Skip to main content

Host Factors that Restrict Retrovirus Replication

  • Chapter
  • First Online:
Viral Genome Replication

Abstract/Primer

Over the past several decades, it has become clear that a variety of cellular proteins actively restrict retrovirus replication. Two families of proteins in particular, the TRIMs and the APOBEC3s, coordinate a robust innate defense to retrovirus infection. The TRIM proteins, led by TRIM5alpha, impose a replication block after entry, such that the invading retrovirus is degraded prior to integration. The APOBEC3 proteins, notably APOBEC3G, inhibit the replication of retroviruses by a mutagenic mechanism that is associated with degradation of viral DNA. Retroviruses have evolved means of avoiding their host’s TRIM and APOBEC3 defenses. Often, however, this leaves the virus susceptible to TRIMs and APOBECs from other species. Thus, these restriction systems limit the cross-species mobility of retroviruses. The prospects of developing new antiviral therapies that exploit these innate host defenses are promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alce, T. M. and Popik, W. 2004. APOBEC3G is incorporated into virus-like particles by a direct interaction with HIV-1 Gag nucleocapsid protein. J Biol Chem. 279(33): 34083–6.

    PubMed  CAS  Google Scholar 

  • Anderson, J. and Akkina, R. 2005. TRIM5alpharh expression restricts HIV-1 infection in lentiviral vector-transduced CD34+-cell-derived macrophages. Mol Ther. 12(4): 687–96.

    PubMed  CAS  Google Scholar 

  • Anderson, J. L., Campbell, E. M., Wu, X., Vandegraaff, N., Engelman, A. and Hope, T. J. 2006. Proteasome inhibition reveals that a functional preintegration complex intermediate can be generated during restriction by diverse TRIM5 proteins. J Virol. 80(19): 9754–60.

    PubMed  CAS  Google Scholar 

  • Bassin, R. H., Duran-Troise, G., Gerwin, B. I. and Rein, A. 1978. Abrogation of Fv-1b restriction with murine leukemia viruses inactivated by heat or by gamma irradiation. J Virol. 26(2): 306–15.

    PubMed  CAS  Google Scholar 

  • Berthoux, L., Sebastian, S., Sokolskaja, E. and Luban, J. 2004. Lv1 inhibition of human immunodeficiency virus type 1 is counteracted by factors that stimulate synthesis or nuclear translocation of viral cDNA. J Virol. 78(21): 11739–50.

    PubMed  CAS  Google Scholar 

  • Berthoux, L., Sebastian, S., Sokolskaja, E. and Luban, J. 2005a. Cyclophilin A is required for TRIM5{alpha}-mediated resistance to HIV-1 in Old World monkey cells. Proc Natl Acad Sci USA. 102(41): 14849–53.

    PubMed  CAS  Google Scholar 

  • Berthoux, L., Sebastian, S., Sayah, D. M. and Luban, J. 2005b. Disruption of human TRIM5alpha antiviral activity by nonhuman primate orthologues. J Virol. 79(12): 7883–8.

    PubMed  CAS  Google Scholar 

  • Besnier, C., Takeuchi, Y. and Towers, G. 2002. Restriction of lentivirus in monkeys. Proc Natl Acad Sci USA. 99(18): 11920–5.

    PubMed  CAS  Google Scholar 

  • Besnier, C., Ylinen, L., Strange, B., Lister, A., Takeuchi, Y., Goff, S. P. and Towers, G. J. 2003. Characterization of murine leukemia virus restriction in mammals. J Virol. 77(24):13403–6.

    PubMed  CAS  Google Scholar 

  • Best, S., Le Tissier, P., Towers, G. and Stoye, J. P. 1996. Positional cloning of the mouse retrovirus restriction gene Fv1. Nature. 382(6594): 826–9.

    PubMed  CAS  Google Scholar 

  • Bieniasz, P. D. 2003. Restriction factors: a defense against retroviral infection. Trends Microbiol. 11(6): 286–91.

    PubMed  CAS  Google Scholar 

  • Bieniasz, P. D. 2004. Intrinsic immunity: a front-line defense against viral attack. Nat Immunol. 5(11): 1109–15.

    PubMed  CAS  Google Scholar 

  • Bishop, K. N., Holmes, R. K., Sheehy, A. M., Davidson, N. O., Cho, S. J. and Malim, M. H. 2004. Cytidine deamination of retroviral DNA by diverse APOBEC proteins. Curr Biol. 14(15): 1392–6.

    PubMed  CAS  Google Scholar 

  • Bishop, K. N., Holmes, R. K. and Malim, M. H. 2006. Antiviral potency of APOBEC proteins does not correlate with cytidine deamination. J Virol. 80(17): 8450–8.

    PubMed  CAS  Google Scholar 

  • Bogerd, H. P., Doehle, B. P., Wiegand, H. L. and Cullen, B. R. 2004. A single amino acid difference in the host APOBEC3G protein controls the primate species specificity of HIV type 1 virion infectivity factor. Proc Natl Acad Sci USA. 101(11): 3770–4.

    PubMed  CAS  Google Scholar 

  • Bogerd, H. P., Wiegand, H. L., Doehle, B. P., Lueders, K. K. and Cullen, B. R. 2006a. APOBEC3A and APOBEC3B are potent inhibitors of LTR-retrotransposon function in human cells. Nucleic Acids Res. 34(1): 89–95.

    PubMed  CAS  Google Scholar 

  • Bogerd, H. P., Wiegand, H. L., Hulme, A. E., Garcia-Perez, J. L., O’Shea, K. S., Moran, J. V. and Cullen, B. R. 2006b. Cellular inhibitors of long interspersed element 1 and Alu retrotransposition. Proc Natl Acad Sci USA. 103(23): 8780–5.

    PubMed  CAS  Google Scholar 

  • Bonvin, M., Achermann, F., Greeve, I., Stroka, D., Keogh, A., Inderbitzin, D., Candinas, D., Sommer, P., Wain-Hobson, S., Vartanian, J. P. and Greeve, J. 2006. Interferon-inducible expression of APOBEC3 editing enzymes in human hepatocytes and inhibition of hepatitis B virus replication. Hepatology. 43(6): 1364–74.

    PubMed  CAS  Google Scholar 

  • Boone, L. R., Innes, C. L. and Heitman, C. K. 1990. Abrogation of Fv-1 restriction by genome-deficient virions produced by a retrovirus packaging cell line. J Virol. 64(7): 3376–81.

    PubMed  CAS  Google Scholar 

  • Borden, K. L. 1998. RING fingers and B-boxes: zinc-binding protein–protein interaction domains. Biochem Cell Biol. 76(2–3): 351–8.

    PubMed  CAS  Google Scholar 

  • Bosco, D. A., Eisenmesser, E. Z., Pochapsky, S., Sundquist, W. I. and Kern, D. 2002. Catalysis of cis/trans isomerization in native HIV-1 capsid by human cyclophilin A. Proc Natl Acad Sci USA. 99(8): 5247–52.

    PubMed  CAS  Google Scholar 

  • Braaten, D., Franke, E. K. and Luban, J. 1996a. Cyclophilin A is required for an early step in the life cycle of human immunodeficiency virus type 1 before the initiation of reverse transcription. J Virol. 70(6): 3551–60.

