Skip to main content

Viral DNA Polymerase Inhibitors

  • Chapter
  • First Online:
Viral Genome Replication

DNA viruses, as well as their host cells, require a DNA-dependent DNA polymerase to faithfully replicate their genomes. Viruses with small DNA genomes, such as papillomaviruses and polyomaviruses, have a limited coding capacity and utilize mainly the host replication machinery for their genome amplification. In contrast, large DNA viruses encode a specific polymerase equipped with a proofreading 3ʹ–5ʹ-exonuclease activity and other replication proteins that assure the replication of their genomic information. As a critical component of the viral replication machinery, viral DNA polymerases are the specific target of a number of antiviral drugs currently used to inhibit viral replication. Most antiviral drugs approved by the US Food and Drug Administration (FDA) inhibit viral genome replication, nearly all of these inhibit a DNA polymerase and most of these drugs are nucleoside analogs. FDA-approved inhibitors of viral polymerases target certain human herpesviruses, the retrovirus HIV (human immunodeficiency virus) and the hepadnavirus HBV (hepatitis B virus). This chapter focuses on the description of viral DNA polymerase inhibitors, whether currently approved or candidate drugs, that are particularly active against herpesviruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abele, G., B. Eriksson, J. Harmenberg & B. Wahren, 1988. Inhibition of varicella-zoster virus-induced DNA polymerase by a new guanosine analog, 9-[4-hydroxy-2-(hydroxymethyl) butyl]guanine triphosphate, Antimicrob. Agents Chemother. 32: 1137–1142.

    PubMed  CAS  Google Scholar 

  • Abraham, B., S. Lastere, J. Reynes, F. Bibollet-Ruche, N. Vidal & M. Segondy, 1999. Ganciclovir resistance and UL97 gene mutations in cytomegalovirus blood isolates from patients with AIDS treated with ganciclovir, J. Clin. Virol. 13: 141–148.

    Article  PubMed  CAS  Google Scholar 

  • Aldern, K. A., S. L. Ciesla, K. L. Winegarden & K. Y. Hostetler, 2003. Increased antiviral activity of 1-O-hexadecyloxypropyl-[2-(14)C]cidofovir in MRC-5 human lung fibroblasts is explained by unique cellular uptake and metabolism, Mol. Pharmacol. 63: 678–681.

    Article  PubMed  CAS  Google Scholar 

  • Andrei, G., J. Balzarini, P. Fiten, E. De Clercq, G. Opdenakker & R. Snoeck, 2005a. Characterization of herpes simplex virus type 1 thymidine kinase mutants selected under a single round of high-dose brivudin, J. Virol. 79: 5863–5869.

    Article  PubMed  CAS  Google Scholar 

  • Andrei, G., E. De Clercq & R. Snoeck, 2004. In vitro selection of drug-resistant varicella-zoster virus (VZV) mutants (OKA strain): differences between acyclovir and penciclovir ? Antiviral Res. 61: 181–187.

    Article  PubMed  CAS  Google Scholar 

  • Andrei, G., P. Fiten, M. Froeyen, E. De Clercq, G. Opdenakker & R. Snoeck, 2007a. DNA polymerase mutations in drug-resistant herpes simplex virus mutants determine in vivo neurovirulence and drug-enzyme interactions, Antiviral. Ther. 12: 719–732.

    CAS  Google Scholar 

  • Andrei, G., P. Fiten, P. Goubau, H. van Landuyt, B. Gordts, D. Selleslag, E. De Clercq, G. Opdenakker & R. Snoeck, 2007b. Dual infection with polyomavirus BK and acyclovir-resistant herpes simplex virus successfully treated with cidofovir in a bone marrow transplant recipient, Transpl. Infect. Dis. 9: 126–131.

    Article  PubMed  CAS  Google Scholar 

  • Andrei, G., D. B. Gammon, P. Fiten, E. De Clercq, G. Opdenakker, R. Snoeck & D. H. Evans, 2006. Cidofovir resistance in vaccinia virus is linked to diminished virulence in mice, J. Virol. 80: 9391–9401.

    Article  PubMed  CAS  Google Scholar 

  • Andrei, G., R. Sienaert, C. McGuigan, E. De Clercq, J. Balzarini & R. Snoeck, 2005b. Susceptibilities of several clinical varicella-zoster virus (VZV) isolates and drug-resistant VZV strains to bicyclic furano pyrimidine nucleosides, Antimicrob. Agents Chemother. 49: 1081–1086.

    Article  PubMed  CAS  Google Scholar 

  • Andrei, G., R. Snoeck, E. De Clercq, R. Esnouf, P. Fiten & G. Opdenakker, 2000. Resistance of herpes simplex virus type 1 against different phosphonylmethoxyalkyl derivatives of purines and pyrimidines due to specific mutations in the viral DNA polymerase gene, J. Gen. Virol. 81: 639–648.

    PubMed  CAS  Google Scholar 

  • Ansari, A.& V. C. Emery, 1999. The U69 gene of human herpesvirus 6 encodes a protein kinase which can confer ganciclovir sensitivity to baculoviruses, J. Virol. 73: 3284–3291.

    PubMed  CAS  Google Scholar 

  • Appleton, B. A., J. Brooks, A. Loregian, D. J. Filman, D. M. Coen & J. M. Hogle, 2006. Crystal structure of the cytomegalovirus DNA polymerase subunit UL44 in complex with the C terminus from the catalytic subunit. Differences in structure and function relative to unliganded UL44, J. Biol. Chem. 281: 5224–5232.

    Article  PubMed  CAS  Google Scholar 

  • Bacon, T. H., M. J. Levin, J. J. Leary, R. T. Sarisky & D. Sutton, 2003. Herpes simplex virus resistance to acyclovir and penciclovir after two decades of antiviral therapy, Clin. Microbiol. Rev. 16: 114–128.

    Article  PubMed  CAS  Google Scholar 

  • Baldanti, F. & G. Gerna, 2003. Human cytomegalovirus resistance to antiviral drugs: diagnosis, monitoring and clinical impact, J. Antimicrob. Chemother. 52: 324–330.

    Article  PubMed  CAS  Google Scholar 

  • Baldanti, F., M. R. Underwood, S. C. Stanat, K. K. Biron, S. Chou, A. Sarasini, E. Silini & G. Gerna, 1996. Single amino acid changes in the DNA polymerase confer foscarnet resistance and slow-growth phenotype, while mutations in the UL97-encoded phosphotransferase confer ganciclovir resistance in three double-resistant human cytomegalovirus strains recovered from patients with AIDS, J. Virol. 70: 1390–1395.

    PubMed  CAS  Google Scholar 

  • Balzarini, J., C. Pannecouque, L. Naesens, G. Andrei, R. Snoeck, E. De Clercq, D. Hockova & A. Holy, 2004. 6-[2-phosphonomethoxy)alkoxy]-2,4-diaminopyrimidines: a new class of acyclic pyrimidine nucleoside phosphonates with antiviral activity, Nucleosides Nucleotides Nucleic Acids 23: 1321–1327.

    Article  PubMed  CAS  Google Scholar 

  • Balzarini, J., R. Sienaert, S. Liekens, A. Van Kuilenburg, A. Carangio, R. Esnouf, E. De Clercq & C. McGuigan, 2002. Lack of susceptibility of bicyclic nucleoside analogs, highly potent inhibitors of varicella-zoster virus, to the catabolic action of thymidine phosphorylase and dihydropyrimidine dehydrogenase, Mol. Pharmacol. 61: 1140–1145.

    Article  PubMed  CAS  Google Scholar 

  • Beadle, J. R., C. Hartline, K. A. Aldern, N. Rodriguez, E. Harden, E. R. Kern & K. Y. Hostetler, 2002. Alkoxyalkyl esters of cidofovir and cyclic cidofovir exhibit multiple-log enhancement of antiviral activity against cytomegalovirus and herpesvirus replication in vitro, Antimicrob. Agents Chemother. 46: 2381–2386.

    Article  PubMed  CAS  Google Scholar 

  • Beadle, J. R., W. B. Wan, S. L. Ciesla, K. A. Keith, C. Hartline, E. R. Kern & K. Y. Hostetler, 2006. Synthesis and antiviral evaluation of alkoxyalkyl derivatives of 9-(S)-(3-hydroxy-2-phosphonomethoxypropyl)adenine against cytomegalovirus and orthopoxviruses, J. Med. Chem. 49: 2010–2015.

    Article  PubMed  CAS  Google Scholar 

  • Bestman-Smith, J.& G. Boivin, 2002. Herpes simplex virus isolates with reduced adefovir susceptibility selected in vivo by foscarnet therapy, J. Med. Virol. 67: 88–91.

    Article  PubMed  CAS  Google Scholar 

  • Beutner, K. R., 1995. Valacyclovir: a review of its antiviral activity, pharmacokinetic properties, and clinical efficacy, Antiviral Res. 28: 281–290.

    Article  PubMed  CAS  Google Scholar 

  • Beutner, K. R., D. J. Friedman, C. Forszpaniak, P. L. Andersen & M. J. Wood, 1995. Valacyclovir compared with acyclovir for improved therapy for herpes zoster in immunocompetent adults, Antimicrob. Agents Chemother. 39: 1546–1553.

    PubMed  CAS  Google Scholar 

  • Bidanset, D. J., J. R. Beadle, W. B. Wan, K. Y. Hostetler & E. R. Kern, 2004. Oral activity of ether lipid ester prodrugs of cidofovir against experimental human cytomegalovirus infection, J. Infect. Dis. 190: 499–503.

    Article  PubMed  CAS  Google Scholar 

  • Biron, K. K., 2006. Antiviral drugs for cytomegalovirus diseases, Antiviral Res. 71: 154–163.

    Article  PubMed  CAS  Google Scholar 

  • Biron, K. K., S. C. Stanat, J. B. Sorrell, J. A. Fyfe, P. M. Keller, C. U. Lambe & D. J. Nelson, 1985. Metabolic activation of the nucleoside analog 9-[(2-hydroxy-1-(hydroxymethyl)ethoxy]methyl)guanine in human diploid fibroblasts infected with human cytomegalovirus, Proc. Natl. Acad. Sci. U. S. A 82: 2473–2477.

    Article  PubMed  CAS  Google Scholar 

  • Boehmer, P. E. & I. R. Lehman, 1997. Herpes simplex virus DNA replication, Annu. Rev. Biochem. 66: 347–384.

