Skip to main content

Atomic Structure of the Herpes Simplex Virus 1 DNA Polymerase

  • Chapter
  • First Online:
Viral Genome Replication

Viral polynucleotide replication is central to the reproduction of all viruses. For DNA viruses, DNA polymerase is the core component of this process. There are at least six major DNA polymerase classes: class A, B, C, D, X, and Y (Koonin 2006, Burgers et al. 2001, Friedberg 2006). DNA replication in both bacterial and animal viruses is carried out by polymerases that belong to archaeal-class B DNA polymerases. These replicative polymerases also include the major eukaryotic DNA polymerases α, δ, ɛ, and also DNA polymerase ζ (Koonin 2006, Burgers et al. 2001, Friedberg 2006). The basic enzymatic function of a viral DNA polymerase is to catalyze the consecutive incorporation of new nucleotides to the 3′-end of the primer strand DNA using an existing single-strand DNA as the template (Lehman and Boehmer 1999, Knopf 1979, Boehmer and Villani 2003, Crute and Lehman 1989). For viral DNA replication to process faithfully, the structure of the polymerase must favor the incorporation of the correct nucleotides (Hwang et al. 1999, Chaudhuri et al. 2003). To further increase the fidelity of the process, many DNA polymerases possess a 3′–5′ exonuclease activity that removes the mismatched nucleotide from the primer DNA strand (Koonin 2006, Burgers et al. 2001, Friedberg 2006, Hwang et al. 1999, Gibbs et al. 1991, Song et al. 2004). There are also other functional proteins that assist replicative polymerases in their DNA replication process, these include helicase/primases that unwind double-strand DNA duplexes (Lehman And Boehmer 1999, Knopf 1979, Boehmer and Villani 2003, Crute and Lehman 1989, Marsden et al. 1997) and accessory factors that increase DNA polymerase processivity so that a single polymerase can elongate the primer strand by thousands of nucleotides before falling off the DNA duplex (Digard et al. 1993, Gottlieb et al. 1990, Parris et al. 1988, Weisshart et al. 1999, Chow and Coen 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Appleton, B.A., Loregian, A., Filman, D.J., Coen, D.M., and Hogle, J.M. (2004). The cytomegalovirus DNA polymerase subunit UL44 forms a C clamp-shaped dimer. Mol Cell 15, 233–244.

    Article  PubMed  CAS  Google Scholar 

  • Appleton, B.A., Brooks, J., Loregian, A., Filman, D.J., Coen, D.M., and Hogle, J.M. (2006). Crystal structure of the cytomegalovirus DNA polymerase subunit UL44 in complex with the C terminus from the catalytic subunit. Differences in structure and function relative to unliganded UL44. J Biol Chem 281, 5224–5232.

    Article  PubMed  CAS  Google Scholar 

  • Boehmer, P.E. and Villani, G. (2003). Herpes simplex virus type-1: a model for genome transactions. Prog Nucleic Acid Res Mol Biol 75, 139–171.

    Article  PubMed  CAS  Google Scholar 

  • Brautigam, C. and Steitz, T.A. (1998). Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes. Curr Opinion Struct Biol 8, 54–63.

    Article  CAS  Google Scholar 

  • Burgers, P., Koonin, E., Bruford, E. et al. (2001). Eukaryotic DNA polymerases: proposal for a revised nomenclature. J Biol Chem 276 (47), 43487–43490.

    Article  PubMed  CAS  Google Scholar 

  • Chaudhuri, M., Song, L., and Parris, D. S. (2003) The Herpes Simplex Virus Type 1 DNA Polymerase Processivity Factor Increases Fidelity without Altering Pre-steady-state Rate Constants for Polymerization or Excision. J Biol Chem 278, 8996–9004.

    Article  PubMed  CAS  Google Scholar 

  • Chow, C.S. and Coen, D.M. (1995). Mutations that specifically impair the DNA binding activity of the herpes simplex virus protein UL42. J Virol 69, 6965–6971.

    PubMed  CAS  Google Scholar 

  • Coen, D.M. and Schaffer, P.A. (2003). Antiherpesvirus drugs: a promising spectrum of new drugs and drug targets. Nat Rev Drug Discov 2, 278–288.