    PubMed  CAS  Google Scholar 

  • Braaten, D., Franke, E. K. and Luban, J. 1996b. Cyclophilin A is required for the replication of group M human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus SIV(CPZ)GAB but not group O HIV-1 or other primate immunodeficiency viruses. J Virol. 70(7): 4220–7.

    PubMed  CAS  Google Scholar 

  • Braaten, D., Aberham, C., Franke, E. K., Yin, L., Phares, W. and Luban, J. 1996c. Cyclosporine A-resistant human immunodeficiency virus type 1 mutants demonstrate that Gag encodes the functional target of cyclophilin A. J Virol. 70(8): 5170–6.

    PubMed  CAS  Google Scholar 

  • Braaten, D. and Luban, J. 2001. Cyclophilin A regulates HIV-1 infectivity, as demonstrated by gene targeting in human T cells. Embo J. 20(6): 1300–9.

    PubMed  CAS  Google Scholar 

  • Brennan, G., Kozyrev, Y. and Hu, S. L. 2008. TRIMCyp expression in Old World primates Macaca nemestrina and Macaca fascicularis. Proc Natl Acad Sci USA. 105(9): 3569–74.

    PubMed  CAS  Google Scholar 

  • Burnett, A. and Spearman, P. 2007. APOBEC3G Multimers Are Recruited to the Plasma Membrane for Packaging into Human Immunodeficiency Virus Type 1 Virus-Like Particles in an RNA-Dependent Process Requiring the NC Basic Linker. J Virol. 81(10): 5000–13.

    PubMed  CAS  Google Scholar 

  • Campbell, E. M., Dodding, M. P., Yap, M. W., Wu, X., Gallois-Montbrun, S., Malim, M. H., Stoye, J. P. and Hope, T. J. 2007. TRIM5 alpha cytoplasmic bodies are highly dynamic structures. Mol Biol Cell. 18(6): 2102–11.

    PubMed  CAS  Google Scholar 

  • Cen, S., Guo, F., Niu, M., Saadatmand, J., Deflassieux, J. and Kleiman, L. 2004. The interaction between HIV-1 Gag and APOBEC3G. J Biol Chem. 279(32): 33177–84.

    PubMed  CAS  Google Scholar 

  • Chatterji, U., Bobardt, M. D., Stanfield, R., Ptak, R. G., Pallansch, L. A., Ward, P. A., Jones, M. J., Stoddart, C. A., Scalfaro, P., Dumont, J. M., Besseghir, K., Rosenwirth, B. and Gallay, P. A. 2005. Naturally occurring capsid substitutions render HIV-1 cyclophilin A independent in human cells and TRIM-cyclophilin-resistant in Owl monkey cells. J Biol Chem. 280(48): 40293–300.

    PubMed  CAS  Google Scholar 

  • Chatterji, U., Bobardt, M. D., Gaskill, P., Sheeter, D., Fox, H. and Gallay, P. A. 2006. Trim5alpha accelerates degradation of cytosolic capsid associated with productive HIV-1 entry. J Biol Chem. 281(48): 37025–33.

    PubMed  CAS  Google Scholar 

  • Chen, K., Huang, J., Zhang, C., Huang, S., Nunnari, G., Wang, F. X., Tong, X., Gao, L., Nikisher, K. and Zhang, H. 2006. Alpha interferon potently enhances the anti-human immunodeficiency virus type 1 activity of APOBEC3G in resting primary CD4 T cells. J Virol. 80(15): 7645–57.

    PubMed  CAS  Google Scholar 

  • Chen, K. M., Martemyanova, N., Lu, Y., Shindo, K., Matsuo, H. and Harris, R. S. 2007. Extensive mutagenesis experiments corroborate a structural model for the DNA deaminase domain of APOBEC3G. FEBS Lett. 581(24): 4761–6.

    PubMed  CAS  Google Scholar 

  • Chen, K. M., Harjes, E., Gross, P. J., Fahmy, A., Lu, Y., Shindo, K., Harris, R. S. and Matsuo, H. 2008. Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G. Nature. 452(7183): 116–9.

    PubMed  CAS  Google Scholar 

  • Chiu, Y. L., Soros, V. B., Kreisberg, J. F., Stopak, K., Yonemoto, W. and Greene, W. C. 2005. Cellular APOBEC3G restricts HIV-1 infection in resting CD4+ T cells. Nature. 435(7038): 108–14.

    PubMed  CAS  Google Scholar 

  • Chiu, Y. L. and Greene, W. C. 2006. Multifaceted antiviral actions of APOBEC3 cytidine deaminases. Trends Immunol. 27(6): 291–7.

    PubMed  CAS  Google Scholar 

  • Chiu, Y. L., Witkowska, H. E., Hall, S. C., Santiago, M., Soros, V. B., Esnault, C., Heidmann, T. and Greene, W. C. 2006. High-molecular-mass APOBEC3G complexes restrict Alu retrotransposition. Proc Natl Acad Sci USA. 103(42): 15588–93.

    PubMed  CAS  Google Scholar 

  • Conticello, S. G., Harris, R. S. and Neuberger, M. S. 2003. The Vif protein of HIV triggers degradation of the human antiretroviral DNA deaminase APOBEC3G. Curr Biol. 13(22): 2009–13.

    PubMed  CAS  Google Scholar 

  • Conticello, S. G., Thomas, C. J., Petersen-Mahrt, S. and Neuberger, M. S. 2005. Evolution of the AID/APOBEC Family of Polynucleotide (Deoxy)Cytidine Deaminases. Mol Biol Evol. 22(2): 367–77.

    PubMed  CAS  Google Scholar 

  • Conticello, S. G., Langlois, M. A., Yang, Z. and Neuberger, M. S. 2007. DNA deamination in immunity: AID in the context of its APOBEC relatives. Adv Immunol. 94: 37–73.

    PubMed  CAS  Google Scholar 

  • Cowan, S., Hatziioannou, T., Cunningham, T., Muesing, M. A., Gottlinger, H. G. and Bieniasz, P. D. 2002. Cellular inhibitors with Fv1-like activity restrict human and simian immunodeficiency virus tropism. Proc Natl Acad Sci USA. 99(18): 11914–9.

    PubMed  CAS  Google Scholar 

  • Decleve, A., Niwa, O., Gelmann, E. and Kaplan, H. S. 1975. Replication kinetics of N- and B-tropic murine leukemia viruses on permissive and nonpermissive cells in vitro. Virology. 65(2): 320–32.

    PubMed  CAS  Google Scholar 

  • DesGroseillers, L. and Jolicoeur, P. 1983. Physical mapping of the Fv-1 tropism host range determinant of BALB/c murine leukemia viruses. J Virol. 48(3): 685–96.

    PubMed  CAS  Google Scholar 

  • Desrosiers, R. C., Lifson, J. D., Gibbs, J. S., Czajak, S. C., Howe, A. Y., Arthur, L. O. and Johnson, R. P. 1998. Identification of highly attenuated mutants of simian immunodeficiency virus. J Virol. 72(2): 1431–7.

    PubMed  CAS  Google Scholar 

  • Di Noia, J. M. and Neuberger, M. S. 2007. Molecular mechanisms of antibody somatic hypermutation. Annu Rev Biochem. 76: 1–22.

