Advertisement

The Opto-Electronic Properties of Isolated Phenylenevinylene Molecular Wires

  • Ferdinand C. GrozemaEmail author
  • Laurens D. A. Siebbeles
  • Gerwin H. Gelinck
  • John M. Warman
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 257)

Abstract

The optoelectronic properties of dilute solutions of oligomeric and (broken-conjugation) polymeric phenylenevinylene chains were studied using the following techniques: optical absorption and (time-resolved) emission spectrophotometry, flash-photolysis time-resolved (real and imaginary) microwave conductivity, pulse-radiolysis time-resolved microwave conductivity, and pulse-radiolysis time-resolved optical absorption spectrophotometry. The following properties were determined: absorption and emission spectra, fluorescence quantum yields and decay times, exciton polarizabilities and dissociation probabilities, charge mobilities, and radical cation absorption spectra. The experimental results are compared with theoretical calculations of exciton polarizabilities, charge mobilities, and radical cation absorption spectra.

Molecular wire Conjugated polymer Phenylenevinylene Excess polarizability Charge carrier mobility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hörhold HH, Opfermann J (1970) Makromol Chem 131:105 CrossRefGoogle Scholar
  2. 2.
    Hörhold HH, Opfermann J (1974) J Prakt Chem 316:750 CrossRefGoogle Scholar
  3. 3.
    Burroughes JH, Bradley DDC, Brown AR, Marks RN, MacKay K, Friend RH, Burns PL, Holmes AB (1990) Nature 347:539 CrossRefGoogle Scholar
  4. 4.
    Braun D, Heeger AJ (1991) Appl Phys Lett 58:1982 CrossRefGoogle Scholar
  5. 5.
    Murray MM, Holmes AB (2000) In: Hadziioannou G, Van Hutten PF (eds) Semiconducting polymer, chemistry, physics and engineering. Wiley-VCH, Weinheim, p 1 Google Scholar
  6. 6.
    Harrison MG, Friend RH (1998) In: Müllen K, Wegner G (eds) Electronic materials: the oligomer approach. Wiley-VCH, Weinheim, p 515 Google Scholar
  7. 7.
    Pope M, Swenberg CE (1999) Electronic processes in organic crystals and polymers. Oxford University Press, Oxford Google Scholar
  8. 8.
    Conwell EM (2001) In: Farchioni R, Grosso G (eds) Organic electronic materials, conjugated polymers and low molecular weight organic solids. Springer-Verlag, Berlin, p 127 Google Scholar
  9. 9.
    Moses D (1992) Appl Phys Lett 60:3215 CrossRefGoogle Scholar
  10. 10.
    Samuel IDW, Rumbles G, Friend RH (1997) In: Sariciftci NS (ed) Primary photo-excitation s in conjugated polymers: molecular exciton versus semiconductor band model. World Scientific, Singapore, p 140 Google Scholar
  11. 11.
    Conwell EM (1997) In: Sariciftci NS (ed) Primary Photo-excitation s in conjugated polymers: molecular exciton versus semiconductor band model. World Scientific, Singapore, p 99 Google Scholar
  12. 12.
    Rothberg L (1997) In: Sariciftci NS (ed) Primary photo-excitation s in conjugated polymers: molecular exciton versus semiconductor band model. World Scientific, Singapore, p 129 Google Scholar
  13. 13.
    Bredas JL, Cornil J, Beljonne D, dos Santos DA, Shuai Z (1999) Acc Chem Res 32:267 CrossRefGoogle Scholar
  14. 14.
    Nguyen T-Q, Doan V, Schwartz BJ (1999) J Chem Phys 110:4068 CrossRefGoogle Scholar
  15. 15.
    Gettinger CL, Heeger AJ, Drake JM, Pine DJ (1994) J Chem Phys 101:1673 CrossRefGoogle Scholar
  16. 16.
