.
    Paddon-Row MN (1994) Acc Chem Res 27:18 Google Scholar
  24. 24.
    Osuka A, Maruyama K, Mataga N, Asahi T, Yamazaki I, Tamai N (1990) J Am Chem Soc 112:4958 Google Scholar
  25. 25.
    Helms A, Heiler D, McClendon G (1992) J Am Chem Soc 114:6227 Google Scholar
  26. 26.
    Kim Y, Lieber CM (1989) Inorg Chem 28:3990 Google Scholar
  27. 27.
    Weiss EA, Ahrens MJ, Sinks LE, Gusev AV, Ratner MA, Wasielewski MR (2004) J Am Chem Soc 126:5577 Google Scholar
  28. 28.
    Helms A, Heiler D, McClendon G (1991) J Am Chem Soc 113:4325 Google Scholar
  29. 29.
    Osuka A, Satoshi N, Maruyama K, Mataga N, Asahi T, Yamazaki I, Nishimura Y, Onho T, Nozaki K (1993) J Am Chem Soc 115:4577 Google Scholar
  30. 30.
    Barigelletti F, Flamigni L, Balzani V, Collin J-P, Sauvage J-P, Sour A, Constable EC, Cargill Thompson AMW (1994) J Am Chem Soc 116:7692 Google Scholar
  31. 31.
    Barigelletti F, Flamigni L, Guardgli M, Juris A, Beley M, Chodorowsky-Kimmes S, Collin J-P, Sauvage J-P (1996) Inorg Chem 35:136 Google Scholar
  32. 32.
    Creager S, Yu CJ, Bamdad C, O’Connor S, MacLean T, Lam E, Chong Y, Olsen GT, Luo J, Gozin M, Kayyem JF (1999) J Am Chem Soc 121:1059 Google Scholar
  33. 33.
    Sachs SB, Dudek SP, Hsung RP, Sita LR, Smalley JF, Newton MD, Feldberg SW, Chidsey CED (1997) J Am Chem Soc 119:10563 Google Scholar
  34. 34.
    Sikes HD, Smalley JF, Dudek SP, Cook AR, Newton MD, Chidsey CED, Feldberg SW (2001) Science 291:1519 Google Scholar
  35. 35.
    Benniston AC, Goulle V, Harriman A, Lehn J-M, Marczinke B (1994) J Phys Chem 98:7798 Google Scholar
  36. 36.
    Osuka A, Tanabe N, Kawabata S, Speiser IS (1996) Chem Rev 96:195 Google Scholar
  37. 37.
    Sachs SB, Dudek SP, Hsung RP, Sita LR, Smalley JF, New MD, Feldberg SW, Chidsey CED (1997) J Am Chem Soc 119:10563 Google Scholar
  38. 38.
    Marczinke B (1994) J Phys Chem 98:7798 Google Scholar
  39. 39.
    Osuka A, Tanabe N, Kawabata S, Grosshenny IV, Harriman A, Ziessel R (1995) Angew Chem, Int Ed Eng 34:1100 Google Scholar
  40. 40.
    Grosshenny IV, Harriman A, Ziessel R (1995) Angew Chem, Int Ed Eng 34:2705 Google Scholar
  41. 41.
    Marcus RA (1987) Chem Phys Lett 133:471 Google Scholar
  42. 42.
    Ogrodnik A, Michel-Beyerle M-E (1989) Z Naturforsch 44a:763 Google Scholar
  43. 43.
    Kilsa K, Kajanus J, Macpherson AN, Martensson J, Albinsson B (2001) J Am Chem Soc 123:3069 Google Scholar
  44. 44.
    Lukas AS, Bushard PJ, Wasielewski MR (2002) J Phys Chem A 106:2074 Google Scholar
  45. 45.
    Marcus RA (1965) J Chem Phys 43:679 Google Scholar
  46. 46.
    Jortner J (1976) J Phys Chem 64:4860 Google Scholar
  47. 47.
    McConnell HM (1961) J Chem Phys 35:508 Google Scholar
  48. 48.