    PubMed  Google Scholar 

  • Diaz-Griffero, F., Li, X., Javanbakht, H., Song, B., Welikala, S., Stremlau, M. and Sodroski, J. 2006a. Rapid turnover and polyubiquitylation of the retroviral restriction factor TRIM5. Virology. 349(2): 300–15.

    PubMed  CAS  Google Scholar 

  • Diaz-Griffero, F., Vandegraaff, N., Li, Y., McGee-Estrada, K., Stremlau, M., Welikala, S., Si, Z., Engelman, A. and Sodroski, J. 2006b. Requirements for capsid-binding and an effector function in TRIMCyp-mediated restriction of HIV-1. Virology. 351(2): 404–19.

    PubMed  CAS  Google Scholar 

  • Dodding, M. P., Bock, M., Yap, M. W. and Stoye, J. P. 2005. Capsid processing requirements for abrogation of Fv1 and Ref1 restriction. J Virol. 79(16): 10571–7.

    PubMed  CAS  Google Scholar 

  • Dutko, J. A., Schafer, A., Kenny, A. E., Cullen, B. R. and Curcio, M. J. 2005. Inhibition of a yeast LTR retrotransposon by human APOBEC3 cytidine deaminases. Curr Biol. 15(7): 661–6.

    PubMed  CAS  Google Scholar 

  • Esnault, C., Heidmann, O., Delebecque, F., Dewannieux, M., Ribet, D., Hance, A. J., Heidmann, T. and Schwartz, O. 2005. APOBEC3G cytidine deaminase inhibits retrotransposition of endogenous retroviruses. Nature. 433(7024): 430–3.

    PubMed  CAS  Google Scholar 

  • Esnault, C., Millet, J., Schwartz, O. and Heidmann, T. 2006. Dual inhibitory effects of APOBEC family proteins on retrotransposition of mammalian endogenous retroviruses. Nucleic Acids Res. 34(5): 1522–31.

    PubMed  CAS  Google Scholar 

  • Everett, R. D. and Chelbi-Alix, M. K. 2007. PML and PML nuclear bodies: implications in antiviral defence. Biochimie. 89(6–7): 819–30.

    PubMed  CAS  Google Scholar 

  • Fields, B. N., Knipe, D. M. and Howley, P. M. 2007. Fields’ virology (5th). Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins.

    Google Scholar 

  • Fischer, G., Tradler, T. and Zarnt, T. 1998. The mode of action of peptidyl prolyl cis/trans isomerases in vivo: binding vs. catalysis. FEBS Lett. 426(1): 17–20.

    CAS  Google Scholar 

  • Fisher, A. G., Ensoli, B., Ivanoff, L., Chamberlain, M., Petteway, S., Ratner, L., Gallo, R. C. and Wong-Staal, F. 1987. The sor gene of HIV-1 is required for efficient virus transmission in vitro. Science. 237(4817): 888–93.

    PubMed  CAS  Google Scholar 

  • Forshey, B. M., von Schwedler, U., Sundquist, W. I. and Aiken, C. 2002. Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication. J Virol. 76(11): 5667–77.

    PubMed  CAS  Google Scholar 

  • Franke, E. K., Yuan, H. E. and Luban, J. 1994. Specific incorporation of cyclophilin A into HIV-1 virions. Nature. 372(6504): 359–62.

    PubMed  CAS  Google Scholar 

  • Friend, C. 1957. Cell-free transmission in adult Swiss mice of a disease having the character of a leukemia. J Exp Med. 105(4): 307–18.

    PubMed  CAS  Google Scholar 

  • Fujino, T., Navaratnam, N. and Scott, J. 1998. Human apolipoprotein B RNA editing deaminase gene (APOBEC1). Genomics. 47(2): 266–75.

    PubMed  CAS  Google Scholar 

  • Gabuzda, D. H., Lawrence, K., Langhoff, E., Terwilliger, E., Dorfman, T., Haseltine, W. A. and Sodroski, J. 1992. Role of Vif in replication of human immunodeficiency virus type 1 in CD4+ T lymphocytes. J Virol. 66(11): 6489–95.

    PubMed  CAS  Google Scholar 

  • Gabuzda, D. H., Li, H., Lawrence, K., Vasir, B. S., Crawford, K. and Langhoff, E. 1994. Essential role of vif in establishing productive HIV-1 infection in peripheral blood T lymphocytes and monocyte/macrophages. J Acquir Immune Defic Syndr. 7(9): 908–15.

    PubMed  CAS  Google Scholar 

  • Gallois-Montbrun, S., Kramer, B., Swanson, C. M., Byers, H., Lynham, S., Ward, M. and Malim, M. H. 2007. Antiviral protein APOBEC3G localizes to ribonucleoprotein complexes found in P bodies and stress granules. J Virol. 81(5): 2165–78.

    PubMed  CAS  Google Scholar 

  • Gamble, T. R., Vajdos, F. F., Yoo, S., Worthylake, D. K., Houseweart, M., Sundquist, W. I. and Hill, C. P. 1996. Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Cell. 87(7): 1285–94.

    PubMed  CAS  Google Scholar 

  • Gao, G., Guo, X. and Goff, S. P. 2002. Inhibition of retroviral RNA production by ZAP, a CCCH-type zinc finger protein. Science. 297(5587): 1703–6.

    PubMed  CAS  Google Scholar 

  • Goff, S. P. 1996. Operating under a Gag order: a block against incoming virus by the Fv1 gene. Cell. 86(5): 691–3.

    PubMed  CAS  Google Scholar 

  • Goff, S. P. 2004. Retrovirus restriction factors. Mol Cell. 16(6): 849–59.

    PubMed  CAS  Google Scholar 

  • Goff, S. P. 2007. Host factors exploited by retroviruses. Nat Rev Microbiol. 5(4): 253–63.

    PubMed  CAS  Google Scholar 

  • Goldschmidt, V., Bleiber, G., May, M., Martinez, R., Ortiz, M. and Telenti, A. 2006. Role of common human TRIM5alpha variants in HIV-1 disease progression. Retrovirology. 3: 54.

    PubMed  Google Scholar 

  • Goncalves, J., Korin, Y., Zack, J. and Gabuzda, D. 1996. Role of Vif in human immunodeficiency virus type 1 reverse transcription. J Virol. 70(12): 8701–9.

    PubMed  CAS  Google Scholar 

  • Guo, X., Carroll, J. W., Macdonald, M. R., Goff, S. P. and Gao, G. 2004. The zinc finger antiviral protein directly binds to specific viral mRNAs through the CCCH zinc finger motifs. J Virol. 78(23): 12781–7.

    PubMed  CAS  Google Scholar 

  • Guo, X., Ma, J., Sun, J. and Gao, G. 2007. The zinc-finger antiviral protein recruits the RNA processing exosome to degrade the target mRNA. Proc Natl Acad Sci USA. 104(1): 151–6.

    PubMed  CAS  Google Scholar 

  • HachĂ©, G., Liddament, M. T. and Harris, R. S. 2005. The retroviral hypermutation specificity of APOBEC3F and APOBEC3G is governed by the C-terminal DNA cytosine deaminase domain. J Biol Chem. 280(12): 10920–4.