    Article  PubMed  CAS  Google Scholar 

  • Boivin, G., C. K. Edelman, L. Pedneault, C. L. Talarico, K. K. Biron & H. H. Balfour, Jr., 1994. Phenotypic and genotypic characterization of acyclovir-resistant varicella-zoster viruses isolated from persons with AIDS, J. Infect. Dis. 170: 68–75.

    Article  PubMed  CAS  Google Scholar 

  • Boivin, G., N. Goyette, C. Gilbert, N. Roberts, K. Macey, C. Paya, M. D. Pescovitz, A. Humar, E. Dominguez, K. Washburn, E. Blumberg, B. Alexander, R. Freeman, N. Heaton & E. Covington, 2004. Absence of cytomegalovirus-resistance mutations after valganciclovir prophylaxis, in a prospective multicenter study of solid-organ transplant recipients, J. Infect. Dis. 189: 1615–1618.

    Article  PubMed  CAS  Google Scholar 

  • Bonnafous, P., L. Naesens, S. Petrella, A. Gautheret-Dejean, D. Boutolleau, W. Sougakoff & H. Agut, 2007. Different mutations in the HHV-6 DNA polymerase gene accounting for resistance to foscarnet, Antivir. Ther. 12: 877–888.

    PubMed  CAS  Google Scholar 

  • Boyd, M. R., T. H. Bacon, D. Sutton & M. Cole, 1987. Antiherpesvirus activity of 9-(4-hydroxy-3-hydroxy-methylbut-1-yl)guanine (BRL 39123) in cell culture, Antimicrob. Agents Chemother. 31: 1238–1242.

    PubMed  CAS  Google Scholar 

  • Brideau, R. J., M. L. Knechtel, A. Huang, V. A. Vaillancourt, E. E. Vera, N. L. Oien, T. A. Hopkins, J. L. Wieber, K. F. Wilkinson, B. D. Rush, F. J. Schwende & M. W. Wathen, 2002. Broad-spectrum antiviral activity of PNU-183792, a 4-oxo-dihydroquinoline, against human and animal herpesviruses, Antiviral Res. 54: 19–28.

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarti, S., D. Pillay, D. Ratcliffe, P. A. Cane, K. E. Collingham & D. W. Milligan, 2000. Resistance to antiviral drugs in herpes simplex virus infections among allogeneic stem cell transplant recipients: risk factors and prognostic significance, J. Infect. Dis. 181: 2055–2058.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y., C. Scieux, V. Garrait, G. Socie, V. Rocha, J. M. Molina, D. Thouvenot, F. Morfin, L. Hocqueloux, L. Garderet, H. Esperou, F. Selimi, A. Devergie, G. Leleu, M. Aymard, F. Morinet, E. Gluckman & P. Ribaud, 2000. Resistant herpes simplex virus type 1 infection: an emerging concern after allogeneic stem cell transplantation, Clin. Infect. Dis. 31: 927–935.

    Article  PubMed  CAS  Google Scholar 

  • Chibo, D., J. Druce, J. Sasadeusz & C. Birch, 2004. Molecular analysis of clinical isolates of acyclovir resistant herpes simplex virus, Antiviral Res. 61: 83–91.

    Article  PubMed  CAS  Google Scholar 

  • Choo, H., J. R. Beadle, Y. Chong, J. Trahan & K. Y. Hostetler, 2007. Synthesis of the 5-phosphono-pent-2-en-1-yl nucleosides: a new class of antiviral acyclic nucleoside phosphonates, Bioorg. Med. Chem. 15: 1771–1779.

    Article  PubMed  CAS  Google Scholar 

  • Chou, S., 1999. Antiviral drug resistance in human cytomegalovirus, Transpl. Infect. Dis. 1: 105–114.

    Article  PubMed  CAS  Google Scholar 

  • Chou, S., S. Guentzel, K. R. Michels, R. C. Miner & W. L. Drew, 1995. Frequency of UL97 phosphotransferase mutations related to ganciclovir resistance in clinical cytomegalovirus isolates, J. Infect. Dis. 172: 239–242.

    Article  PubMed  CAS  Google Scholar 

  • Chou, S.& C. L. Meichsner, 2000. A nine-codon deletion mutation in the cytomegalovirus UL97 phosphotransferase gene confers resistance to ganciclovir, Antimicrob. Agents Chemother. 44: 183–185.

    Article  PubMed  CAS  Google Scholar 

  • Chrisp, C. E., J. C. Sunstrum, D. R. Averill, Jr., M. Levine & J. C. Glorioso, 1989. Characterization of encephalitis in adult mice induced by intracerebral inoculation of herpes simplex virus type 1 (KOS) and comparison with mutants showing decreased virulence, Lab Invest 60: 822–830.

    PubMed  CAS  Google Scholar 

  • Christophers, J., J. Clayton, J. Craske, R. Ward, P. Collins, M. Trowbridge & G. Darby, 1998. Survey of resistance of herpes simplex virus to acyclovir in northwest England, Antimicrob. Agents Chemother. 42: 868–872.

    PubMed  CAS  Google Scholar 

  • Ciesla, S. L., J. Trahan, W. B. Wan, J. R. Beadle, K. A. Aldern, G. R. Painter & K. Y. Hostetler, 2003. Esterification of cidofovir with alkoxyalkanols increases oral bioavailability and diminishes drug accumulation in kidney, Antiviral Res. 59: 163–171.

    Article  PubMed  CAS  Google Scholar 

  • Cihlar, T., M. D. Fuller & J. M. Cherrington, 1998a. Characterization of drug resistance-associated mutations in the human cytomegalovirus DNA polymerase gene by using recombinant mutant viruses generated from overlapping DNA fragments, J. Virol. 72: 5927–5936.

    PubMed  CAS  Google Scholar 

  • Cihlar, T., M. D. Fuller, A. S. Mulato & J. M. Cherrington, 1998b. A point mutation in the human cytomegalovirus DNA polymerase gene selected in vitro by cidofovir confers a slow replication phenotype in cell culture, Virology 248: 382–393.

    Article  PubMed  CAS  Google Scholar 

  • Coen, D. M., 1991. The implications of resistance to antiviral agents for herpesvirus drug targets and drug therapy, Antiviral Res. 15: 287–300.

    Article  PubMed  CAS  Google Scholar 

  • Coen, D. M., 1994. Acyclovir-resistant, pathogenic herpesviruses, Trends Microbiol. 2: 481–485.

    Article  PubMed  CAS  Google Scholar 

  • Coen, D. M., M. Kosz-Vnenchak, J. G. Jacobson, D. A. Leib, C. L. Bogard, P. A. Schaffer, K. L. Tyler & D. M. Knipe, 1989. Thymidine kinase-negative herpes simplex virus mutants establish latency in mouse trigeminal ganglia but do not reactivate, Proc. Natl. Acad. Sci. U. S. A 86: 4736–4740.

    Article  PubMed  CAS  Google Scholar 

  • Coen, D. M.& P. A. Schaffer, 2003. Antiherpesvirus drugs: a promising spectrum of new drugs and drug targets, Nat. Rev. Drug Discov. 2: 278–288.

    Article  PubMed  CAS  Google Scholar 

  • Coen, D. M., P. A. Schaffer, P. A. Furman, P. M. Keller & M. H. St Clair, 1982. Biochemical and genetic analysis of acyclovir-resistant mutants of herpes simplex virus type 1, Am. J. Med. 73: 351–360.

    Article  PubMed  CAS  Google Scholar 

  • Collins, P., B. A. Larder, N. M. Oliver, S. Kemp, I. W. Smith & G. Darby, 1989. Characterization of a DNA polymerase mutant of herpes simplex virus from a severely immunocompromised patient receiving acyclovir, J. Gen. Virol. 70 (Pt 2): 375–382.

    Article  PubMed  CAS  Google Scholar 

  • Corey, L., A. Wald, R. Patel, S. L. Sacks, S. K. Tyring, T. Warren, J. M. Douglas, Jr., J. Paavonen, R. A. Morrow, K. R. Beutner, L. S. Stratchounsky, G. Mertz, O. N. Keene, H. A. Watson, D. Tait & M. Vargas-Cortes, 2004. Once-daily valacyclovir to reduce the risk of transmission of genital herpes, N. Engl. J. Med. 350: 11–20.

    Article  PubMed  CAS  Google Scholar 

  • Crumpacker, C. S., 1992. Mechanism of action of foscarnet against viral polymerases, Am. J. Med. 92: 3S-7S.

    Article  PubMed  CAS  Google Scholar 

  • Dal Pozzo, F., G. Andrei, I. Lebeau, J. R. Beadle, K. Y. Hostetler, E. De Clercq & R. Snoeck, 2007. In vitro evaluation of the anti-orf virus activity of alkoxyalkyl esters of CDV, cCDV and (S)-HPMPA, Antiviral Res. 75: 52–57.

    Article  PubMed  CAS  Google Scholar 

  • Danve-Szatanek, C., M. Aymard, D. Thouvenot, F. Morfin, G. Agius, I. Bertin, S. Billaudel, B. Chanzy, M. Coste-Burel, L. Finkielsztejn, H. Fleury, T. Hadou, C. Henquell, H. Lafeuille, M. E. Lafon, A. Le Faou, M. C. Legrand, L. Maille, C. Mengelle, P. Morand, F. Morinet, E. Nicand, S. Omar, B. Picard, B. Pozzetto, J. Puel, D. Raoult, C. Scieux, M. Segondy, J. M. Seigneurin, R. Teyssou & C. Zandotti, 2004. Surveillance network for herpes simplex virus resistance to antiviral drugs: 3-year follow-up, J. Clin. Microbiol. 42: 242–249.

    Article  PubMed  CAS  Google Scholar 

  • Darby, G., 1994. Acyclovir–and beyond, J. Int. Med. Res. 22 Suppl 1: 33A–42A.

    PubMed  Google Scholar 

  • Darby, G., M. J. Churcher & B. A. Larder, 1984. Cooperative effects between two acyclovir resistance loci in herpes simplex virus, J. Virol. 50: 838–846.

    PubMed  CAS  Google Scholar 

  • Darby, G., H. J. Field & S. A. Salisbury, 1981. Altered substrate specificity of herpes simplex virus thymidine kinase confers acyclovir-resistance, Nature 289: 81–83.