    Closs GL, Piotrowiak PJ, MacInnis JM, Fleming GR (1988) J Am Chem Soc 110:2652 Google Scholar
  49. 49.
    Roest MR, Oliver AM, Paddon-Row MN, Verhoeven JW (1997) J Phys Chem A 101:4867 Google Scholar
  50. 50.
    Paddon-Row MN, Oliver AM, Warman JM, Smit KJ, Haas MP, Oevering H, Verhoeven JW (1988) J Phys Chem 92:6958 Google Scholar
  51. 51.
    Lopez-Castillo J-M, Filali-Mouhim A, Jay-Gerin J-P (1993) J Phys Chem 97:9266 Google Scholar
  52. 52.
    Liang C, Newton MD (1992) J Phys Chem 96:2855 Google Scholar
  53. 53.
    Newton MD (2000) Int J Quant Chem 77:255 Google Scholar
  54. 54.
    Cave MD, Newton RJ(1997) In: Ratner MA, Jortner J (eds) Molecular electronics. Dekker, New York, pp 73-118 Google Scholar
  55. 55.
    Jortner J, Bixon M, Langenbacher T, Michel-Beyerle ME (1998) Proc Natl Acad Sci USA 95:12759 Google Scholar
  56. 56.
    Bixon M, Giese B, Wessely S, Langenbacher T, Michel-Beyerle ME, Jortner J (1999) Proc Natl Acad Sci USA 96:11713 Google Scholar
  57. 57.
    Davis WB, Wasielewski MR, Ratner MA, Mujica V, Nitzan A (1997) J Phys Chem A 101:6158 Google Scholar
  58. 58.
    Kharkats YI, Ulstrup J (1991) Chem Phys Lett 182:81 Google Scholar
  59. 59.
    Skourtis SS, Mukamel S (1995) Chem Phys 197:367 Google Scholar
  60. 60.
    Felts AK, Pollard WT, Friesner RA (1995) J Phys Chem 99:2929 Google Scholar
  61. 61.
    Tang J (1994) Chem Phys 189:427 Google Scholar
  62. 62.
    Reed MA (1992) Nanostructured systems. In: Reed MA (ed) Semiconductors and semimetals, Vol 35. Academic, Boston pp 1–7 Google Scholar
  63. 63.
    Nitzan A, Jortner J, Wilkie J, Burin AL, Ratner MA (2000) J Phys Chem B 104:5661 Google Scholar
  64. 64.
    Galperin M, Ratner MA, Nitzan A (2004) Nano Lett 4:1605 Google Scholar
  65. 65.
    Troisi A, Ratner MA (2004) Nano Lett 4:591 Google Scholar
  66. 66.
    Wang W, Lee T, Reed MA (2003) Physica E 19:117 Google Scholar
  67. 67.
    Kushmerick JG, ALazorcik J, Patterson CH, Shashidhar R, Seferos DS, Bazan GC (2004) Nano Lett 4:639 Google Scholar
  68. 68.
    Selzer Y, Cabassi MA, Mayer TS (2004) Nanotechnology 15:S483 Google Scholar
  69. 69.
    Cave RJ, Newton MD (1996) Chem Phys Lett 249:15 Google Scholar
  70. 70.
    Creutz, Newton MD, Sutin N (1994) Photochem Photobiol A: Chem 82:47 Google Scholar
  71. 71.
    Kumar K, Kurnikov IV, Beratan DN, Waldeck DH, Zimmt MB (1998) J Phys Chem A 102:5529 Google Scholar
  72. 72.
    Stuchebrukov, Marcus RA (1995) J Phys Chem 99:7581 Google Scholar
  73. 73.
    Golub GH, Van Loan CF (1989) Matrix computations. Johns Hopkins University Press, Baltimore Google Scholar
  74. 74.
    Flannery BP, Teukolsky SA, Vetterlink WT (1988) Numerical recipes. Cambridge University Press, Cambridge, UK Google Scholar
  75. 75.
    Stuchebrukov AA (1994) Chem Phys Lett 225:55 Google Scholar
  76. 76.