    PubMed  Google Scholar 

  • HachĂ©, G., Mansky, L. M. and Harris, R. S. 2006. Human APOBEC3 proteins, retrovirus restriction, and HIV drug resistance. AIDS Rev. 8(3): 148–57.

    PubMed  Google Scholar 

  • HachĂ©, G., Shindo, K., Albin, J. S. and Harris, R. S. 2008. Evolution of HIV-1 Isolates that Use a Novel Vif-Independent Mechanism to Resist Restriction by Human APOBEC3G. Curr Biol. 18(11): 819–24.

    PubMed  Google Scholar 

  • Harris, R. S., Petersen-Mahrt, S. K. and Neuberger, M. S. 2002. RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol Cell. 10(5): 1247–53.

    PubMed  CAS  Google Scholar 

  • Harris, R. S., Bishop, K. N., Sheehy, A. M., Craig, H. M., Petersen-Mahrt, S. K., Watt, I. N., Neuberger, M. S. and Malim, M. H. 2003a. DNA deamination mediates innate immunity to retroviral infection. Cell. 113(6): 803–9.

    PubMed  CAS  Google Scholar 

  • Harris, R. S., Sheehy, A. M., Craig, H. M., Malim, M. H. and Neuberger, M. S. 2003b. DNA deamination: not just a trigger for antibody diversification but also a mechanism for defense against retroviruses. Nat Immunol. 4(7): 641–3.

    PubMed  CAS  Google Scholar 

  • Harris, R. S. and Liddament, M. T. 2004. Retroviral restriction by APOBEC proteins. Nat Rev Immunol. 4(11): 868–77.

    PubMed  CAS  Google Scholar 

  • Hartley, J. W., Rowe, W. P. and Huebner, R. J. 1970. Host-range restrictions of murine leukemia viruses in mouse embryo cell cultures. J Virol. 5(2): 221–5.

    PubMed  CAS  Google Scholar 

  • Hatziioannou, T., Cowan, S., Goff, S. P., Bieniasz, P. D. and Towers, G. J. 2003. Restriction of multiple divergent retroviruses by Lv1 and Ref1. Embo J. 22(3): 385–94.

    PubMed  CAS  Google Scholar 

  • Hatziioannou, T., Perez-Caballero, D., Yang, A., Cowan, S. and Bieniasz, P. D. 2004a. Retrovirus resistance factors Ref1 and Lv1 are species-specific variants of TRIM5alpha. Proc Natl Acad Sci USA. 101(29): 10774–9.

    PubMed  CAS  Google Scholar 

  • Hatziioannou, T., Cowan, S., Von Schwedler, U. K., Sundquist, W. I. and Bieniasz, P. D. 2004b. Species-specific tropism determinants in the human immunodeficiency virus type 1 capsid. J Virol. 78(11): 6005–12.

    PubMed  CAS  Google Scholar 

  • Hatziioannou, T., Perez-Caballero, D., Cowan, S. and Bieniasz, P. D. 2005. Cyclophilin interactions with incoming human immunodeficiency virus type 1 capsids with opposing effects on infectivity in human cells. J Virol. 79(1): 176–83.

    PubMed  CAS  Google Scholar 

  • Hatziioannou, T., Princiotta, M., Piatak, M., Jr., Yuan, F., Zhang, F., Lifson, J. D. and Bieniasz, P. D. 2006. Generation of simian-tropic HIV-1 by restriction factor evasion. Science. 314(5796): 95.

    PubMed  CAS  Google Scholar 

  • Henry, J., Ribouchon, M. T., Offer, C. and Pontarotti, P. 1997. B30.2-like domain proteins: a growing family. Biochem Biophys Res Commun. 235(1): 162–5.

    PubMed  CAS  Google Scholar 

  • Himathongkham, S. and Luciw, P. A. 1996. Restriction of HIV-1 (subtype B) replication at the entry step in rhesus macaque cells. Virology. 219(2): 485–8.

    PubMed  CAS  Google Scholar 

  • Hofmann, W., Schubert, D., LaBonte, J., Munson, L., Gibson, S., Scammell, J., Ferrigno, P. and Sodroski, J. 1999. Species-specific, postentry barriers to primate immunodeficiency virus infection. J Virol. 73(12): 10020–8.

    PubMed  CAS  Google Scholar 

  • Hoffman, B. G., Williams, K. L., Tien, A. H., Lu, V., de Algara, T. R., Ting, J. P. and Helgason, C. D. 2006. Identification of novel genes and transcription factors involved in spleen, thymus and immunological development and function. Genes Immun. 7(2): 101–12.

    PubMed  CAS  Google Scholar 

  • Holmes, R. K., Koning, F. A., Bishop, K. N. and Malim, M. H. 2007a. APOBEC3F can inhibit the accumulation of HIV-1 reverse transcription products in the absence of hypermutation. Comparisons with APOBEC3G. J Biol Chem. 282(4): 2587–95.

    PubMed  CAS  Google Scholar 

  • Holmes, R. K., Malim, M. H. and Bishop, K. N. 2007b. APOBEC-mediated viral restriction: not simply editing? Trends Biochem Sci. 32(3): 118–28.

    PubMed  CAS  Google Scholar 

  • Hulme, A. E., Bogerd, H. P., Cullen, B. R. and Moran, J. V. 2007. Selective inhibition of Alu retrotransposition by APOBEC3G. Gene. 390(1–2): 199–205.

    PubMed  CAS  Google Scholar 

  • Ikeda, H., Laigret, F., Martin, M. A. and Repaske, R. 1985. Characterization of a molecularly cloned retroviral sequence associated with Fv-4 resistance. J Virol. 55(3): 768–77.

    PubMed  CAS  Google Scholar 

  • Ikeda, H. and Sugimura, H. 1989. Fv-4 resistance gene: a truncated endogenous murine leukemia virus with ecotropic interference properties. J Virol. 63(12): 5405–12.

    PubMed  CAS  Google Scholar 

  • Ikeda, Y., Ylinen, L. M., Kahar-Bador, M. and Towers, G. J. 2004. Influence of gag on human immunodeficiency virus type 1 species-specific tropism. J Virol. 78(21): 11816–22.

    PubMed  CAS  Google Scholar 

  • Iwatani, Y., Takeuchi, H., Strebel, K. and Levin, J. G. 2006. Biochemical activities of highly purified, catalytically active human APOBEC3G: correlation with antiviral effect. J Virol. 80(12): 5992–6002.

    PubMed  CAS  Google Scholar 

  • James, L. C., Keeble, A. H., Khan, Z., Rhodes, D. A. and Trowsdale, J. 2007. Structural basis for PRYSPRY-mediated tripartite motif (TRIM) protein function. Proc Natl Acad Sci USA. 104(15): 6200–5.

    PubMed  CAS  Google Scholar 

  • Jarmuz, A., Chester, A., Bayliss, J., Gisbourne, J., Dunham, I., Scott, J. and Navaratnam, N. 2002. An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics. 79(3): 285–96.

    PubMed  CAS  Google Scholar 

  • Javanbakht, H., Diaz-Griffero, F., Stremlau, M., Si, Z. and Sodroski, J. 2005. The contribution of RING and B-box 2 domains to retroviral restriction mediated by monkey TRIM5alpha. J Biol Chem. 280(29): 26933–40.