    Article  PubMed  CAS  Google Scholar 

  • De Bolle, L., D. Michel, T. Mertens, C. Manichanh, H. Agut, E. De Clercq & L. Naesens, 2002. Role of the human herpesvirus 6 u69-encoded kinase in the phosphorylation of ganciclovir, Mol. Pharmacol. 62: 714–721.

    Article  PubMed  Google Scholar 

  • De Clercq, E., 2003. Clinical potential of the acyclic nucleoside phosphonates cidofovir, adefovir, and tenofovir in treatment of DNA virus and retrovirus infections, Clin. Microbiol. Rev. 16: 569–596.

    Article  PubMed  CAS  Google Scholar 

  • De Clercq, E., 2004. Discovery and development of BVDU (brivudin) as a therapeutic for the treatment of herpes zoster, Biochem. Pharmacol. 68: 2301–2315.

    Article  PubMed  CAS  Google Scholar 

  • De Clercq, E., J. Descamps, P. De Somer & A. Holý, 1978. (S)-9-(2,3-Dihydroxypropyl)adenine: an aliphatic nucleoside analog with broad spectrum antiviral activity. Science 200: 563–565.

    Article  Google Scholar 

  • De Clercq, E., G. Andrei, J. Balzarini, P. Leyssen, L. Naesens, J. Neyts, C. Pannecouque, R. Snoeck, C. Ying, D. Hockova & A. Holý, 2005. Antiviral potential of a new generation of acyclic nucleoside phosphonates, the 6-[2-(phosphonomethoxy)alkoxy]-2,4-diaminopyrimidines, Nucleosides Nucleotides Nucleic Acids 24: 331–341.

    Article  PubMed  CAS  Google Scholar 

  • De Clercq, E., J. Descamps, P. de Somer, P. J. Barr, A. S. Jones & R. T. Walker, 1979. (E)-5-(2-Bromovinyl)-2'-deoxyuridine: a potent and selective anti-herpes agent, Proc. Natl. Acad. Sci. U. S. A 76: 2947–2951.

    Article  PubMed  Google Scholar 

  • De Clercq, E.& H. J. Field, 2006. Antiviral prodrugs - the development of successful prodrug strategies for antiviral chemotherapy, Br. J. Pharmacol. 147: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • De Clercq, E.& A. Holý, 2005. Acyclic nucleoside phosphonates: a key class of antiviral drugs, Nat. Rev. Drug Discov. 4: 928–940.

    Article  PubMed  CAS  Google Scholar 

  • De Clercq, E., A. Holy, I. Rosenberg, T. Sakuma, J. Balzarini & P. C. Maudgal, 1986. A novel selective broad-spectrum anti-DNA virus agent, Nature 323: 464–467.

    Article  PubMed  Google Scholar 

  • De Clercq, E., L. Naesens, L. De Bolle, D. Schols, Y. Zhang & J. Neyts, 2001. Antiviral agents active against human herpesviruses HHV-6, HHV-7 and HHV-8, Rev. Med. Virol. 11: 381–395.

    Article  PubMed  CAS  Google Scholar 

  • DeFilippis, V., C. Raggo, A. Moses & K. Fruh, 2003. Functional genomics in virology and antiviral drug discovery, Trends Biotechnol. 21: 452–457.

    Article  PubMed  CAS  Google Scholar 

  • DeJesus, E., A. Wald, T. Warren, T. W. Schacker, S. Trottier, M. Shahmanesh, J. L. Hill & C. A. Brennan, 2003. Valacyclovir for the suppression of recurrent genital herpes in human immunodeficiency virus-infected subjects, J. Infect. Dis. 188: 1009–1016.

    Article  PubMed  CAS  Google Scholar 

  • Derse, D., Y. C. Cheng, P. A. Furman, M. H. St Clair & G. B. Elion, 1981. Inhibition of purified human and herpes simplex virus-induced DNA polymerases by 9-(2-hydroxyethoxymethyl)guanine triphosphate. Effects on primer-template function, J. Biol. Chem. 256: 11447–11451.

    PubMed  CAS  Google Scholar 

  • Desgranges, C., G. Razaka, E. De Clercq, P. Herdewijn, J. Balzarini, F. Drouillet & H. Bricaud, 1986. Effect of (E)-5-(2-bromovinyl)uracil on the catabolism and antitumor activity of 5-fluorouracil in rats and leukemic mice, Cancer Res. 46: 1094–1101.

    PubMed  CAS  Google Scholar 

  • Digard, P., W. R. Bebrin, K. Weisshart & D. M. Coen, 1993. The extreme C terminus of herpes simplex virus DNA polymerase is crucial for functional interaction with processivity factor UL42 and for viral replication, J. Virol. 67: 398–406.

    PubMed  CAS  Google Scholar 

  • Docherty, J. J., A. T. Dobson, J. J. Trimble & B. A. Jennings, 1991. Herpes simplex virus type 1 that exhibits herpes simplex virus type 2 sensitivity to (E)-5-(2-bromovinyl)-2'-deoxyuridine, Intervirology 32: 308–315.

    PubMed  CAS  Google Scholar 

  • Dykxhoorn, D. M.& J. Lieberman, 2006. Silencing viral infection, PLoS. Med. 3: e242.

    Article  PubMed  CAS  Google Scholar 

  • Efstathiou, S., S. Kemp, G. Darby & A. C. Minson, 1989. The role of herpes simplex virus type 1 thymidine kinase in pathogenesis, J. Gen. Virol. 70 (Pt 4): 869–879.

    Article  PubMed  CAS  Google Scholar 

  • Elion, G. B., P. A. Furman, J. A. Fyfe, P. de Miranda, L. Beauchamp & H. J. Schaeffer, 1977. Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl) guanine, Proc. Natl. Acad. Sci. U. S. A 74: 5716–5720.

    Article  PubMed  CAS  Google Scholar 

  • Englund, J. A., M. E. Zimmerman, E. M. Swierkosz, J. L. Goodman, D. R. Scholl & H. H. Balfour, Jr., 1990. Herpes simplex virus resistant to acyclovir. A study in a tertiary care center, Ann. Intern. Med. 112: 416–422.

    PubMed  CAS  Google Scholar 

  • Eriksson, B., B. Oberg & B. Wahren, 1982. Pyrophosphate analogues as inhibitors of DNA polymerases of cytomegalovirus, herpes simplex virus and cellular origin, Biochim. Biophys. Acta 696: 115–123.

    PubMed  CAS  Google Scholar 

  • Field, H. J.& D. M. Coen, 1986. Pathogenicity of herpes simplex virus mutants containing drug resistance mutations in the viral DNA polymerase gene, J. Virol. 60: 286–289.

    PubMed  CAS  Google Scholar 

  • Field, H. J. & G. Darby, 1980. Pathogenicity in mice of strains of herpes simplex virus which are resistant to acyclovir in vitro and in vivo, Antimicrob. Agents Chemother. 17:209–216.

    PubMed  CAS  Google Scholar 

  • Field, H. J.& P. Wildy, 1978. The pathogenicity of thymidine kinase-deficient mutants of herpes simplex virus in mice, J. Hyg. (Lond) 81: 267–277.

    Article  CAS  Google Scholar 

  • Furman, P. A., P. de Miranda, M. H. St Clair & G. B. Elion, 1981. Metabolism of acyclovir in virus-infected and uninfected cells, Antimicrob. Agents Chemother. 20: 518–524.

    PubMed  CAS  Google Scholar 

  • Furman, P. A., M. H. St Clair, J. A. Fyfe, J. L. Rideout, P. M. Keller & G. B. Elion, 1979. Inhibition of herpes simplex virus-induced DNA polymerase activity and viral DNA replication by 9-(2-hydroxyethoxymethyl) guanine and its triphosphate, J. Virol. 32: 72–77.

    PubMed  CAS  Google Scholar 

  • Furman, P. A., M. H. St Clair & T. Spector, 1984. Acyclovir triphosphate is a suicide inactivator of the herpes simplex virus DNA polymerase, J. Biol. Chem. 259: 9575–9579.

    PubMed  CAS  Google Scholar 

  • Fyfe, J. A., 1982. Differential phosphorylation of (E)-5-(2-bromovinyl)-2'-deoxyuridine mono- phosphate by thymidylate kinases from herpes simplex viruses types 1 and 2 and varicella zoster virus, Mol. Pharmacol. 21: 432–437.

    PubMed  CAS  Google Scholar 

  • Fyfe, J. A., P. M. Keller, P. A. Furman, R. L. Miller & G. B. Elion, 1978. Thymidine kinase from herpes simplex virus phosphorylates the new antiviral compound, 9-(2-hydroxyethoxymethyl)guanine, J. Biol. Chem. 253: 8721–8727.

    PubMed  CAS  Google Scholar 

  • Gaudreau, A., E. Hill, H. H. Balfour, Jr., A. Erice & G. Boivin, 1998. Phenotypic and genotypic characterization of acyclovir-resistant herpes simplex viruses from immunocompromised patients, J. Infect. Dis. 178: 297–303.

    PubMed  CAS  Google Scholar 

  • Gilbert, C., J. Bestman-Smith & G. Boivin, 2002. Resistance of herpesviruses to antiviral drugs: clinical impacts and molecular mechanisms, Drug Resist. Updat. 5: 88–114.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, C., J. Handfield, E. Toma, R. Lalonde, M. G. Bergeron & G. Boivin, 1998. Emergence and prevalence of cytomegalovirus UL97 mutations associated with ganciclovir resistance in AIDS patients, AIDS 12: 125–129.

    Article  PubMed  CAS  Google Scholar 

  • Grey, F., M. Sowa, P. Collins, R. J. Fenton, W. Harris, W. Snowden, S. Efstathiou & G. Darby, 2003. Characterization of a neurovirulent acyclovir-resistant variant of herpes simplex virus, J. Gen. Virol. 84: 1403–1410.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths, A., S. H. Chen, B. C. Horsburgh & D. M. Coen, 2003. Translational compensation of a frameshift mutation affecting herpes simplex virus thymidine kinase is sufficient to permit reactivation from latency, J. Virol. 77: 4703–4709.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths, A.& D. M. Coen, 2003. High-frequency phenotypic reversion and pathogenicity of an acyclovir-resistant herpes simplex virus mutant, J. Virol. 77: 2282–2286.