    Article  PubMed  CAS  Google Scholar 

  • Crute, J.J. and Lehman, I.R. (1989). Herpes simplex-1 DNA polymerase. Identification of an intrinsic 5'-3' exonuclease with ribonuclease H activity. J Biol Chem 264, 19266–19270.

    PubMed  CAS  Google Scholar 

  • De Clercq, E. (2004). Antiviral drugs in current clinical use. J Clin Virol 30, 115–133.

    Article  PubMed  Google Scholar 

  • DeLano, W.L. (2002). The PyMOL molecular Graphics System. DeLano Scientific, San Carlos, CA.

    Google Scholar 

  • Digard, P., Bebrin, W.R., Weisshart, K., and Coen, D.M. (1993). The extreme C terminus of herpes simplex virus DNA polymerase is crucial for functional interaction with processivity factor UL42 and for viral replication. J Virol 67, 398–406.

    PubMed  CAS  Google Scholar 

  • Elion, G.B. (1989). The purine path to chemotherapy. Science 244, 241–247.

    Article  Google Scholar 

  • Franklin, M., Wang, J., and Steitz, T.A. (2001). Structure of the replicating complex of a pol alpha family DNA polymerase. Cell 105, 657–667.

    Article  PubMed  CAS  Google Scholar 

  • Friedberg, E.C. (2006). The eureka enzyme: the discovery of DNA polymerase. Nat Rev Mol Cell Biol 7, 143–147.

    Article  PubMed  CAS  Google Scholar 

  • Gibbs, J.S., Weisshart, K., Digard, P., deBruynKops, A., Knipe, D.M., and Coen, D.M.. (1991). Polymerization activity of an alpha-like DNA polymerase requires a conserved 3'-5' exonuclease active site. Mol Cell Biol 11, 4786–4795.

    PubMed  CAS  Google Scholar 

  • Gilbert, C., Bestman-Smith, J., and Boivin, G. (2002). Resistance of herpesviruses to antiviral drugs: clinical impacts and molecular mechanisms. Drug Res Update 5, 88–114.

    Article  CAS  Google Scholar 

  • Gottlieb, J., Marcy, A.I., Coen, D.M., and Challberg, M.D. (1990). The herpes simplex virus type 1 UL42 gene product: a subunit of DNA polymerase that functions to increase processivity. J Virol 64, 5976–5987.

    PubMed  CAS  Google Scholar 

  • Huang, L., Ishi, K.K., Zuccola, H., Gehring, A.M., Hwang C.B.C., Hogle, J., and Coen, D.M. (1999). The enzymological basis for resistance of herpesvirus DNA polymerase mutants to acyclovir: relationship to the structure of alpha-like DNA polymerases. Proc Natl Acad Sci USA 96, 447–452.

    Article  PubMed  CAS  Google Scholar 

  • Hwang, Y.T., Liu, B.Y., Hong, C.Y., Shillitoe, E.J., and Hwang, C.B.C. (1999). Effects of exonuclease activity and nucleotide selectivity of the herpes simplex virus DNA polymerase on the fidelity of DNA replication in vivo. J Virol 73, 5326–5332.

    PubMed  CAS  Google Scholar 

  • Knopf, K.W. (1979). Properties of herpes simplex virus DNA polymerase and characterization of its associated exonuclease activity. Eur J Biochem 98, 231–244.

    Article  PubMed  CAS  Google Scholar 

  • Koonin, E.V. (2006). Temporal order of evolution of DNA replication systems inferred by comparison of cellular and viral DNA polymerases. Biology Direct 1, 39–57.

    Article  PubMed  Google Scholar 

  • Lehman, I.R. and Boehmer, P.E. (1999). Replication of herpes simplex virus DNA. J Bio Chem 274, 28059–28062.

    Article  CAS  Google Scholar 

  • Liu, S., Knafels, J.D., Chang, J.S., Waszak, G.A., Baldwin, E.T., Deibel, M.R., Jr., Thomsen, D.R., Homa, F.L., Wells, P.A., Tory, M.C., Poorman, R.A., Gao, H., Qiu, X., and Seddon, A.P. (2006). Crystal structure of the herpes simplex virus 1 DNA polymerase. J Biol Chem 281, 18193–18200.