    PubMed  CAS  Google Scholar 

  • Javanbakht, H., Yuan, W., Yeung, D. F., Song, B., Diaz-Griffero, F., Li, Y., Li, X., Stremlau, M. and Sodroski, J. 2006a. Characterization of TRIM5alpha trimerization and its contribution to human immunodeficiency virus capsid binding. Virology. 353(1): 234–46.

    PubMed  CAS  Google Scholar 

  • Javanbakht, H., An, P., Gold, B., Petersen, D. C., O’Huigin, C., Nelson, G. W., O’Brien, S. J., Kirk, G. D., Detels, R., Buchbinder, S., Donfield, S., Shulenin, S., Song, B., Perron, M. J., Stremlau, M., Sodroski, J., Dean, M. and Winkler, C. 2006b. Effects of human TRIM5alpha polymorphisms on antiretroviral function and susceptibility to human immunodeficiency virus infection. Virology. 354(1): 15–27.

    PubMed  CAS  Google Scholar 

  • Jern, P., Stoye, J. P. and Coffin, J. 2007. Role of APOBEC3 in Genetic Diversity among Endogenous Murine Leukemia Viruses. PLoS Genetics. preprint(2007): e183.eor.

    Google Scholar 

  • Jolicoeur, P. and Baltimore, D. 1976. Effect of Fv-1 gene product on proviral DNA formation and integration in cells infected with murine leukemia viruses. Proc Natl Acad Sci USA. 73(7): 2236–40.

    PubMed  CAS  Google Scholar 

  • Jolicoeur, P. 1979. The Fv-1 gene of the mouse and its control of murine leukemia virus replication. Curr Top Microbiol Immunol. 86: 67–122.

    PubMed  CAS  Google Scholar 

  • Jolicoeur, P. and Rassart, E. 1980. Effect of Fv-1 gene product on synthesis of linear and supercoiled viral DNA in cells infected with murine leukemia virus. J Virol. 33(1):183–95.

    PubMed  CAS  Google Scholar 

  • Jonsson, S. R., Hache, G., Stenglein, M. D., Fahrenkrug, S. C., Andresdottir, V. and Harris, R. S. 2006. Evolutionarily conserved and non-conserved retrovirus restriction activities of artiodactyl APOBEC3F proteins. Nucleic Acids Res. 34(19): 5683–94.

    PubMed  CAS  Google Scholar 

  • Jonsson, S. R., Larue, R. S., Stenglein, M. D., Fahrenkrug, S. C., Andresdottir, V. and Harris, R. S. 2007. The Restriction of Zoonotic PERV Transmission by Human APOBEC3G. PLoS ONE. 2(9): e893.

    PubMed  Google Scholar 

  • Kai, K., Ikeda, H., Yuasa, Y., Suzuki, S. and Odaka, T. 1976. Mouse strain resistant to N-, B-, and NB-tropic murine leukemia viruses. J Virol. 20(2): 436–40.

    PubMed  CAS  Google Scholar 

  • Kai, K., Sato, H. and Odaka, T. 1986. Relationship between the cellular resistance to Friend murine leukemia virus infection and the expression of murine leukemia virus-gp70-related glycoprotein on cell surface of BALB/c-Fv-4wr mice. Virology. 150(2): 509–12.

    PubMed  CAS  Google Scholar 

  • Kaiser, S. M. and Emerman, M. 2006. Uracil DNA glycosylase is dispensable for human immunodeficiency virus type 1 replication and does not contribute to the antiviral effects of the cytidine deaminase Apobec3G. J Virol. 80(2): 875–82.

    PubMed  CAS  Google Scholar 

  • Kaiser, S. M., Malik, H. S. and Emerman, M. 2007. Restriction of an extinct retrovirus by the human TRIM5alpha antiviral protein. Science. 316(5832): 1756–8.

    PubMed  CAS  Google Scholar 

  • Kamada, K., Igarashi, T., Martin, M. A., Khamsri, B., Hatcho, K., Yamashita, T., Fujita, M., Uchiyama, T. and Adachi, A. 2006. Generation of HIV-1 derivatives that productively infect macaque monkey lymphoid cells. Proc Natl Acad Sci USA. 103(45): 16959–64.

    PubMed  CAS  Google Scholar 

  • Kao, S., Miyagi, E., Khan, M. A., Takeuchi, H., Opi, S., Goila-Gaur, R. and Strebel, K. 2004. Production of infectious human immunodeficiency virus type 1 does not require depletion of APOBEC3G from virus-producing cells. Retrovirology. 1(1): 27.

    PubMed  Google Scholar 

  • Kao, S., Goila-Gaur, R., Miyagi, E., Khan, M. A., Opi, S., Takeuchi, H. and Strebel, K. 2007. Production of infectious virus and degradation of APOBEC3G are separable functional properties of human immunodeficiency virus type 1 Vif. Virology. 369(2): 329–39.

    PubMed  CAS  Google Scholar 

  • Kaumanns, P., Hagmann, I. and Dittmar, M. T. 2006. Human TRIM5alpha mediated restriction of different HIV-1 subtypes and Lv2 sensitive and insensitive HIV-2 variants. Retrovirology. 3: 79.

    PubMed  Google Scholar 

  • Keckesova, Z., Ylinen, L. M. and Towers, G. J. 2004. The human and African green monkey TRIM5alpha genes encode Ref1 and Lv1 retroviral restriction factor activities. Proc Natl Acad Sci USA. 101(29): 10780–5.

    PubMed  CAS  Google Scholar 

  • Keckesova, Z., Ylinen, L. M. and Towers, G. J. 2006. Cyclophilin A renders human immunodeficiency virus type 1 sensitive to Old World monkey but not human TRIM5 alpha antiviral activity. J Virol. 80(10): 4683–90.

    PubMed  CAS  Google Scholar 

  • Khan, M. A., Kao, S., Miyagi, E., Takeuchi, H., Goila-Gaur, R., Opi, S., Gipson, C. L., Parslow, T. G., Ly, H. and Strebel, K. 2005. Viral RNA is required for the association of APOBEC3G with human immunodeficiency virus type 1 nucleoprotein complexes. J Virol. 79(9):5870–4.

    PubMed  CAS  Google Scholar 

  • Kidd, J. M., Newman, T. L., Tuzun, E., Kaul, R. and Eichler, E. E. 2007. Population Stratification of a Common APOBEC Gene Deletion Polymorphism. PLoS Genet. 3(4): e63.

    PubMed  Google Scholar 

  • Kinomoto, M., Kanno, T., Shimura, M., Ishizaka, Y., Kojima, A., Kurata, T., Sata, T. and Tokunaga, K. 2007. All APOBEC3 family proteins differentially inhibit LINE-1 retrotransposition. Nucleic Acids Res. 35(9): 2955–64.

    PubMed  CAS  Google Scholar 

  • Komohara, Y., Suekane, S., Noguchi, M., Matsuoka, K., Yamada, A. and Itoh, K. 2007. Expression of APOBEC3G in kidney cells. Tissue Antigens. 69(1): 95–8.