    Voityuk AA, Roesch N, Jortner J (2000) J Phys Chem B 104:9740 Google Scholar
  77. 77.
    Newton MD (1991) Chem Rev 91:767 Google Scholar
  78. 78.
    Troisi A, Orlandi G (2001) Chem Phys Lett 344:509 Google Scholar
  79. 79.
    Yamashita J, Kondo J (1958) Phys Rev 109:730 Google Scholar
  80. 80.
    Miller JS, Epstein AJ, Reiff WM (1988) Acc Chem Res 21:114 Google Scholar
  81. 81.
    Feher, Okamura (1979) In: Chance B, Devault D, Frauenfelder H, Marcus RA, Schreiffer JR, Sutin N (eds) Tunneling conference. Academic, New York, p 729 Google Scholar
  82. 82.
    Goodenough JB (1955) Phys Rev 100:564 Google Scholar
  83. 83.
    Miller JS, Epstein AJ, Reiff WM (1988) Chem Rev 88:201 Google Scholar
  84. 84.
    Franzen S, Shultz DA (2003) J Phys Chem A 107:4292 Google Scholar
  85. 85.
    Awaga K, Maruyama Y (1989) J Chem Phys 91:2743 Google Scholar
  86. 86.
    Kollmar C, Kahn O (1993) Acc Chem Res 26:259 Google Scholar
  87. 87.
    Volk M, Haberle T, Feick R, Ogrodnik A, Michel-Beyerle ME (1993) J Phys Chem 97:9831 Google Scholar
  88. 88.
    Werner H-J, Schulten K, Weller A (1978) Biochim Biophys Acta 502:255 Google Scholar
  89. 89.
    Kobori Y, Sekiguchi S, Akiyama K, Tero-Kubota S (1999) J Phys Chem A 103:5416 Google Scholar
  90. 90.
    Werner U, Kuhnle W, Staerk H (1993) J Phys Chem 97:9280 Google Scholar
  91. 91.
    Weiss EA, Ratner MA, Wasielewski MR (2003) J Phys Chem A 107:3639 Google Scholar
  92. 92.
    Liang C, Newton MD (1993) J Phys Chem 97:3199 Google Scholar
  93. 93.
    Blomgren F, Larsson S, Nelsen S (2001) J Computat Chem 22:655 Google Scholar
  94. 94.
    Troisi A, Ratner MA, Zimmt MB (2004) J Am Chem Soc 126:2215 Google Scholar
  95. 95.
    Weihe H, Guedel HU (1997) J Am Chem Soc 119:6539 Google Scholar
  96. 96.
    Shultz DA, Fico RM, Lee H, Kampf JW, Kirschbaum K, Pinkerton AA, Boyle PD (2003) J Am Chem Soc 125:15426 Google Scholar
  97. 97.
    Goodenough JB (1963) Magnetism and the chemical bond. Interscience, New York Google Scholar
  98. 98.
    Heisenberg W (1926) Z Phys 38:411 Google Scholar
  99. 99.
    Haberkorn R, Michel-Beyerle ME (1979) Biophys J 26:489 Google Scholar
  100. 100.
    Hoff AJ (1986) Photochem Photobiol 43:727 Google Scholar
  101. 101.
    Hoff AJ, Rademaker H, Van Grondelle R, Duysens LNM (1977) Biochim Biophys Acta 460:547 Google Scholar
  102. 102.
    Michel-Beyerle ME, Scheer H, Seidlitz H, Tempus D (1979) FEBS Lett 110:129 Google Scholar
  103. 103.
    Hore PJ, Hunter DA, McKie CD (1987) Chem Phys Lett 137:495 Google Scholar
  104. 104.
    Blankenship RE, Schaafsma TJ, Parson WW (1977) Biochim Biophys Acta 461:297 Google Scholar
  105. 105.
    Schulten K, Staerk H, Weller A, Werner H, Nickel B (1976) Z Phys Chem NF 101:371 Google Scholar
  106. 106.
    Till U, Hore PJ (1997) Mol Phys 90:289 Google Scholar
  107. 107.
    Weller A, Nolting F, Staerk H (1983) Chem Phys Lett 96:24 Google Scholar
  108. 108.