    Article  PubMed  CAS  Google Scholar 

  • Guo, A., P. Hu, P. V. Balimane, F. H. Leibach & P. J. Sinko, 1999. Interactions of a nonpeptidic drug, valacyclovir, with the human intestinal peptide transporter (hPEPT1) expressed in a mammalian cell line, J. Pharmacol. Exp. Ther. 289: 448–454.

    PubMed  CAS  Google Scholar 

  • Gupta, R., A. Wald, E. Krantz, S. Selke, T. Warren, M. Vargas-Cortes, G. Miller & L. Corey, 2004. Valacyclovir and acyclovir for suppression of shedding of herpes simplex virus in the genital tract, J. Infect. Dis. 190: 1374–1381.

    Article  PubMed  CAS  Google Scholar 

  • Hannon, G. J., 2002. RNA interference, Nature 418: 244–251.

    Article  PubMed  CAS  Google Scholar 

  • Harris, W., P. Collins, R. J. Fenton, W. Snowden, M. Sowa & G. Darby, 2003. Phenotypic and genotypic characterization of clinical isolates of herpes simplex virus resistant to aciclovir, J. Gen. Virol. 84: 1393–1401.

    Article  PubMed  CAS  Google Scholar 

  • Hartline, C. B., K. M. Gustin, W. B. Wan, S. L. Ciesla, J. R. Beadle, K. Y. Hostetler & E. R. Kern, 2005. Ether lipid-ester prodrugs of acyclic nucleoside phosphonates: activity against adenovirus replication in vitro, J. Infect. Dis. 191: 396–399.

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa, T., M. Kurokawa, T. A. Yukawa, M. Horii & K. Shiraki, 1995. Inhibitory action of acyclovir (ACV) and penciclovir (PCV) on plaque formation and partial cross-resistance of ACV-resistant varicella-zoster virus to PCV, Antiviral Res. 27: 271–279.

    Article  PubMed  CAS  Google Scholar 

  • Hill, E. L., G. A. Hunter & M. N. Ellis, 1991. In vitro and in vivo characterization of herpes simplex virus clinical isolates recovered from patients infected with human immunodeficiency virus, Antimicrob. Agents Chemother. 35: 2322–2328.

    PubMed  CAS  Google Scholar 

  • Ho, H. T., K. L. Woods, J. J. Bronson, H. De Boeck, J. C. Martin & M. J. Hitchcock, 1992. Intracellular metabolism of the antiherpes agent (S)-1-[3-hydroxy-2-(phosphonylmethoxy) propyl]cytosine, Mol. Pharmacol. 41: 197–202.

    PubMed  CAS  Google Scholar 

  • Hockova, D., A. Holý, M. Masojidkova, G. Andrei, R. Snoeck, E. De Clercq & J. Balzarini, 2003. 5-Substituted-2,4-diamino-6-[2-(phosphonomethoxy)ethoxy]pyrimidines-acycli c nucleoside phosphonate analogues with antiviral activity, J. Med. Chem. 46: 5064–5073.

    Article  PubMed  CAS  Google Scholar 

  • Hockova, D., A. Holý, M. Masojidkova, G. Andrei, R. Snoeck, E. De Clercq & J. Balzarini, 2004. Synthesis and antiviral activity of 2,4-diamino-5-cyano-6-[2-(phosphonomethoxy) ethoxy]pyrimidine and related compounds, Bioorg. Med. Chem. 12: 3197–3202.

    Article  PubMed  CAS  Google Scholar 

  • Hodson, E. M., C. A. Jones, A. C. Webster, G. F. Strippoli, P. G. Barclay, K. Kable, D. Vimalachandra & J. C. Craig, 2005. Antiviral medications to prevent cytomegalovirus disease and early death in recipients of solid-organ transplants: a systematic review of randomised controlled trials, Lancet 365: 2105–2115.

    Article  PubMed  CAS  Google Scholar 

  • Horsburgh, B. C., S. H. Chen, A. Hu, G. B. Mulamba, W. H. Burns & D. M. Coen, 1998. Recurrent acyclovir-resistant herpes simplex in an immunocompromised patient: can strain differences compensate for loss of thymidine kinase in pathogenesis?, J. Infect. Dis. 178: 618–625.

    Article  PubMed  CAS  Google Scholar 

  • Hostetler, K. Y., S. Rought, K. A. Aldern, J. Trahan, J. R. Beadle & J. Corbeil, 2006. Enhanced antiproliferative effects of alkoxyalkyl esters of cidofovir in human cervical cancer cells in vitro, Mol. Cancer Ther. 5: 156–159.

    Article  PubMed  CAS  Google Scholar 

  • Huang, L., K. K. Ishii, H. Zuccola, A. M. Gehring, C. B. Hwang, J. Hogle & D. M. Coen, 1999. The enzymological basis for resistance of herpesvirus DNA polymerase mutants to acyclovir: relationship to the structure of alpha-like DNA polymerases, Proc. Natl. Acad. Sci. U. S. A 96: 447–452.

    Article  PubMed  CAS  Google Scholar 

  • Hwang, C. B.& H. J. Chen, 1995. An altered spectrum of herpes simplex virus mutations mediated by an antimutator DNA polymerase, Gene 152: 191–193.

    Article  PubMed  CAS  Google Scholar 

  • Hwang, C. B., B. Horsburgh, E. Pelosi, S. Roberts, P. Digard & D. M. Coen, 1994. A net +1 frameshift permits synthesis of thymidine kinase from a drug-resistant herpes simplex virus mutant, Proc. Natl. Acad. Sci. U. S. A 91: 5461–5465.

    Article  PubMed  CAS  Google Scholar 

  • Hwang, C. B., K. L. Ruffner & D. M. Coen, 1992. A point mutation within a distinct conserved region of the herpes simplex virus DNA polymerase gene confers drug resistance, J. Virol. 66: 1774–1776.

    PubMed  CAS  Google Scholar 

  • Ida, M., S. Kageyama, H. Sato, T. Kamiyama, J. Yamamura, M. Kurokawa, M. Morohashi & K. Shiraki, 1999. Emergence of resistance to acyclovir and penciclovir in varicella-zoster virus and genetic analysis of acyclovir-resistant variants, Antiviral Res. 40: 155–166.

    Article  PubMed  CAS  Google Scholar 

  • Ilsley, D. D., S. H. Lee, W. H. Miller & R. D. Kuchta, 1995. Acyclic guanosine analogs inhibit DNA polymerases alpha, delta, and epsilon with very different potencies and have unique mechanisms of action, Biochemistry 34: 2504–2510.

    Article  PubMed  CAS  Google Scholar 

  • Iwayama, S., Y. Ohmura, K. Suzuki, N. Ono, H. Nakazawa, M. Aoki, I. Tanabe, T. Sekiyama, T. Tsuji, M. Okunishi, K. Yamanishi & Y. Nishiyama, 1999. Evaluation of anti-herpesvirus activity of (1'S,2'R)-9-[[1',2'-bis(hydroxymethyl)cycloprop-1'-yl]methyl]- guanine (A-5021) in mice, Antiviral Res. 42: 139–148.

    Article  PubMed  CAS  Google Scholar 

  • Iwayama, S., N. Ono, Y. Ohmura, K. Suzuki, M. Aoki, H. Nakazawa, M. Oikawa, T. Kato, M. Okunishi, Y. Nishiyama & K. Yamanishi, 1998. Antiherpesvirus activities of (1'S,2'R)-9-[[1',2'-bis(hydroxymethyl)cycloprop-1'-yl]methyl]guanine (A-5021) in cell culture, Antimicrob. Agents Chemother. 42: 1666–1670.

    PubMed  CAS  Google Scholar 

  • Jabs, D. A., C. Enger, M. Forman & J. P. Dunn, 1998. Incidence of foscarnet resistance and cidofovir resistance in patients treated for cytomegalovirus retinitis. The cytomegalovirus retinitis and viral resistance study group, Antimicrob. Agents Chemother. 42: 2240–2244.

    PubMed  CAS  Google Scholar 

  • Jacobson, J. G., K. L. Ruffner, M. Kosz-Vnenchak, C. B. Hwang, K. K. Wobbe, D. M. Knipe & D. M. Coen, 1993. Herpes simplex virus thymidine kinase and specific stages of latency in murine trigeminal ganglia, J. Virol. 67: 6903–6908.

    PubMed  CAS  Google Scholar 

  • Jiang, C., Y. T. Hwang, J. C. Randell, D. M. Coen & C. B. Hwang, 2007a. Mutations that decrease DNA binding of the processivity factor of the herpes simplex virus DNA polymerase reduce viral yield, alter the kinetics of viral DNA replication, and decrease the fidelity of DNA replication, J. Virol. 81: 3495–3502.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, C., Y. T. Hwang, G. Wang, J. C. Randell, D. M. Coen & C. B. Hwang, 2007b. Herpes simplex virus mutants with multiple substitutions affecting DNA binding of UL42 are impaired for viral replication and DNA synthesis, J. Virol. 81: 12077–12079.

    Article  PubMed  CAS  Google Scholar 

  • Kamiyama, T., M. Kurokawa & K. Shiraki, 2001. Characterization of the DNA polymerase gene of varicella-zoster viruses resistant to acyclovir, J. Gen. Virol. 82: 2761–2765.

    PubMed  CAS  Google Scholar 

  • Kaufman, H., E. L. Martola & C. Dohlman, 1962. Use of 5-iodo-2'-deoxyuridine (IDU) in treatment of herpes simplex keratitis, Arch. Ophthalmol. 68: 235–239.

    Article  PubMed  CAS  Google Scholar 

  • Kaufman, H. E., 1962. Clinical cure of herpes simplex keratitis by 5-iodo-2-deoxyuridine, Proc. Soc. Exp. Biol. Med. 109: 251–252.

    PubMed  CAS  Google Scholar 

  • Kaufman, H. E., 1963. Chemotherapy of Herpes Keratitis, Invest Ophthalmol. 2: 504–518.

    PubMed  CAS  Google Scholar 

  • Kaufman, H. E.& C. Heidelberger, 1964. Therapeutic Antiviral Action of 5-trifluoromethyl-2'-deoxyuridine in herpes simplex keratitis, Science 145: 585–586.