    PubMed  CAS  Google Scholar 

  • Kootstra, N. A., Munk, C., Tonnu, N., Landau, N. R. and Verma, I. M. 2003. Abrogation of postentry restriction of HIV-1-based lentiviral vector transduction in simian cells. Proc Natl Acad Sci USA. 100(3): 1298–303.

    PubMed  CAS  Google Scholar 

  • Kozak, C. A. and Chakraborti, A. 1996. Single amino acid changes in the murine leukemia virus capsid protein gene define the target of Fv1 resistance. Virology. 225(2): 300–5.

    PubMed  CAS  Google Scholar 

  • Kozak, S. L., Marin, M., Rose, K. M., Bystrom, C. and Kabat, D. 2006. The anti-HIV-1 editing enzyme APOBEC3G binds HIV-1 RNA and messenger RNAs that shuttle between polysomes and stress granules. J Biol Chem. 281(39): 29105–19.

    PubMed  CAS  Google Scholar 

  • Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., Funke, R., Gage, D., Harris, K., Heaford, A., Howland, J., Kann, L., Lehoczky, J., LeVine, R., McEwan, P., McKernan, K., Meldrim, J., Mesirov, J. P., Miranda, C., Morris, W., Naylor, J., Raymond, C., Rosetti, M., Santos, R., Sheridan, A., Sougnez, C., Stange-Thomann, N., Stojanovic, N., Subramanian, A., Wyman, D., Rogers, J., Sulston, J., Ainscough, R., Beck, S., Bentley, D., Burton, J., Clee, C., Carter, N., Coulson, A., Deadman, R., Deloukas, P., Dunham, A., Dunham, I., Durbin, R., French, L., Grafham, D., Gregory, S., Hubbard, T., Humphray, S., Hunt, A., Jones, M., Lloyd, C., McMurray, A., Matthews, L., Mercer, S., Milne, S., Mullikin, J. C., Mungall, A., Plumb, R., Ross, M., Shownkeen, R., Sims, S., Waterston, R. H., Wilson, R. K., Hillier, L. W., McPherson, J. D., Marra, M. A., Mardis, E. R., Fulton, L. A., Chinwalla, A. T., Pepin, K. H., Gish, W. R., Chissoe, S. L., Wendl, M. C., Delehaunty, K. D., Miner, T. L., Delehaunty, A., Kramer, J. B., Cook, L. L., Fulton, R. S., Johnson, D. L., Minx, P. J., Clifton, S. W., Hawkins, T., Branscomb, E., Predki, P., Richardson, P., Wenning, S., Slezak, T., Doggett, N., Cheng, J. F., Olsen, A., Lucas, S., Elkin, C., Uberbacher, E., Frazier, M., Gibbs, R. A., Muzny, D. M., Scherer, S. E., Bouck, J. B., Sodergren, E. J., Worley, K. C., Rives, C. M., Gorrell, J. H., Metzker, M. L., Naylor, S. L., Kucherlapati, R. S., Nelson, D. L., Weinstock, G. M., Sakaki, Y., Fujiyama, A., Hattori, M., Yada, T., Toyoda, A., Itoh, T., Kawagoe, C., Watanabe, H., Totoki, Y., Taylor, T., Weissenbach, J., Heilig, R., Saurin, W., Artiguenave, F., Brottier, P., Bruls, T., Pelletier, E., Robert, C., Wincker, P., Smith, D. R., Doucette-Stamm, L., Rubenfield, M., Weinstock, K., Lee, H. M., Dubois, J., Rosenthal, A., Platzer, M., Nyakatura, G., Taudien, S., Rump, A., Yang, H., Yu, J., Wang, J., Huang, G., Gu, J., Hood, L., Rowen, L., Madan, A., Qin, S., Davis, R. W., Federspiel, N. A., Abola, A. P., Proctor, M. J., Myers, R. M., Schmutz, J., Dickson, M., Grimwood, J., Cox, D. R., Olson, M. V., Kaul, R., Shimizu, N., Kawasaki, K., Minoshima, S., Evans, G. A., Athanasiou, M., Schultz, R., Roe, B. A., Chen, F., Pan, H., Ramser, J., Lehrach, H., Reinhardt, R., McCombie, W. R., de la Bastide, M., Dedhia, N., Blocker, H., Hornischer, K., Nordsiek, G., Agarwala, R., Aravind, L., Bailey, J. A., Bateman, A., Batzoglou, S., Birney, E., Bork, P., Brown, D. G., Burge, C. B., Cerutti, L., Chen, H. C., Church, D., Clamp, M., Copley, R. R., Doerks, T., Eddy, S. R., Eichler, E. E., Furey, T. S., Galagan, J., Gilbert, J. G., Harmon, C., Hayashizaki, Y., Haussler, D., Hermjakob, H., Hokamp, K., Jang, W., Johnson, L. S., Jones, T. A., Kasif, S., Kaspryzk, A., Kennedy, S., Kent, W. J., Kitts, P., Koonin, E. V., Korf, I., Kulp, D., Lancet, D., Lowe, T. M., McLysaght, A., Mikkelsen, T., Moran, J. V., Mulder, N., Pollara, V. J., Ponting, C. P., Schuler, G., Schultz, J., Slater, G., Smit, A. F., Stupka, E., Szustakowski, J., Thierry-Mieg, D., Thierry-Mieg, J., Wagner, L., Wallis, J., Wheeler, R., Williams, A., Wolf, Y. I., Wolfe, K. H., Yang, S. P., Yeh, R. F., Collins, F., Guyer, M. S., Peterson, J., Felsenfeld, A., Wetterstrand, K. A., Patrinos, A., Morgan, M. J., de Jong, P., Catanese, J. J., Osoegawa, K., Shizuya, H., Choi, S. and Chen, Y. J. 2001. Initial sequencing and analysis of the human genome. Nature. 409(6822): 860–921.

    PubMed  CAS  Google Scholar 

  • LaRue, R. S., JĂ³nsson, S. R., Silverstein, K. A., Lajoie, M., Bertrand, D., El-Mabrouk, N., Hötzel, I., AndrĂ©sdĂ³ttir, V., Smith, T. P., Harris, R. S. 2008. The artiodactyl APOBEC3 innate immune repertoire shows evidence for a multi-functional domain organization that existed in the ancestor of placental mammals. BMC Mol. Biol. 9: 104.

    Google Scholar 

  • Lassaux, A., Sitbon, M. and Battini, J. L. 2005. Residues in the murine leukemia virus capsid that differentially govern resistance to mouse Fv1 and human Ref1 restrictions. J Virol. 79(10): 6560–4.

    PubMed  CAS  Google Scholar 

  • Lecossier, D., Bouchonnet, F., Clavel, F. and Hance, A. J. 2003. Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science. 300(5622): 1112.

    PubMed  CAS  Google Scholar 

  • Li, X., Li, Y., Stremlau, M., Yuan, W., Song, B., Perron, M. and Sodroski, J. 2006a. Functional replacement of the RING, B-box 2, and coiled-coil domains of tripartite motif 5alpha (TRIM5alpha) by heterologous TRIM domains. J Virol. 80(13):6198–206.

    PubMed  CAS  Google Scholar 

  • Li, Y., Li, X., Stremlau, M., Lee, M. and Sodroski, J. 2006b. Removal of arginine 332 allows human TRIM5alpha to bind human immunodeficiency virus capsids and to restrict infection. J Virol. 80(14): 6738–44.