    Weller A, Staerk H, Treichel R (1984) Faraday Discuss, Chem Soc 78:271 Google Scholar
  109. 109.
    Lukas AS, Bushard PJ, Weiss EA, Wasielewski MR (2003) J Am Chem Soc 125:3921 Google Scholar
  110. 110.
    Mori Y, Sakaguchi Y, Hayashi H (2000) J Phys Chem A 104:4896 Google Scholar
  111. 111.
    Steiner UE, Ulrich T (1989) Chem Rev 89:51 Google Scholar
  112. 112.
    Pardo E, Faus J, Julve M, Lloret F, Munoz MC, Cano J, Ottenwaelder X, Journaux Y, Carrasco R, Blay G, Fernandez I, Ruiz-Garcia R (2003) J Am Chem Soc 125:10770 Google Scholar
  113. 113.
    Brunold TC, Gamelin DR, Solomon EI (2000) J Am Chem Soc 122:8511 Google Scholar
  114. 114.
    McCleverty JA, Ward MD (1998) Acc Chem Res 31:842 Google Scholar
  115. 115.
    Closs GL, Forbes MDE, Piotrowiak PJ (1992) J Am Chem Soc 114:3285 Google Scholar
  116. 116.
    Staerk H, Busmann H-G, Kuhnle W, Treichel R (1991) J Phys Chem 95:1906 Google Scholar
  117. 117.
    Shultz DA (2002) Comments Inorg Chem 23:1 Google Scholar
  118. 118.
    Paddon-Row MN, Shephard MJ (2002) J Phys Chem A Google Scholar
  119. 119.
    Weiss EA, Tauber MJ, Ratner MA, Wasielewski MR (in press) J Am Chem Soc Google Scholar
  120. 120.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785 Google Scholar
  121. 121.
    Nelsen SF, Ismagilov RF, Teki Y (1998) J Am Chem Soc 120:2200 Google Scholar
  122. 122.
    Fan F, Yang J, Cai L, Price DW Jr, Dirk SM, Kosynkin DV, Yao Y, Rawlett AM, Tour JM, Bard AJ (2002) J Am Chem Soc 124:5550 Google Scholar
  123. 123.
    Zangmeister CD, Robey SW, van Zee RD, Yao Y, Tour JM (2004) J Phys Chem B 108:16187 Google Scholar
  124. 124.
    Zhu X-Y (2004) J Phys Chem B 108:8778 Google Scholar
  125. 125.
    Marcus RA, Sutin N (1985) Biochim Biophys Acta 811:265 Google Scholar
  126. 126.
    Marcus RA (1956) J Chem Phys 24:979 Google Scholar
  127. 127.
    Marcus RA (1956) J Chem Phys 24:966 Google Scholar
  128. 128.
    Bixon M, Jortner J (1999) Adv Chem Phys 106:734 Google Scholar
  129. 129.
    Jortner J (2003) Isr J Chem 43:169 Google Scholar
  130. 130.
    Datta S (1995) Electronic transport in mesoscopic systems. Cambridge University Press, New York Google Scholar
  131. 131.
    Troisi A, Ratner MA (2003) In: Reed MA, Lee T (eds) Molecular Nanoelectronics. American Scientific Publishers, Stevenson Ranch, CA, pp 1-18 Google Scholar
  132. 132.
    Seideman T, Guo H (2003) J Theor Comp Chem 2:439 Google Scholar
  133. 133.
    Datta S (2005) Quantum transport: atom to transistor. Cambridge University Press, Cambridge UK Google Scholar
  134. 134.
    Grave C, Tran E, Samori P, Whitesides GM, Rampi MA (2004) Synth Met 147:11 Google Scholar
  135. 135.
    Basch H, Cohen R, Ratner MA Nano Lett (in press) Google Scholar
  136. 136.
    Lee T, Wang W, Klemic JF, Zhang JJ, Su J (2004) J Phys Chem B 108:8742 Google Scholar
  137. 137.
    Engelkes VB, Beebe JM, Frisbie CD (2004) J Am Chem Soc 126:14287 Google Scholar
  138. 138.