    Article  PubMed  CAS  Google Scholar 

  • Keith, K. A., W. B. Wan, S. L. Ciesla, J. R. Beadle, K. Y. Hostetler & E. R. Kern, 2004. Inhibitory activity of alkoxyalkyl and alkyl esters of cidofovir and cyclic cidofovir against orthopoxvirus replication in vitro, Antimicrob. Agents Chemother. 48: 1869–1871.

    Article  PubMed  CAS  Google Scholar 

  • Keller, P. M., J. A. Fyfe, L. Beauchamp, C. M. Lubbers, P. A. Furman, H. J. Schaeffer & G. B. Elion, 1981. Enzymatic phosphorylation of acyclic nucleoside analogs and correlations with antiherpetic activities, Biochem. Pharmacol. 30: 3071–3077.

    Article  PubMed  CAS  Google Scholar 

  • Kern, E. R., D. J. Collins, W. B. Wan, J. R. Beadle, K. Y. Hostetler & D. C. Quenelle, 2004. Oral treatment of murine cytomegalovirus infections with ether lipid esters of cidofovir, Antimicrob. Agents Chemother. 48: 3516–3522.

    Article  PubMed  CAS  Google Scholar 

  • Kinchington, P. R., T. Araullo-Cruz, J. P. Vergnes, K. Yates & Y. J. Gordon, 2002. Sequence changes in the human adenovirus type 5 DNA polymerase associated with resistance to the broad spectrum antiviral cidofovir, Antiviral Res. 56: 73–84.

    Article  PubMed  CAS  Google Scholar 

  • Kleymann, G., 2005. Agents and strategies in development for improved management of herpes simplex virus infection and disease, Expert. Opin. Investig. Drugs 14: 135–161.

    Article  PubMed  CAS  Google Scholar 

  • Knopf, K. W., 1979. Properties of herpes simplex virus DNA polymerase and characterization of its associated exonuclease activity, Eur. J. Biochem. 98: 231–244.

    Article  PubMed  CAS  Google Scholar 

  • Krecmerova, M., A. Holý, A. Piskala, M. Masojidkova, G. Andrei, L. Naesens, J. Neyts, J. Balzarini, E. De Clercq & R. Snoeck, 2007a. Antiviral activity of triazine analogues of 1-(S)-[3-hydroxy-2-(phosphonomethoxy)propyl]cytosine (cidofovir) and related compounds, J. Med. Chem. 50: 1069–1077.

    Article  PubMed  CAS  Google Scholar 

  • Krecmerova, M., A. Holý, R. Pohl, M. Masojidkova, G. Andrei, L. Naesens, J. Neyts, J. Balzarini, E. De Clercq & R. Snoeck, 2007b. Ester Prodrugs of Cyclic 1-(S)- [3-Hydroxy-2-(phosphonomethoxy)propyl]-5-azacytosine: Synthesis and antiviral activity, J. Med. Chem. 50(23): 5765–5772.

    Google Scholar 

  • Larsen, S. D., Z. Zhang, B. A. DiPaolo, P. R. Manninen, D. C. Rohrer, M. J. Hageman, T. A. Hopkins, M. L. Knechtel, N. L. Oien, B. D. Rush, F. J. Schwende, K. J. Stefanski, J. L. Wieber, K. F. Wilkinson, K. M. Zamora, M. W. Wathen & R. J. Brideau, 2007. 7-Oxo-4,7-dihydrothieno[3,2-b]pyridine-6-carboxamides: synthesis and biological activity of a new class of highly potent inhibitors of human cytomegalovirus DNA polymerase, Bioorg. Med. Chem. Lett. 17:3840–3844.

    Article  PubMed  CAS  Google Scholar 

  • Lebeau, I., G. Andrei, F. Dal Pozzo, J. R. Beadle, K. Y. Hostetler, E. De Clercq, O. J. van den Oord & R. Snoeck, 2006. Activities of alkoxyalkyl esters of cidofovir (CDV), cyclic CDV, and (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine against orthopoxviruses in cell monolayers and in organotypic cultures, Antimicrob. Agents Chemother. 50: 2525–2529.

    Article  PubMed  CAS  Google Scholar 

  • Leonard, J. N.& D. V. Schaffer, 2006. Antiviral RNAi therapy: emerging approaches for hitting a moving target, Gene Ther. 13: 532–540.

    Article  PubMed  CAS  Google Scholar 

  • Littler, E., A. D. Stuart & M. S. Chee, 1992. Human cytomegalovirus UL97 open reading frame encodes a protein that phosphorylates the antiviral nucleoside analogue ganciclovir, Nature 358: 160–162.

    Article  PubMed  CAS  Google Scholar 

  • Liu, S., J. D. Knafels, J. S. Chang, G. A. Waszak, E. T. Baldwin, M. R. Deibel, Jr., D. R. Thomsen, F. L. Homa, P. A. Wells, M. C. Tory, R. A. Poorman, H. Gao, X. Qiu & A. P. Seddon, 2006. Crystal structure of the herpes simplex virus 1 DNA polymerase, J. Biol. Chem. 281: 18193–18200.

    Article  PubMed  CAS  Google Scholar 

  • LoPresti, A. E., J. F. Levine, G. B. Munk, C. Y. Tai & D. B. Mendel, 1998. Successful treatment of an acyclovir- and foscarnet-resistant herpes simplex virus type 1 lesion with intravenous cidofovir, Clin. Infect. Dis. 26: 512–513.

    Article  PubMed  CAS  Google Scholar 

  • Loregian, A., B. A. Appleton, J. M. Hogle & D. M. Coen, 2004. Specific residues in the connector loop of the human cytomegalovirus DNA polymerase accessory protein UL44 are crucial for interaction with the UL54 catalytic subunit, J. Virol. 78: 9084–9092.

    Article  PubMed  CAS  Google Scholar 

  • Loregian, A., R. Rigatti, M. Murphy, E. Schievano, G. Palu & H. S. Marsden, 2003. Inhibition of human cytomegalovirus DNA polymerase by C-terminal peptides from the UL54 subunit, J. Virol. 77: 8336–8344.

    Article  PubMed  CAS  Google Scholar 

  • Lowance, D., H. H. Neumayer, C. M. Legendre, J. P. Squifflet, J. Kovarik, P. J. Brennan, D. Norman, R. Mendez, M. R. Keating, G. L. Coggon, A. Crisp & I. C. Lee, 1999. Valacyclovir for the prevention of cytomegalovirus disease after renal transplantation. International Valacyclovir Cytomegalovirus Prophylaxis Transplantation Study Group, N. Engl. J. Med. 340: 1462–1470.

    Article  PubMed  CAS  Google Scholar 

  • Lurain, N. S., A. Weinberg, C. S. Crumpacker & S. Chou, 2001. Sequencing of cytomegalovirus UL97 gene for genotypic antiviral resistance testing, 1, Antimicrob. Agents Chemother. 45: 2775–2780.

    Article  PubMed  CAS  Google Scholar 

  • Manichanh, C., C. Olivier-Aubron, J. P. Lagarde, J. T. Aubin, P. Bossi, A. Gautheret-Dejean, J. M. Huraux & H. Agut, 2001. Selection of the same mutation in the U69 protein kinase gene of human herpesvirus-6 after prolonged exposure to ganciclovir in vitro and in vivo, J. Gen. Virol. 82: 2767–2776.

    PubMed  CAS  Google Scholar 

  • Martin, J. L., C. E. Brown, N. Matthews-Davis & J. E. Reardon, 1994. Effects of antiviral nucleoside analogs on human DNA polymerases and mitochondrial DNA synthesis, Antimicrob. Agents Chemother. 38: 2743–2749.

    PubMed  CAS  Google Scholar 

  • McGuigan, C. & J. Balzarini, 2006. Aryl furano pyrimidines: the most potent and selective anti-VZV agents reported to date, Antiviral Res. 71: 149–153.

    Article  PubMed  CAS  Google Scholar 

  • McGuigan, C., R. N. Pathirana, M. Migliore, R. Adak, G. Luoni, A. T. Jones, A. Diez-Torrubia, M. J. Camarasa, S. Velazquez, G. Henson, E. Verbeken, R. Sienaert, L. Naesens, R. Snoeck, G. Andrei & J. Balzarini, 2007. Preclinical development of bicyclic nucleoside analogues as potent and selective inhibitors of varicella zoster virus, J. Antimicrob. Chemother. 60(6): 1316–1330.

    Google Scholar 

  • McGuigan, C., C. J. Yarnold, G. Jones, S. Velazquez, H. Barucki, A. Brancale, G. Andrei, R. Snoeck, E. De Clercq & J. Balzarini, 1999. Potent and selective inhibition of varicella-zoster virus (VZV) by nucleoside analogues with an unusual bicyclic base, J. Med. Chem. 42: 4479–4484.

    Article  PubMed  CAS  Google Scholar 

  • McGuirt, P. V., J. E. Shaw, G. B. Elion & P. A. Furman, 1984. Identification of small DNA fragments synthesized in herpes simplex virus-infected cells in the presence of acyclovir, Antimicrob. Agents Chemother. 25: 507–509.

    PubMed  CAS  Google Scholar 

  • Meerbach, A., A. Holý, P. Wutzler, E. De Clercq & J. Neyts, 1998. Inhibitory effects of novel nucleoside and nucleotide analogues on Epstein-Barr virus replication, Antivir. Chem. Chemother. 9: 275–282.

    PubMed  CAS  Google Scholar 

  • Mertz, G. J., M. O. Loveless, M. J. Levin, S. J. Kraus, S. L. Fowler, D. Goade & S. K. Tyring, 1997. Oral famciclovir for suppression of recurrent genital herpes simplex virus infection in women. A multicenter, double-blind, placebo-controlled trial. Collaborative Famciclovir Genital Herpes Research Group, Arch. Intern. Med. 157: 343–349.

    Article  PubMed  CAS  Google Scholar 

  • Michel, D. & T. Mertens, 2004. The UL97 protein kinase of human cytomegalovirus and homologues in other herpesviruses: impact on virus and host, Biochim. Biophys. Acta 1697: 169–180.

    PubMed  CAS  Google Scholar 

  • Miller, W. H. & R. L. Miller, 1980. Phosphorylation of acyclovir (acycloguanosine) monophosphate by GMP kinase, J. Biol. Chem. 255: 7204–7207.