    Oelkrug D, Gierschner J, Egelhaaf H-J, Luer L, Tompert A, Müllen K, Stalmach U, Meier H (2001) Synth Met 121:1693 CrossRefGoogle Scholar
  17. 17.
    Gierschner J, Mack H-G, Lüer L, Oelkrug D (2002) J Chem Phys 116:8596 CrossRefGoogle Scholar
  18. 18.
    Tian B, Zerbi G, Schenk R, Mullen K (1991) J Chem Phys 95:3191 CrossRefGoogle Scholar
  19. 19.
    Mulazzi E, Ripamonti A, Wery J, Dulieu B, Lefrant S (1999) Phys Rev B 60:16519 CrossRefGoogle Scholar
  20. 20.
    Gelinck GH (1998) Excitons and polarons in luminescent conjugated polymer. Thesis, Delft University of Technology Google Scholar
  21. 21.
    Egelhaaf H-J, Oelkrug D, Gebauer W, Sokolowski M, Umbach E, Fischer T, Bäuerle P (1998) Opt Mater 9:59 CrossRefGoogle Scholar
  22. 22.
    Nijegorodov NI, Downey WS, Danailov MB (2000) Spectrochim Acta A 56:783 CrossRefGoogle Scholar
  23. 23.
    Candeias LP, Gelinck GH, Piet JJ, Piris J, Wegewijs BR, Peeters E, Wildeman J, Hadziioannou G, Müllen K (2001) Synth Met 119:339 CrossRefGoogle Scholar
  24. 24.
    Liptay W, Walz G, Baumann W, Schlosser H-J, Deckers H, Detzer N (1971) Z Naturforsch 26a:2020 Google Scholar
  25. 25.
    Mathies R, Albrecht AC (1974) J Chem Phys 60:2500 CrossRefGoogle Scholar
  26. 26.
    van der Horst J-W, Bobbert PA, de Jong PHL, Michels MAJ, Siebbeles LDA, Warman JM, Gelinck GH, Brocks G (2001) Chem Phys Let 334:303 Google Scholar
  27. 27.
    Gelinck GH, Piet JJ, Wegewijs BR, Müllen K, Wildeman J, Hadziioannou G, Warman JM (2000) Phys Rev B 62:1489 CrossRefGoogle Scholar
  28. 28.
    Wachsmann-Hogiu S, Peteanu LA, Liu LA, Yaron DJ, Wildeman J (2003) J Phys Chem B 107:5133 CrossRefGoogle Scholar
  29. 29.
    Warman JM, Gelinck GH, Piet JJ, Suykerbuyk JWA, de Haas MP, Langeveld-Voss BMW, Janssen RAJ, Hwang D-H, Holmes AB, Remmers M, Neher D, Müllen K, Bäuerle P (1997) Proc SPIE 3145:142 CrossRefGoogle Scholar
  30. 30.
    Grozema FC, Telesca R, Jonkman HT, Siebbeles LDA, Snijders JG (2001) J Chem Phys 115:10014 CrossRefGoogle Scholar
  31. 31.
    Grozema FC (2003) Opto-electronic properties of conjugated molecular Wires. Thesis, Delft University of Technology Google Scholar
  32. 32.
    Lane PA, Mellor H, Martin SJ, Hagler TW, Bleyer A, Bradley DDC (2000) Chem Phys 257:41 CrossRefGoogle Scholar
  33. 33.
    Van Faassen M, de Boeij PL, Van Leeuwen R, Berger JA, Snijders JG (2002) Phys Rev Lett 88:186401 CrossRefGoogle Scholar
  34. 34.
    Van Faassen M, de Boeij PL, Van Leeuwen R, Berger JA, Snijders JG (2003) J Chem Phys 118:1044 CrossRefGoogle Scholar
  35. 35.
    Grozema FC, Telesca R, Snijders JG, Siebbeles LDA (2003) J Chem Phys 118:9441 CrossRefGoogle Scholar
  36. 36.
    Gelinck GH, Warman JM, Staring EGJ (1996) J Phys Chem 100:5485 CrossRefGoogle Scholar
  37. 37.
    Hendry E, Schins JM, Candeias LP, Siebbeles LDA, Bonn M (2004) Phys Rev Lett 92:196601 CrossRefGoogle Scholar
  38. 38.
    Hendry E, Koeberg M, Schins JM, Siebbeles LDA, Bonn M (in press) Phys Rev B Google Scholar
  39. 39.
    Hoofman RJOM, de Haas MP, Siebbeles LDA, Warman JM (1998) Nature 392:54 CrossRefGoogle Scholar
  40. 40.
    Grozema FC, Siebbeles LDA, Warman JM, Seki S, Tagawa S, Scherf U (2002) Adv Mater 14:228 CrossRefGoogle Scholar
  41. 41.
    Grozema FC, Hoofman RJOM, Candeias LP, de Haas MP, Warman JM, Siebbeles LDA (2003) J Phys Chem A 107:5976 CrossRefGoogle Scholar
  42. 42.