    PubMed  CAS  Google Scholar 

  • Li, X., Gold, B., O’HUigin, C., Diaz-Griffero, F., Song, B., Si, Z., Li, Y., Yuan, W., Stremlau, M., Mische, C., Javanbakht, H., Scally, M., Winkler, C., Dean, M. and Sodroski, J. 2007. Unique features of TRIM5alpha among closely related human TRIM family members. Virology. 360(2): 419–33.

    PubMed  CAS  Google Scholar 

  • Liao, C. H., Kuang, Y. Q., Liu, H. L., Zheng, Y. T. and Su, B. 2007. A novel fusion gene, TRIM5-Cyclophilin A in the pig-tailed macaque determines its susceptibility to HIV-1 infection. Aids. 21 Suppl 8: S19–26.

    PubMed  CAS  Google Scholar 

  • Liddament, M. T., Brown, W. L., Schumacher, A. J. and Harris, R. S. 2004. APOBEC3F properties and hypermutation preferences indicate activity against HIV-1 in vivo. Curr Biol. 14(15): 1385–91.

    PubMed  CAS  Google Scholar 

  • Lilly, F. 1967. Susceptibility to two strains of Friend leukemia virus in mice. Science. 155(761): 461–2.

    PubMed  CAS  Google Scholar 

  • Liu, B., Yu, X., Luo, K., Yu, Y. and Yu, X. F. 2004. Influence of primate lentiviral Vif and proteasome inhibitors on human immunodeficiency virus type 1 virion packaging of APOBEC3G. J Virol. 78(4): 2072–81.

    PubMed  CAS  Google Scholar 

  • Liu, H. L., Wang, Y. Q., Liao, C. H., Kuang, Y. Q., Zheng, Y. T. and Su, B. 2005. Adaptive evolution of primate TRIM5alpha, a gene restricting HIV-1 infection. Gene. 362: 109–16.

    PubMed  CAS  Google Scholar 

  • Longerich, S., Basu, U., Alt, F. and Storb, U. 2006. AID in somatic hypermutation and class switch recombination. Curr Opin Immunol. 18(2): 164–74.

    PubMed  CAS  Google Scholar 

  • Luban, J., Bossolt, K. L., Franke, E. K., Kalpana, G. V. and Goff, S. P. 1993. Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. Cell. 73(6): 1067–78.

    PubMed  CAS  Google Scholar 

  • Luban, J. 2007. Cyclophilin A, TRIM5, and resistance to human immunodeficiency virus type 1 infection. J Virol. 81(3): 1054–61.

    PubMed  CAS  Google Scholar 

  • Luo, K., Liu, B., Xiao, Z., Yu, Y., Yu, X., Gorelick, R. and Yu, X. F. 2004. Amino-terminal region of the human immunodeficiency virus type 1 nucleocapsid is required for human APOBEC3G packaging. J Virol. 78(21): 11841–52.

    PubMed  CAS  Google Scholar 

  • Luo, K., Wang, T., Liu, B., Tian, C., Xiao, Z., Kappes, J. and Yu, X. F. 2007. Cytidine deaminases APOBEC3G and APOBEC3F interact with human immunodeficiency virus type 1 integrase and inhibit proviral DNA formation. J Virol. 81(13): 7238–48.

    PubMed  CAS  Google Scholar 

  • Madani, N. and Kabat, D. 1998. An endogenous inhibitor of human immunodeficiency virus in human lymphocytes is overcome by the viral Vif protein. J Virol. 72(12): 10251–5.

    PubMed  CAS  Google Scholar 

  • Mangeat, B., Turelli, P., Caron, G., Friedli, M., Perrin, L. and Trono, D. 2003. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature. 424(6944): 99–103.

    PubMed  CAS  Google Scholar 

  • Mangeat, B., Turelli, P., Liao, S. and Trono, D. 2004. A single amino acid determinant governs the species-specific sensitivity of APOBEC3G to Vif action. J Biol Chem. 279(15): 14481–3.

    PubMed  CAS  Google Scholar 

  • Mangeat, B. and Trono, D. 2005. Lentiviral vectors and antiretroviral intrinsic immunity. Hum Gene Ther. 16(8): 913–20.

    PubMed  CAS  Google Scholar 

  • Mariani, R., Chen, D., Schrofelbauer, B., Navarro, F., Konig, R., Bollman, B., Munk, C., Nymark-McMahon, H. and Landau, N. R. 2003. Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Cell. 114(1): 21–31.

    PubMed  CAS  Google Scholar 

  • Marin, M., Rose, K. M., Kozak, S. L. and Kabat, D. 2003. HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation. Nat Med. 9(11): 1398–403.

    PubMed  CAS  Google Scholar 

  • Massiah, M. A., Matts, J. A., Short, K. M., Simmons, B. N., Singireddy, S., Yi, Z. and Cox, T. C. 2007. Solution structure of the MID1 B-box2 CHC(D/C)C(2)H(2) zinc-binding domain: insights into an evolutionarily conserved RING fold. J Mol Biol. 369(1): 1–10.

    PubMed  CAS  Google Scholar 

  • Mbisa, J. L., Barr, R., Thomas, J. A., Vandegraaff, N., Dorweiler, I. J., Svarovskaia, E. S., Brown, W. L., Mansky, L. M., Gorelick, R. J., Harris, R. S., Engelman, A. and Pathak, V. K. 2007. Human immunodeficiency virus type 1 cDNAs produced in the presence of APOBEC3G exhibit defects in plus-strand DNA transfer and integration. J Virol. 81(13):7099–110.

    PubMed  CAS  Google Scholar 

  • Mehle, A., Strack, B., Ancuta, P., Zhang, C., McPike, M. and Gabuzda, D. 2004. Vif overcomes the innate antiviral activity of APOBEC3G by promoting its degradation in the ubiquitin-proteasome pathway. J Biol Chem. 279(9): 7792–8.

    PubMed  CAS  Google Scholar 

  • Mikl, M. C., Watt, I. N., Lu, M., Reik, W., Davies, S. L., Neuberger, M. S. and Rada, C. 2005. Mice deficient in APOBEC2 and APOBEC3. Mol Cell Biol. 25(16): 7270–7.

    PubMed  CAS  Google Scholar 

  • Mische, C. C., Javanbakht, H., Song, B., Diaz-Griffero, F., Stremlau, M., Strack, B., Si, Z. and Sodroski, J. 2005. Retroviral restriction factor TRIM5alpha is a trimer. J Virol. 79(22): 14446–50.

    PubMed  CAS  Google Scholar 

  • Miyagi, E., Opi, S., Takeuchi, H., Khan, M., Goila-Gaur, R., Kao, S. and Strebel, K. 2007. Enzymatically active APOBEC3G is required for efficient inhibition of human immunodeficiency virus type 1. J Virol. 81(24): 13346–53.

    PubMed  CAS  Google Scholar 

  • Munk, C., Brandt, S. M., Lucero, G. and Landau, N. R. 2002. A dominant block to HIV-1 replication at reverse transcription in simian cells. Proc Natl Acad Sci USA. 99(21):13843–8.