    PubMed  CAS  Google Scholar 

  • Miller, W. H. & R. L. Miller, 1982. Phosphorylation of acyclovir diphosphate by cellular enzymes, Biochem. Pharmacol. 31: 3879–3884.

    Article  PubMed  CAS  Google Scholar 

  • Morfin, F. & D. Thouvenot, 2003. Herpes simplex virus resistance to antiviral drugs, J. Clin. Virol. 26: 29–37.

    Article  PubMed  CAS  Google Scholar 

  • Morfin, F., D. Thouvenot, M. Aymard & G. Souillet, 2000. Reactivation of acyclovir-resistant thymidine kinase-deficient herpes simplex virus harbouring single base insertion within a 7 Gs homopolymer repeat of the thymidine kinase gene, J. Med. Virol. 62: 247–250.

    Article  PubMed  CAS  Google Scholar 

  • Morfin, F., D. Thouvenot, M. Turenne-Tessier, B. Lina, M. Aymard & T. Ooka, 1999. Phenotypic and genetic characterization of thymidine kinase from clinical strains of varicella-zoster virus resistant to acyclovir, Antimicrob. Agents Chemother. 43: 2412–2416.

    PubMed  CAS  Google Scholar 

  • Neyts, J., G. Andrei, R. Snoeck, G. Jahne, I. Winkler, M. Helsberg, J. Balzarini & E. De Clercq, 1994. The N-7-substituted acyclic nucleoside analog 2-amino-7-[(1,3-dihydroxy-2-propoxy)methyl]purine is a potent and selective inhibitor of herpesvirus replication, Antimicrob. Agents Chemother. 38: 2710–2716.

    PubMed  CAS  Google Scholar 

  • Neyts, J., J. Balzarini, G. Andrei, Z. Chaoyong, R. Snoeck, A. Zimmermann, T. Mertens, A. Karlsson & E. De Clercq, 1998. Intracellular metabolism of the N7-substituted acyclic nucleoside analog 2-amino-7-(1,3-dihydroxy-2-propoxymethyl)purine, a potent inhibitor of herpesvirus replication, Mol. Pharmacol. 53: 157–165.

    PubMed  CAS  Google Scholar 

  • Neyts, J. & E. De Clercq, 1997. Antiviral drug susceptibility of human herpesvirus 8, Antimicrob. Agents Chemother. 41: 2754–2756.

    PubMed  CAS  Google Scholar 

  • Neyts, J. & E. De Clercq, 2001. Efficacy of 2-amino-7-(1,3-dihydroxy-2-propoxymethyl)purine for treatment of vaccinia virus (orthopoxvirus) infections in mice, Antimicrob. Agents Chemother. 45: 84–87.

    Article  PubMed  CAS  Google Scholar 

  • Neyts, J., G. Jahne, G. Andrei, R. Snoeck, I. Winkler & E. De Clercq, 1995. In vivo antiherpesvirus activity of N-7-substituted acyclic nucleoside analog 2-amino-7-[(1,3-dihydroxy-2-propoxy)methyl]purine, Antimicrob. Agents Chemother. 39: 56–60.

    PubMed  CAS  Google Scholar 

  • Ng, T. I., Y. Shi, H. J. Huffaker, W. Kati, Y. Liu, C. M. Chen, Z. Lin, C. Maring, W. E. Kohlbrenner & A. Molla, 2001. Selection and characterization of varicella-zoster virus variants resistant to (R)-9-[4-hydroxy-2-(hydroxymethy)butyl]guanine, Antimicrob. Agents Chemother. 45: 1629–1636.

    Article  PubMed  CAS  Google Scholar 

  • Nugier, F., J. N. Colin, M. Aymard & M. Langlois, 1992. Occurrence and characterization of acyclovir-resistant herpes simplex virus isolates: report on a two-year sensitivity screening survey, J. Med. Virol. 36: 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Oien, N. L., R. J. Brideau, T. A. Hopkins, J. L. Wieber, M. L. Knechtel, J. A. Shelly, R. A. Anstadt, P. A. Wells, R. A. Poorman, A. Huang, V. A. Vaillancourt, T. L. Clayton, J. A. Tucker & M. W. Wathen, 2002. Broad-spectrum antiherpes activities of 4-hydroxyquinoline carboxamides, a novel class of herpesvirus polymerase inhibitors, Antimicrob. Agents Chemother. 46: 724–730.

    Article  PubMed  CAS  Google Scholar 

  • Okuda, H., T. Nishiyama, K. Ogura, S. Nagayama, K. Ikeda, S. Yamaguchi, Y. Nakamura, K. Kawaguchi, T. Watabe & Y. Ogura, 1997. Lethal drug interactions of sorivudine, a new antiviral drug, with oral 5-fluorouracil prodrugs, Drug Metab. Dispos. 25: 270–273.

    Google Scholar 

  • Okuda, H., K. Ogura, A. Kato, H. Takubo & T. Watabe, 1998. A possible mechanism of eighteen patient deaths caused by interactions of sorivudine, a new antiviral drug, with oral 5-fluorouracil prodrugs, J. Pharmacol. Exp. Ther. 287: 791–799.

    PubMed  CAS  Google Scholar 

  • Ono, N., S. Iwayama, K. Suzuki, T. Sekiyama, H. Nakazawa, T. Tsuji, M. Okunishi, T. Daikoku & Y. Nishiyama, 1998. Mode of action of (1'S,2'R)-9-[[1',2'-bis(hydroxymethyl) cycloprop-1'-yl]methyl]guanine (A-5021) against herpes simplex virus type 1 and type 2 and varicella-zoster virus, Antimicrob. Agents Chemother. 42: 2095–2102.

    PubMed  CAS  Google Scholar 

  • Ostrander, M.& Y. C. Cheng, 1980. Properties of herpes simplex virus type 1 and type 2 DNA polymerase, Biochim. Biophys. Acta 609: 232–245.

    PubMed  CAS  Google Scholar 

  • Pahwa, S., K. Biron, W. Lim, P. Swenson, M. H. Kaplan, N. Sadick & R. Pahwa, 1988. Continuous varicella-zoster infection associated with acyclovir resistance in a child with AIDS, JAMA 260: 2879–2882.

    Article  PubMed  CAS  Google Scholar 

  • Painter, G. R.& K. Y. Hostetler, 2004. Design and development of oral drugs for the prophylaxis and treatment of smallpox infection, Trends Biotechnol. 22: 423–427.

    Article  PubMed  CAS  Google Scholar 

  • Pelosi, E., G. B. Mulamba & D. M. Coen, 1998a. Penciclovir and pathogenesis phenotypes of drug-resistant Herpes simplex virus mutants, Antiviral Res. 37: 17–28.

    Article  PubMed  CAS  Google Scholar 

  • Pelosi, E., F. Rozenberg, D. M. Coen & K. L. Tyler, 1998b. A herpes simplex virus DNA polymerase mutation that specifically attenuates neurovirulence in mice, Virology 252: 364–372.

    Article  PubMed  CAS  Google Scholar 

  • Perry, C. M. & D. Faulds, 1996. Valaciclovir. A review of its antiviral activity, pharmacokinetic properties and therapeutic efficacy in herpesvirus infections, Drugs 52: 754–772.

    Article  PubMed  CAS  Google Scholar 

  • Perry, C. M. & A. J. Wagstaff, 1995. Famciclovir. A review of its pharmacological properties and therapeutic efficacy in herpesvirus infections, Drugs 50: 396–415.

    Article  PubMed  CAS  Google Scholar 

  • Pottage, J. C., Jr. & H. A. Kessler, 1995. Herpes simplex virus resistance to acyclovir: clinical relevance, Infect. Agents Dis. 4: 115–124.

    PubMed  CAS  Google Scholar 

  • Quenelle, D. C., D. J. Collins, W. B. Wan, J. R. Beadle, K. Y. Hostetler & E. R. Kern, 2004. Oral treatment of cowpox and vaccinia virus infections in mice with ether lipid esters of cidofovir, Antimicrob. Agents Chemother. 48: 404–412.

    Article  PubMed  CAS  Google Scholar 

  • Rashidi, M. R., J. A. Smith, S. E. Clarke & C. Beedham, 1997. In vitro oxidation of famciclovir and 6-deoxypenciclovir by aldehyde oxidase from human, guinea pig, rabbit, and rat liver, Drug Metab Dispos. 25: 805–813.

    PubMed  CAS  Google Scholar 

  • Razonable, R. R. & V. C. Emery, 2004. Management of CMV infection and disease in transplant patients. 27–29 February 2004, Herpes. 11: 77–86.

    PubMed  Google Scholar 

  • Reardon, J. E., 1989. Herpes simplex virus type 1 and human DNA polymerase interactions with 2'-deoxyguanosine 5'-triphosphate analogues. Kinetics of incorporation into DNA and induction of inhibition, J. Biol. Chem. 264: 19039–19044.

    PubMed  CAS  Google Scholar 

  • Reid, R., E. C. Mar, E. S. Huang & M. D. Topal, 1988. Insertion and extension of acyclic, dideoxy, and ara nucleotides by herpesviridae, human alpha and human beta polymerases. A unique inhibition mechanism for 9-(1,3-dihydroxy-2-propoxymethyl)guanine triphosphate, J. Biol. Chem. 263: 3898–3904.

    PubMed  CAS  Google Scholar 

  • Ruiz, J. C., K. A. Aldern, J. R. Beadle, C. B. Hartline, E. R. Kern & K. Y. Hostetler, 2006. Synthesis and antiviral evaluation of alkoxyalkyl esters of phosphonopropoxymethyl-guanine and phosphonopropoxymethyl-diaminopurine, Antivir. Chem. Chemother. 17: 89–95.

    PubMed  CAS  Google Scholar 

  • Ruiz, J. C., J. R. Beadle, K. A. Aldern, K. A. Keith, C. B. Hartline, E. R. Kern & K. Y. Hostetler, 2007. Synthesis and antiviral evaluation of alkoxyalkyl-phosphate conjugates of cidofovir and adefovir, Antiviral Res. 75: 87–90.

    Article  PubMed  CAS  Google Scholar 

  • Sacks, S. L., F. Y. Aoki, A. Y. Martel, S. D. Shafran & M. Lassonde, 2005. Clinic-initiated, twice-daily oral famciclovir for treatment of recurrent genital herpes: a randomized, double-blind, controlled trial, Clin. Infect. Dis. 41: 1097–1104.