    Article  PubMed  CAS  Google Scholar 

  • Marsden, H.S., McLean, G.W., Barnard, E.C., Francis, G.J., MacEachran, K., Murphy, M., McVey, G., Cross, A., Abbotts, A.P., and Stow, N.D. (1997). The catalytic subunit of the DNA polymerase of herpes simplex virus type 1 interacts specifically with the C terminus of the UL8 component of the viral helicase–primase complex. J Virol 71, 6390–6397.

    PubMed  CAS  Google Scholar 

  • Parris, D.S., Cross, A., Haarr, L., Orr, A., Frame, M.C., Murphy, M., McGeoch, D.J., and Marsden, H.S. (1988). Identification of the gene encoding the 65-kilodalton DNA binding protein of herpes simplex virus type 1. J Virol 62, 818–825.

    PubMed  CAS  Google Scholar 

  • Reardon, J.E. and Spector, T. (1989). Herpes simplex virus type 1 DNA polymerase. Mechanism of inhibition by acyclovir triphosphate. J Biol Chem 264, 7405–7411.

    PubMed  CAS  Google Scholar 

  • Rodriguez, A.C., Park, H.W., Mao, C., and Beese, L.S. (2000). Crystal structure of a pol alpha family DNA polymerase from the hyperthermophilic archaeon Thermococcus sp. 9 degrees N-7. J Mol Biol 299, 447–462.

    Article  PubMed  CAS  Google Scholar 

  • Shamoo, Y. and Steitz, T.A. (1999). Building a replisome from interacting pieces: sliding clamp complexed to a peptide from DNA polymerase and a polymerase editing complex. Cell 99, 155–166.

    Article  PubMed  CAS  Google Scholar 

  • Song, L., Chaudhuri, M., Knopf, C.W., and Parris, D.S. (2004). Contribution of the 3'- to 5'-exonuclease activity of herpes simplex virus type 1 DNA polymerase to the fidelity of DNA synthesis. J Biol Chem 279, 18535–18543.

    Article  PubMed  CAS  Google Scholar 

  • Steitz, T.A. (1999). DNA polymerases: structural diversity and common mechanisms. J Biol Chem 274, 17395–17398.

    Article  PubMed  CAS  Google Scholar 

  • Thomsen, D.R., Oien, N.L., Hopkins, T.A., Knechtel, M.L., Brideau, R.J., Wathen, M.W., and Homa, F.L. (2003). Amino acid changes within conserved region III of the herpes simplex virus and human cytomegalovirus DNA polymerases confer resistance to 4-oxo-dihydroquinolines, a novel class of herpesvirus antiviral agents. J Virol 77, 1868–1876.

    Article  PubMed  CAS  Google Scholar 

  • Wang, J., Sattar, A., Wang, C.C., Karam, J.D., Konigsberg, W.H., and Steitz, T. A. (1997). Crystal structure of a pol alpha family replication DNA polymerase from bacteriophage RB69. Cell 89, 1087–1099.

    Article  PubMed  CAS  Google Scholar 

  • Wathen, M.W. (2002). Non-nucleoside inhibitors of herpesviruses. Rev Med Virol 12, 167–178.

    Article  PubMed  CAS  Google Scholar 

  • Weisshart, K., Chow, C.S., and Coen, D.M. (1999). Herpes simplex virus processivity factor UL42 imparts increased DNA-binding specificity to the viral DNA polymerase and decreased dissociation from primer-template without reducing the elongation rate. J Virol 73, 55–66.

    PubMed  CAS  Google Scholar 

  • Zhao, Y., Jeruzalmi, D., Moarefi, I., Leighton, L., Lasken, R., and Kuriyan, J. (1999). Crystal structure of an archaebacterial DNA polymerase. Structure 7, 1189–1199.

    Article  PubMed  CAS  Google Scholar 

  • Zuccola, H.J., Filman, D.J., Coen, D.M., and Hogle, J.M. (2000). The crystal structure of an unusual processivity factor, herpes simplex virus UL42, bound to the C terminus of its cognate polymerase. Mol Cell 5, 267–278.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenping Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Liu, S., Homa, F.L. (2009). Atomic Structure of the Herpes Simplex Virus 1 DNA Polymerase. In: Raney, K., Gotte, M., Cameron, C. (eds) Viral Genome Replication. Springer, Boston, MA. https://doi.org/10.1007/b135974_17

Download citation

Publish with us

Policies and ethics