    Kubatkin S, Danilov A, Hjort M, Cornil J, Bredas J-L, Sturh-Hansen N, Hedegard P, Bjornholm T (2003) Nature 425:698 Google Scholar
  139. 139.
    Segal D, Nitzan A, Ratner MA, Davis WB (2000) J Phys Chem B 104:2790 Google Scholar
  140. 140.
    Segal D, Nitzan A, Hanaggi P (2003) J Chem Phys 119:6840 Google Scholar
  141. 141.
    Xue Y, Datta S, Ratner MA (2002) Chem Phys 281:151 Google Scholar
  142. 142.
    Wingreen NS, Jauho A, Meir Y (1993) Phys Rev B 11:8487 Google Scholar
  143. 143.
    Damle P, Ghosh AW, Datta S (2002) Chem Phys 281:171 Google Scholar
  144. 144.
    Bihary Z, Ratner MA (2005) Phys Rev submitted Google Scholar
  145. 145.
    Nitzan A (2001) Ann Rev Phys Chem 52:681 Google Scholar
  146. 146.
    Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM (1997) Science 278:252 Google Scholar
  147. 147.
    Datta S, Tam W, Hong S, Riefenberger R, Henderson JI, Kubiak CP (1997) Phys Rev B 79:2530 Google Scholar
  148. 148.
    McLendon G, Hake R (1992) Chem Rev 92:481 Google Scholar
  149. 149.
    Winkler JR, Gray HB (1992) Chem Rev 92:369 Google Scholar
  150. 150.
    Cygan MT, Dunbar TD, Arnold JJ, Bumm LA, Shedlock NF, Burgin TPI, Allara DL, Tour JM, Weiss PS (1998) J Am Chem Soc 120:2721 Google Scholar
  151. 151.
    Seminario JM, Zacaias AG, Tour JM (1998) J Am Chem Soc 120:3970 Google Scholar
  152. 152.
    Hsaio J-S, Krueger BP, Wagner RW, Johnson TE, Delaney JK, Mauzerall DC, Fleming GR, Lindsey JS, Bocian DF, Donohoe RJ (1996) J Am Chem Soc 118:111816 Google Scholar
  153. 153.
    Wagner RW, Lindsey JS (1994) J Am Chem Soc 116:9759 Google Scholar
  154. 154.
    Wagner RW, Lindsey JS, Seth J, Palaniappan V, Bocian DF (1996) J Am Chem Soc 118:3996 Google Scholar
  155. 155.
    Li F, Yang SY, Ciringh Y, Seth J, Martin III CH, Singh DL, Kim D, Birge RR, Bocian DF, Holten D, Lindsey JS (1998) J Am Chem Soc 120:10001 Google Scholar
  156. 156.
    Ulman A (1996) Chem Rev 96:1533 Google Scholar
  157. 157.
    Dubois LH, Nuzzo RG (1992) Ann Rev Phys Chem 43:437 Google Scholar
  158. 158.
    Mann B, Kuhn HJ (1971) J Appl Phys 42:4398 Google Scholar
  159. 159.
    Wong EW, Collier CP, Belohradsky M, Raymo FM, Stoddart JF, Heath JR (2000) J Am Chem Soc 122:5831 Google Scholar
  160. 160.
    Collier CP, Wong EW, Belohradsky M, Raymo FM, Stoddart JF, Keukes PJ, Williams RS, Heath JR (1999) Science 285:391 Google Scholar
  161. 161.
    Reed MA, Lee T (eds) (2003) Molecular Nanoelectronics. American Scientific, Stevenson Ranch, CA Google Scholar
  162. 162.
    Foley ET, Yoder NL, Guisinger NP, Hersam MC (2004) Rev Sci Instrum 75:5280 Google Scholar
  163. 163.
    Xiao XY, Xu BQ, Tao NJ (2004) Nano Lett 4:267 Google Scholar
  164. 164.
    Rampi MA, Schueller OJ, Whitesides GM (1998) Appl Phys Lett 72:1781 Google Scholar
  165. 165.