    Article  PubMed  CAS  Google Scholar 

  • Sacks, S. L., R. J. Wanklin, D. E. Reece, K. A. Hicks, K. L. Tyler & D. M. Coen, 1989. Progressive esophagitis from acyclovir-resistant herpes simplex. Clinical roles for DNA polymerase mutants and viral heterogeneity? Ann. Intern. Med. 111: 893–899.

    PubMed  CAS  Google Scholar 

  • Safrin, S., J. Cherrington & H. S. Jaffe, 1997. Clinical uses of cidofovir, Rev. Med. Virol. 7: 145–156.

    Article  PubMed  CAS  Google Scholar 

  • Safronetz, D., M. Petric, R. Tellier, B. Parvez & G. A. Tipples, 2003. Mapping ganciclovir resistance in the human herpesvirus-6 U69 protein kinase, J. Med. Virol. 71: 434–439.

    Article  PubMed  CAS  Google Scholar 

  • Sarisky, R. T., M. R. Quail, P. E. Clark, T. T. Nguyen, W. S. Halsey, R. J. Wittrock, B. J. O'Leary, M. M. Van Horn, G. M. Sathe, S. Van Horn, M. D. Kelly, T. H. Bacon & J. J. Leary, 2001. Characterization of herpes simplex viruses selected in culture for resistance to penciclovir or acyclovir, J. Virol. 75: 1761–1769.

    Article  PubMed  CAS  Google Scholar 

  • Sasadeusz, J. J. & S. L. Sacks, 1996. Spontaneous reactivation of thymidine kinase-deficient, acyclovir-resistant type-2 herpes simplex virus: masked heterogeneity or reversion?, J. Infect. Dis. 174: 476–482.

    Article  PubMed  CAS  Google Scholar 

  • Sasadeusz, J. J., F. Tufaro, S. Safrin, K. Schubert, M. M. Hubinette, P. K. Cheung & S. L. Sacks, 1997. Homopolymer mutational hot spots mediate herpes simplex virus resistance to acyclovir, J. Virol. 71: 3872–3878.

    PubMed  CAS  Google Scholar 

  • Schaeffer, H. J., L. Beauchamp, P. de Miranda, G. B. Elion, D. J. Bauer & P. Collins, 1978. 9-(2-hydroxyethoxymethyl) guanine activity against viruses of the herpes group, Nature 272: 583–585.

    Article  PubMed  CAS  Google Scholar 

  • Schnute, M. E., D. J. Anderson, R. J. Brideau, F. L. Ciske, S. A. Collier, M. M. Cudahy, M. Eggen, M. J. Genin, T. A. Hopkins, T. M. Judge, E. J. Kim, M. L. Knechtel, S. K. Nair, J. A. Nieman, N. L. Oien, A. Scott, S. P. Tanis, V. A. Vaillancourt, M. W. Wathen & J. L. Wieber, 2007. 2-Aryl-2-hydroxyethylamine substituted 4-oxo-4,7-dihydrothieno[2,3-b]pyridines as broad-spectrum inhibitors of human herpesvirus polymerases, Bioorg. Med. Chem. Lett. 17: 3349–3353.

    Article  PubMed  CAS  Google Scholar 

  • Schnute, M. E., M. M. Cudahy, R. J. Brideau, F. L. Homa, T. A. Hopkins, M. L. Knechtel, N. L. Oien, T. W. Pitts, R. A. Poorman, M. W. Wathen & J. L. Wieber, 2005. 4-Oxo-4,7-dihydrothieno[2,3-b]pyridines as non-nucleoside inhibitors of human cytomegalovirus and related herpesvirus polymerases, J. Med. Chem. 48: 5794–5804.

    Article  PubMed  CAS  Google Scholar 

  • Scott, G. M., M. A. Isaacs, F. Zeng, A. M. Kesson & W. D. Rawlinson, 2004. Cytomegalovirus antiviral resistance associated with treatment induced UL97 (protein kinase) and UL54 (DNA polymerase) mutations, J. Med. Virol. 74: 85–93.

    Article  PubMed  CAS  Google Scholar 

  • Shi, R., A. Azzi, C. Gilbert, G. Boivin & S. X. Lin, 2006. Three-dimensional modeling of cytomegalovirus DNA polymerase and preliminary analysis of drug resistance, Proteins 64: 301–307.

    Article  PubMed  CAS  Google Scholar 

  • Shin, M. C., S. K. Hong, J. S. Yoon, S. S. Park, S. G. Lee, D. G. Lee, W. S. Min, W. S. Shin & S. Y. Paik, 2006. Inhibition of UL54 and UL97 genes of human cytomegalovirus by RNA interference, Acta Virol. 50: 263–268.

    PubMed  CAS  Google Scholar 

  • Sienaert, R., G. Andrei, R. Snoeck, E. De Clercq, C. McGuigan & J. Balzarini, 2004. Inactivity of the bicyclic pyrimidine nucleoside analogues against simian varicella virus (SVV) does not correlate with their substrate activity for SVV-encoded thymidine kinase, Biochem. Biophys. Res. Commun. 315: 877–883.

    Article  PubMed  CAS  Google Scholar 

  • Sienaert, R., L. Naesens, A. Brancale, A. Carangio, G. Andrei, R. Snoeck, A. Van Kuilenburg, E. De Clercq, C. McGuigan & J. Balzarini, 2003. Metabolic and pharmacological characteristics of the bicyclic nucleoside analogues (BCNAs) as highly selective inhibitors of varicella-zoster virus (VZV), Nucleosides Nucleotides Nucleic Acids 22: 995–997.

    Article  PubMed  CAS  Google Scholar 

  • Sienaert, R., L. Naesens, A. Brancale, E. De Clercq, C. McGuigan & J. Balzarini, 2002. Specific recognition of the bicyclic pyrimidine nucleoside analogs, a new class of highly potent and selective inhibitors of varicella-zoster virus (VZV), by the VZV-encoded thymidine kinase, Mol. Pharmacol. 61: 249–254.

    Article  PubMed  CAS  Google Scholar 

  • Silva, J. M., S. M. Hammond & G. J. Hannon, 2002. RNA interference: a promising approach to antiviral therapy?, Trends Mol. Med. 8: 505–508.

    Article  PubMed  CAS  Google Scholar 

  • Simpson, D. & K. A. Lyseng-Williamson, 2006. Famciclovir: a review of its use in herpes zoster and genital and orolabial herpes, Drugs 66: 2397–2416.

    Article  PubMed  CAS  Google Scholar 

  • Skoldenberg, B., M. Forsgren, K. Alestig, T. Bergstrom, L. Burman, E. Dahlqvist, A. Forkman, A. Fryden, K. Lovgren & K. Norlin, 1984. Acyclovir versus vidarabine in herpes simplex encephalitis. Randomised multicentre study in consecutive Swedish patients, Lancet 2: 707–711.

    Article  PubMed  CAS  Google Scholar 

  • Smee, D. F., K. W. Bailey & R. W. Sidwell, 2002. Treatment of lethal cowpox virus respiratory infections in mice with 2-amino-7-[(1,3-dihydroxy-2-propoxy)methyl]purine and its orally active diacetate ester prodrug, Antiviral Res. 54: 113–120.

    Article  PubMed  CAS  Google Scholar 

  • Smith, I. L., J. M. Cherrington, R. E. Jiles, M. D. Fuller, W. R. Freeman & S. A. Spector, 1997. High-level resistance of cytomegalovirus to ganciclovir is associated with alterations in both the UL97 and DNA polymerase genes, J. Infect. Dis. 176: 69–77.

    Article  PubMed  CAS  Google Scholar 

  • Snoeck, R., G. Andrei, M. Gerard, A. Silverman, A. Hedderman, J. Balzarini, C. Sadzot-Delvaux, G. Tricot, N. Clumeck & E. De Clercq, 1994a. Successful treatment of progressive mucocutaneous infection due to acyclovir- and foscarnet-resistant herpes simplex virus with (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine (HPMPC), Clin. Infect. Dis. 18: 570–578.

    Article  PubMed  CAS  Google Scholar 

  • Snoeck, R. & E. De Clercq, 2002. Role of cidofovir in the treatment of DNA virus infections, other than CMV infections, in immunocompromised patients, Curr. Opin. Investig. Drugs 3: 1561–1566.

    PubMed  CAS  Google Scholar 

  • Snoeck, R., M. Gerard, C. Sadzot-Delvaux, G. Andrei, J. Balzarini, D. Reymen, N. Ahadi, J. M. De Bruyn, J. Piette & B. Rentier, 1994b. Meningoradiculoneuritis due to acyclovir-resistant varicella zoster virus in an acquired immune deficiency syndrome patient, J. Med. Virol. 42: 338–347.

    Article  PubMed  CAS  Google Scholar 

  • St Clair, M. H., P. A. Furman, C. M. Lubbers & G. B. Elion, 1980. Inhibition of cellular alpha and virally induced deoxyribonucleic acid polymerases by the triphosphate of acyclovir, Antimicrob. Agents Chemother. 18: 741–745.

    PubMed  CAS  Google Scholar 

  • Sullivan, V. & D. M. Coen, 1991. Isolation of foscarnet-resistant human cytomegalovirus patterns of resistance and sensitivity to other antiviral drugs, J. Infect. Dis. 164: 781–784.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan, V., C. L. Talarico, S. C. Stanat, M. Davis, D. M. Coen & K. K. Biron, 1992. A protein kinase homologue controls phosphorylation of ganciclovir in human cytomegalovirus-infected cells, Nature 359: 85.

    Article  PubMed  CAS  Google Scholar 

  • Suzutani, T., K. Ishioka, E. De Clercq, K. Ishibashi, H. Kaneko, T. Kira, K. Hashimoto, M. Ogasawara, K. Ohtani, N. Wakamiya & M. Saijo, 2003. Differential mutation patterns in thymidine kinase and DNA polymerase genes of herpes simplex virus type 1 clones passaged in the presence of acyclovir or penciclovir, Antimicrob. Agents Chemother. 47: 1707–1713.

    Article  PubMed  CAS  Google Scholar 

  • Suzutani, T., S. Koyano, M. Takada, I. Yoshida & M. Azuma, 1995. Analysis of the relationship between cellular thymidine kinase activity and virulence of thymidine kinase-negative herpes simplex virus types 1 and 2, Microbiol. Immunol. 39: 787–794.