    Cooper R, Thomas JK (1968) J Chem Phys 48:5097 CrossRefGoogle Scholar
  43. 43.
    Thomas JK, Mani I (1969) J Chem Phys 51:1834 CrossRefGoogle Scholar
  44. 44.
    Gorman AA, Lovering G, Rodgers MAJ (1978) J Am Chem Soc 100:4527 CrossRefGoogle Scholar
  45. 45.
    Candeias LP, Grozema FC, Padmanaban G, Ramakrishnan S, Siebbeles LDA, Warman JM (2002) J Phys Chem B 107:1554 CrossRefGoogle Scholar
  46. 46.
    Grozema FC, van Duijnen PT, Berlin YA, Ratner MA, Siebbeles LDA (2002) J Phys Chem B 106:7791 CrossRefGoogle Scholar
  47. 47.
    Dyre JC, Schrøder TB (2000) Rev Mod Phys 72:873 CrossRefGoogle Scholar
  48. 48.
    Kubo R (1957) J Phys Soc Jpn 12:570 CrossRefGoogle Scholar
  49. 49.
    Scher H, Lax M (1973) Phys Rev B 7:4491 CrossRefGoogle Scholar
  50. 50.
    Gailberger M, Bässler H (1991) Phys Rev B 44:8643 CrossRefGoogle Scholar
  51. 51.
    Meyer H, Haarer D, Naarman H, Hörhold HH (1995) Phys Rev B 52:2587 CrossRefGoogle Scholar
  52. 52.
    Lebedev E, Dittrich T, Petrova-Koch V, Karg S, Brütting W (1997) Appl Phys Lett 71:2686 CrossRefGoogle Scholar
  53. 53.
    Inigo AR, Chiu HC, Fann W, Huang YS, Jeng US, Lin TL, Hsu CH, Peng KY, Chen SA (2004) Phys Rev B 69:075201 CrossRefGoogle Scholar
  54. 54.
    Mozer AJ, Denk P, Scharber MC, Neugebauer H, Sariciftci NS, Wagner P, Lutsen L, Vanderzande D (2004) J Phys Chem B 108:5235 CrossRefGoogle Scholar
  55. 55.
    Becker H, Spreitzer H, Ibrom K, Kreuder W (1999) Macromolecules 32:4925 CrossRefGoogle Scholar
  56. 56.
    Cornil J, Beljonne D, Bredas JL (1995) J Chem Phys 103:834 CrossRefGoogle Scholar
  57. 57.
    Grozema FC, Candeias LP, Swart M, van Duijnen PT, Wildeman J, Hadziioannou G, Siebbeles LDA, Warman JM (2002) J Chem Phys 117:11366 CrossRefGoogle Scholar
  58. 58.
    Geskin VM, Dkhissi A, Brédas J-L (2002) Int J Quant Chem 91:350 CrossRefGoogle Scholar
  59. 59.
    de Haas MP, Warman JM (1982) Chem Phys 73:35 CrossRefGoogle Scholar
  60. 60.
    Schuddeboom W (1994) Photophysical properties of opto-electronic molecules studied by time-resolved microwave conductivity. Thesis, Delft University of Technology Google Scholar
  61. 61.
    Piet JJ (2001) Excitonic interactions in multichromophoric arrays. Thesis, Delft University of Technology Google Scholar
  62. 62.
    Gee N, Freeman GR (1992) Can J Chem 70:1618 CrossRefGoogle Scholar
  63. 63.
    Schmidt WF, Allen AO (1968) J Phys Chem 72:3730 CrossRefGoogle Scholar
  64. 64.
    Infelta PR, de Haas MP, Warman JM (1977) Radiat Phys Chem 10:353 Google Scholar
  65. 65.
    Warman JM, De Haas MP (1991) In: Tabata Y (ed) Pulse radiolysis. CRC, Boston p 101 Google Scholar
  66. 66.
    Warman JM (1982) In: Baxendale JH, Busi F (eds) The study of fast processes and transient species by electron pulse radiolysis. Reidel, Dordrecht p 129 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ferdinand C. Grozema
    • 1
    • 2
    Email author
  • Laurens D. A. Siebbeles
    • 1
  • Gerwin H. Gelinck
    • 1
    • 3
  • John M. Warman
    • 1
  1. 1.Department of Radiation Chemistry, Interfaculty Reactor InstituteDelft University of TechnologyDelftThe Netherlands
  2. 2.Laboratory for Inorganic Chemistry and PCMT, DelftChemTechDelft University of TechnologyDelftThe Netherlands
  3. 3.Integrated Device TechnologiesPhilips Research EindhovenEindhovenThe Netherlands

Personalised recommendations