    Slowinski K, Fong HKY, Majda M (1981) J Am Chem Soc 103:7257 Google Scholar
  166. 166.
    Slowinski K, Majda M (2000) J Electroanal Chem 491:139 Google Scholar
  167. 167.
    Bock CW, Trachtman M, George P (1985) Chem Phys 93:431 Google Scholar
  168. 168.
    Reichert J, Ochs R, Beckmann D, Weber HB, Mayor M, Lohneysen HV (2002) Phys Rev Lett 88:176804 Google Scholar
  169. 169.
    Joachim C (1999) Phys Rev B 59:12505 Google Scholar
  170. 170.
    Dudek SP, Sikes HD, Chidsey CED (2001) J Am Chem Soc 123:8033 Google Scholar
  171. 171.
    Davis WB, Ratner MA, Wasielewski MR (2001) J Am Chem Soc 123:7877 Google Scholar
  172. 172.
    Filatov I, Larsson S (2002) Chem Phys 284:575 Google Scholar
  173. 173.
    Martina N, Giacalonea F, Seguraa JL, Guldi DM (2004) Synth Met 147:57 Google Scholar
  174. 174.
    Giacalonea F, Seguraa JL, Martina N, Guldi DM (2004) J Am Chem Soc 126:5340 Google Scholar
  175. 175.
    Schlicke B, Belser P, De Cola L, Sabbioni E, Balzani V (1999) J Am Chem Soc 121:4207 Google Scholar
  176. 176.
    Weiss EA, Ahrens MJ, Sinks LE, Ratner MA, Wasielewski MR (2004) J Am Chem Soc 126:5577 Google Scholar
  177. 177.
    Q-CI (1998) Q-Chem 2.1. Q-CI, Pittsburgh, PA Google Scholar
  178. 178.
    Murphy CJ, Arkin MR, Jenkins Y, Ghatlia ND, Bossmann SH, Turro NJ, Barton JK (1993) Science 262:1025 Google Scholar
  179. 179.
    Reid GD, Whittaker DJ, Day MA, Turton DA, Kayser V, Kelly JM, Beddard GS (2002) J Am Chem Soc 124:5518 Google Scholar
  180. 180.
    Berlin YA, Burin AL, Ratner MA (2000) J Phys Chem A 104:443 Google Scholar
  181. 181.
    Giese B (1997) Chem Res Toxicol 10:255 Google Scholar
  182. 182.
    Berlin YA, Burin AL, Ratner MA (2001) J Am Chem Soc 123:260 Google Scholar
  183. 183.
    Bixon M, Jortner J (2002) Chem Phys 281:393 Google Scholar
  184. 184.
    Voityuk AA, Jortner J, Bixon M, Rösch N (2001) J Chem Phys 114:5614 Google Scholar
  185. 185.
    Fukui K, Tanaka K, Fujitsuka M, Watanabe A, Ito O (1999) J Photochem Photobiol B: Biol 50:18 Google Scholar
  186. 186.
    Kelley SO, Barton JK (1999) Science 283:375 Google Scholar
  187. 187.
    Lewis FD, Wu T, Zhang Y, Letsinger RL, Greenfield SR, Wasielewski MR (1997) Science 277:673 Google Scholar
  188. 188.
    Meggers E, Michel-Beyerle ME, Giese B (1998) J Am Chem Soc 120:12950 Google Scholar
  189. 189.
    Lewis FD, Wu T, Liu X, Letsinger RL, Greenfield SR, Miller SE, Wasielewski MR (2000) J Am Chem Soc 122:2889 Google Scholar
  190. 190.
    Wan C, Fiebig T, Schiemann O, Barton JK, Zewail AH (2000) Proc Natl Acad Sci USA 97:14052 Google Scholar
  191. 191.
    Okamoto A, Tanaka K, Saito I (2003) J Am Chem Soc 125:5066 Google Scholar
  192. 192.
    Xu BQ, Zhang PM, Li XL, Tao NJ (2004) Nano Lett 4:1105 Google Scholar
  193. 193.