    PubMed  CAS  Google Scholar 

  • Talarico, C. L., T. C. Burnette, W. H. Miller, S. L. Smith, M. G. Davis, S. C. Stanat, T. I. Ng, Z. He, D. M. Coen, B. Roizman & K. K. Biron, 1999. Acyclovir is phosphorylated by the human cytomegalovirus UL97 protein, Antimicrob. Agents Chemother. 43: 1941–1946.

    PubMed  CAS  Google Scholar 

  • Talarico, C. L., W. C. Phelps & K. K. Biron, 1993. Analysis of the thymidine kinase genes from acyclovir-resistant mutants of varicella-zoster virus isolated from patients with AIDS, J. Virol. 67: 1024–1033.

    PubMed  CAS  Google Scholar 

  • Tchesnokov, E. P., C. Gilbert, G. Boivin & M. Gotte, 2006. Role of helix P of the human cytomegalovirus DNA polymerase in resistance and hypersusceptibility to the antiviral drug foscarnet, J. Virol. 80: 1440–1450.

    Article  PubMed  CAS  Google Scholar 

  • Tenney, D. J., G. Yamanaka, S. M. Voss, C. W. Cianci, A. V. Tuomari, A. K. Sheaffer, M. Alam & R. J. Colonno, 1997. Lobucavir is phosphorylated in human cytomegalovirus-infected and -uninfected cells and inhibits the viral DNA polymerase, Antimicrob. Agents Chemother. 41: 2680–2685.

    PubMed  CAS  Google Scholar 

  • Tenser, R. B., J. C. Jones, S. J. Ressel & F. A. Fralish, 1983. Thymidine plaque autoradiography of thymidine kinase-positive and thymidine kinase-negative herpesviruses, J. Clin. Microbiol. 17: 122–127.

    PubMed  CAS  Google Scholar 

  • Thomsen, D. R., N. L. Oien, T. A. Hopkins, M. L. Knechtel, R. J. Brideau, M. W. Wathen & F. L. Homa, 2003. Amino acid changes within conserved region III of the herpes simplex virus and human cytomegalovirus DNA polymerases confer resistance to 4-oxo-dihydroquinolines, a novel class of herpesvirus antiviral agents, J. Virol. 77: 1868–1876.

    Article  PubMed  CAS  Google Scholar 

  • Tucker, J. A., T. L. Clayton, C. G. Chidester, M. W. Schulz, L. E. Harrington, S. J. Conrad, Y. Yagi, N. L. Oien, D. Yurek & M. S. Kuo, 2000. Structure-activity relationships of acyloxyamidine cytomegalovirus DNA polymerase inhibitors, Bioorg. Med. Chem. 8: 601–615.

    Article  PubMed  CAS  Google Scholar 

  • Vaillancourt, V. A., M. M. Cudahy, S. A. Staley, R. J. Brideau, S. J. Conrad, M. L. Knechtel, N. L. Oien, J. L. Wieber, Y. Yagi & M. W. Wathen, 2000. Naphthalene carboxamides as inhibitors of human cytomegalovirus DNA polymerase, Bioorg. Med. Chem. Lett. 10: 2079–2081.

    Article  PubMed  CAS  Google Scholar 

  • Vere Hodge, R. A., D. Sutton, M. R. Boyd, M. R. Harnden & R. L. Jarvest, 1989. Selection of an oral prodrug (BRL 42810; famciclovir) for the antiherpesvirus agent BRL 39123 [9-(4-hydroxy-3-hydroxymethylbut-l-yl)guanine; penciclovir], Antimicrob. Agents Chemother. 33: 1765–1773.

    PubMed  CAS  Google Scholar 

  • Visse, B., B. Dumont, J. M. Huraux & A. M. Fillet, 1998. Single amino acid change in DNA polymerase is associated with foscarnet resistance in a varicella-zoster virus strain recovered from a patient with AIDS, J. Infect. Dis. 178 Suppl 1: S55–S57.

    Article  PubMed  CAS  Google Scholar 

  • Visse, B., J. M. Huraux & A. M. Fillet, 1999. Point mutations in the varicella-zoster virus DNA polymerase gene confers resistance to foscarnet and slow growth phenotype, J. Med. Virol. 59: 84–90.

    Article  PubMed  CAS  Google Scholar 

  • Wald, A., S. Selke, T. Warren, F. Y. Aoki, S. Sacks, F. Diaz-Mitoma & L. Corey, 2006. Comparative efficacy of famciclovir and valacyclovir for suppression of recurrent genital herpes and viral shedding, Sex Transm. Dis. 33: 529–533.

    Article  PubMed  CAS  Google Scholar 

  • Wan, W. B., J. R. Beadle, C. Hartline, E. R. Kern, S. L. Ciesla, N. Valiaeva & K. Y. Hostetler, 2005. Comparison of the antiviral activities of alkoxyalkyl and alkyl esters of cidofovir against human and murine cytomegalovirus replication in vitro, Antimicrob. Agents Chemother. 49: 656–662.

    Article  PubMed  CAS  Google Scholar 

  • Warren, T., J. Harris & C. A. Brennan, 2004. Efficacy and safety of valacyclovir for the suppression and episodic treatment of herpes simplex virus in patients with HIV, Clin. Infect. Dis. 39 Suppl 5: S258-S266.

    Article  PubMed  CAS  Google Scholar 

  • Wathen, M. W., 2002. Non-nucleoside inhibitors of herpesviruses, Rev. Med. Virol. 12: 167–178.

    Article  PubMed  CAS  Google Scholar 

  • Weinberg, A., D. A. Jabs, S. Chou, B. K. Martin, N. S. Lurain, M. S. Forman & C. Crumpacker, 2003. Mutations conferring foscarnet resistance in a cohort of patients with acquired immunodeficiency syndrome and cytomegalovirus retinitis, J. Infect. Dis. 187: 777–784.

    Article  PubMed  Google Scholar 

  • Weller, S., M. R. Blum, M. Doucette, T. Burnette, D. M. Cederberg, P. de Miranda & M. L. Smiley, 1993. Pharmacokinetics of the acyclovir pro-drug valaciclovir after escalating single- and multiple-dose administration to normal volunteers, Clin. Pharmacol. Ther. 54: 595–605.

    Article  PubMed  CAS  Google Scholar 

  • Whitley, R. J., C. A. Alford, M. S. Hirsch, R. T. Schooley, J. P. Luby, F. Y. Aoki, D. Hanley, A. J. Nahmias & S. J. Soong, 1986. Vidarabine versus acyclovir therapy in herpes simplex encephalitis, N. Engl. J. Med. 314: 144–149.

    Article  PubMed  CAS  Google Scholar 

  • Whitley, R. J., S. J. Soong, R. Dolin, G. J. Galasso, L. T. Ch'ien & C. A. Alford, 1977. Adenine arabinoside therapy of biopsy-proved herpes simplex encephalitis. National Institute of Allergy and Infectious Diseases collaborative antiviral study, N. Engl. J. Med. 297: 289–294.

    Article  PubMed  CAS  Google Scholar 

  • Whitley, R. J., S. J. Soong, M. S. Hirsch, A. W. Karchmer, R. Dolin, G. Galasso, J. K. Dunnick & C. A. Alford, 1981. Herpes simplex encephalitis: vidarabine therapy and diagnostic problems, N. Engl. J. Med. 304: 313–318.

    Article  PubMed  CAS  Google Scholar 

  • Wiebusch, L., M. Truss & C. Hagemeier, 2004. Inhibition of human cytomegalovirus replication by small interfering RNAs, J. Gen. Virol. 85: 179–184.

    Article  PubMed  CAS  Google Scholar 

  • Wolf, D. G., C. T. Courcelle, M. N. Prichard & E. S. Mocarski, 2001. Distinct and separate roles for herpesvirus-conserved UL97 kinase in cytomegalovirus DNA synthesis and encapsidation, Proc. Natl. Acad. Sci. U. S. A 98: 1895–1900.

    Article  PubMed  CAS  Google Scholar 

  • Wolf, D. G., D. J. Lee & S. A. Spector, 1995. Detection of human cytomegalovirus mutations associated with ganciclovir resistance in cerebrospinal fluid of AIDS patients with central nervous system disease, Antimicrob. Agents Chemother. 39: 2552–2554.

    PubMed  CAS  Google Scholar 

  • Wutzler, P., 1997. Antiviral therapy of herpes simplex and varicella-zoster virus infections, Intervirology 40: 343–356.

    Article  PubMed  CAS  Google Scholar 

  • Xiong, X., J. L. Smith & M. S. Chen, 1997. Effect of incorporation of cidofovir into DNA by human cytomegalovirus DNA polymerase on DNA elongation, Antimicrob. Agents Chemother. 41: 594–599.

    PubMed  CAS  Google Scholar 

  • Xiong, X., J. L. Smith, C. Kim, E. S. Huang & M. S. Chen, 1996. Kinetic analysis of the interaction of cidofovir diphosphate with human cytomegalovirus DNA polymerase, Biochem. Pharmacol. 51: 1563–1567.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., D. Schols & E. De Clercq, 1999. Selective activity of various antiviral compounds against HHV-7 infection, Antiviral Res. 43: 23–35.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann, A., D. Michel, I. Pavic, W. Hampl, A. Luske, J. Neyts, E. De Clercq & T. Mertens, 1997. Phosphorylation of aciclovir, ganciclovir, penciclovir and S2242 by the cytomegalovirus UL97 protein: a quantitative analysis using recombinant vaccinia viruses, Antiviral Res. 36: 35–42.

    Article  PubMed  CAS  Google Scholar 

  • Zuccola, H. J., D. J. Filman, D. M. Coen & J. M. Hogle, 2000. The crystal structure of an unusual processivity factor, herpes simplex virus UL42, bound to the C terminus of its cognate polymerase, Mol. Cell 5: 267–278.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graciela Andrei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Andrei, G., De Clercq, E., Snoeck, R. (2009). Viral DNA Polymerase Inhibitors. In: Raney, K., Gotte, M., Cameron, C. (eds) Viral Genome Replication. Springer, Boston, MA. https://doi.org/10.1007/b135974_22

Download citation

Publish with us

Policies and ethics