    Dekker C, Ratner MA (2001) Phys World 14:29 Google Scholar
  194. 194.
    Jortner J, Bixon M, Voityuk AA, Roesch N (2002) J Phys Chem A 106:7599 Google Scholar
  195. 195.
    Ten Hoeve W, Wynberg H, Havinga EE, Meijer EW (1991) J Am Chem Soc 113:5887 Google Scholar
  196. 196.
    Otsubo T, Aso Y, Takimiya K (2001) Bull Chem Soc Jpn 74:1789 Google Scholar
  197. 197.
    Sato M, Hiroi M (1994) Chem Lett 985 Google Scholar
  198. 198.
    Bauerle P, Fischer T, Bidlingmeier B, Stabel A, Rabe JP (1995) Angew Chem, Int Ed Eng 34:303 Google Scholar
  199. 199.
    Meier H, Stalmach U, Kolshorn H (1997) Acta Polym 48:379 Google Scholar
  200. 200.
    Würthner F, Vollmer MS, Effenberger F, Emele P, Meyer DU, Port H, Wolf HC (1995) J Am Chem Soc 117:8090 Google Scholar
  201. 201.
    Vollmer MS, Würthner F, Effenberger F, Emele P, Meyer DU, Stumpfig T, Port H, Wolf HC (1998) Chem Eur J 4:260 Google Scholar
  202. 202.
    Effenberger F, Grube G (1998) Synthesis 1998:1372 Google Scholar
  203. 203.
    Knorr S, Grupp A, Mehring M, Grube G, Effenberger F (1999) J Chem Phys 110:3502 Google Scholar
  204. 204.
    Sato M, Fukui K, Sakamoto M, Kashiwagi S, Hiroi M (2001) Thin Solid Films 393:210 Google Scholar
  205. 205.
    Otsubo T, Aso Y, Takimiya K (2002) J Mater Chem 12:2565 Google Scholar
  206. 206.
    Nakamura T, Fujitsuka M, Araki Y, Ito O, Ikemoto J, Takimiya K, Aso Y, Otsubo T (2004) J Phys Chem B 108:10700 Google Scholar
  207. 207.
    Hicks RG, Nodwell MB (2000) J Am Chem Soc 122:6747 Google Scholar
  208. 208.
    McCullough RD (1998) Adv Mater 10:93 Google Scholar
  209. 209.
    Purcell ST, Garcia N, Binh II VT, Tour JM (1994) J Am Chem Soc 116:11985 Google Scholar
  210. 210.
    Tour JM, Jones L, Pearson DL, Lamba JJS, Burgin TP, Whitesides GM, Allara DL, Parikh AN, Atre SV (1995) J Am Chem Soc 117:9529 Google Scholar
  211. 211.
    Wagner RW, Lindsey JS (1994) J Am Chem Soc 116:9759 Google Scholar
  212. 212.
    Heilemann M, Tinnefeld P, Sanchez Mosteiro G, Garcia Parajo M, Van Hulst NF, Sauer M (2004) J Am Chem Soc 126:6514 Google Scholar
  213. 213.
    Hopfield JJ (1974) Proc Natl Acad Sci USA 71:3640 Google Scholar
  214. 214.
    Scholes GD, Fleming GR (2000) J Phys Chem B 104:1854 Google Scholar
  215. 215.
    Donhauser ZJ, Mantooth BA, Kelly KF, Bumm LA, Monnell JD, Stapleton JJ, Price DW Jr, Rawlett AM, Allara DL, Tour JM, Weiss PS (2001) Science 292:2303 Google Scholar
  216. 216.
    Giese B, Wessely S, Spormann (1999) Angew Chem, Int Ed Eng 38 Google Scholar
  217. 217.
    Meggers E, Michel-Beyerle ME, Giese B (1998) J Am Chem Soc 120:12950 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Emily A. Weiss
    • 1
  • Michael R. Wasielewski
    • 1
    Email author
  • Mark A. Ratner
    • 1
  1. 1.Department of Chemistry and Center for Nanofabrication and Molecular Self-AssemblyNorthwestern UniversityEvanstonUSA

Personalised recommendations