    PubMed  CAS  Google Scholar 

  • Munk, C., Beck, T., Zielonka, J., Hotz-Wagenblatt, A., Chareza, S., Battenberg, M., Thielebein, J., Cichutek, K., Bravo, I. G., O’Brien, S. J., Lochelt, M. and Yuhki, N. 2008. Functions, structure, and read-through alternative splicing of feline APOBEC3 genes. Genome Biol. 9(3): R48.

    PubMed  Google Scholar 

  • Nakayama, E. E., Miyoshi, H., Nagai, Y. and Shioda, T. 2005. A specific region of 37 amino acid residues in the SPRY (B30.2) domain of African green monkey TRIM5alpha determines species-specific restriction of simian immunodeficiency virus SIVmac infection. J Virol. 79(14): 8870–7.

    PubMed  CAS  Google Scholar 

  • Nakayama, E. E., Carpentier, W., Costagliola, D., Shioda, T., Iwamoto, A., Debre, P., Yoshimura, K., Autran, B., Matsushita, S. and Theodorou, I. 2007. Wild type and H43Y variant of human TRIM5alpha show similar anti-human immunodeficiency virus type 1 activity both in vivo and in vitro. Immunogenetics. 59(6): 511–5.

    PubMed  CAS  Google Scholar 

  • Nara, P. L. and Fischinger, P. J. 1988. Quantitative infectivity assay for HIV-1 and-2. Nature. 332(6163): 469–70.

    PubMed  CAS  Google Scholar 

  • Navarro, F., Bollman, B., Chen, H., Konig, R., Yu, Q., Chiles, K. and Landau, N. R. 2005. Complementary function of the two catalytic domains of APOBEC3G. Virology. 333(2):374–86.

    PubMed  CAS  Google Scholar 

  • Newman, E. N., Holmes, R. K., Craig, H. M., Klein, K. C., Lingappa, J. R., Malim, M. H. and Sheehy, A. M. 2005. Antiviral function of APOBEC3G can be dissociated from cytidine deaminase activity. Curr Biol. 15(2): 166–70.

    PubMed  CAS  Google Scholar 

  • Newman, R. M., Hall, L., Connole, M., Chen, G. L., Sato, S., Yuste, E., Diehl, W., Hunter, E., Kaur, A., Miller, G. M. and Johnson, W. E. 2006. Balancing selection and the evolution of functional polymorphism in Old World monkey TRIM5alpha. Proc Natl Acad Sci USA. 103(50): 19134–9.

    PubMed  CAS  Google Scholar 

  • Newman, R. M., Hall, L., Kirmaier, A., Pozzi, L. A., Pery, E., Farzan, M., O’Neil, S. P. and Johnson, W. 2008. Evolution of a TRIM5-CypA splice isoform in old world monkeys. PLoS Pathog. 4(2): e1000003.

    PubMed  Google Scholar 

  • Nguyen, D. H., Gummuluru, S. and Hu, J. 2007. Deamination-independent inhibition of hepatitis B virus reverse transcription by APOBEC3G. J Virol. 81(9): 4465–72.

    PubMed  CAS  Google Scholar 

  • Nisole, S., Lynch, C., Stoye, J. P. and Yap, M. W. 2004. A Trim5-cyclophilin A fusion protein found in owl monkey kidney cells can restrict HIV-1. Proc Natl Acad Sci USA. 101(36):13324–8.

    PubMed  CAS  Google Scholar 

  • Nisole, S., Stoye, J. P. and Saib, A. 2005. TRIM family proteins: retroviral restriction and antiviral defence. Nat Rev Microbiol. 3(10): 799–808.

    PubMed  CAS  Google Scholar 

  • Noser, J. A., Towers, G. J., Sakuma, R., Dumont, J. M., Collins, M. K. and Ikeda, Y. 2006. Cyclosporine increases human immunodeficiency virus type 1 vector transduction of primary mouse cells. J Virol. 80(15): 7769–74.

    PubMed  CAS  Google Scholar 

  • Ohkura, S., Yap, M. W., Sheldon, T. and Stoye, J. P. 2006. All three variable regions of the TRIM5alpha B30.2 domain can contribute to the specificity of retrovirus restriction. J Virol. 80(17): 8554–65.

    PubMed  CAS  Google Scholar 

  • Ortiz, M., Bleiber, G., Martinez, R., Kaessmann, H. and Telenti, A. 2006. Patterns of evolution of host proteins involved in retroviral pathogenesis. Retrovirology. 3: 11.

    PubMed  Google Scholar 

  • Peng, G., Lei, K. J., Jin, W., Greenwell-Wild, T. and Wahl, S. M. 2006. Induction of APOBEC3 family proteins, a defensive maneuver underlying interferon-induced anti-HIV-1 activity. J Exp Med. 203(1): 41–6.

    PubMed  CAS  Google Scholar 

  • Perez-Caballero, D., Hatziioannou, T., Yang, A., Cowan, S. and Bieniasz, P. D. 2005. Human tripartite motif 5alpha domains responsible for retrovirus restriction activity and specificity. J Virol. 79(14): 8969–78.

    PubMed  CAS  Google Scholar 

  • Perron, M. J., Stremlau, M., Song, B., Ulm, W., Mulligan, R. C. and Sodroski, J. 2004. TRIM5alpha mediates the postentry block to N-tropic murine leukemia viruses in human cells. Proc Natl Acad Sci USA. 101(32): 11827–32.

    PubMed  CAS  Google Scholar 

  • Perron, M. J., Stremlau, M. and Sodroski, J. 2006. Two surface-exposed elements of the B30.2/SPRY domain as potency determinants of N-tropic murine leukemia virus restriction by human TRIM5alpha. J Virol. 80(11): 5631–6.

    PubMed  CAS  Google Scholar 

  • Perron, M. J., Stremlau, M., Lee, M., Javanbakht, H., Song, B. and Sodroski, J. 2007. The human TRIM5alpha restriction factor mediates accelerated uncoating of the N-tropic murine leukemia virus capsid. J Virol. 81(5): 2138–48.

    PubMed  CAS  Google Scholar 

  • Petersen-Mahrt, S. K., Harris, R. S. and Neuberger, M. S. 2002. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature. 418(6893): 99–103.

    CAS  Google Scholar 

  • Pincus, T., Hartley, J. W. and Rowe, W. P. 1971. A major genetic locus affecting resistance to infection with murine leukemia viruses. I. Tissue culture studies of naturally occurring viruses. J Exp Med. 133(6): 1219–33.

    PubMed  CAS  Google Scholar 

  • Pincus, T., Hartley, J. W. and Rowe, W. P. 1975. A major genetic locus affecting resistance to infection with murine leukemia viruses. IV. Dose-response relationships in Fv-1-sensitive and resistant cell cultures. Virology. 65(2): 333–42.

    PubMed  CAS  Google Scholar 

  • Reddy, B. A. and Etkin, L. D. 1991. A unique bipartite cysteine-histidine motif defines a subfamily of potential zinc-finger proteins. Nucleic Acids Res. 19(22): 6330.

    PubMed  CAS  Google Scholar 

  • Reddy, B. A., Etkin, L. D. and Freemont, P. S. 1992. A novel zinc finger coiled-coil domain in a family of nuclear proteins. Trends Biochem Sci. 17(9): 344–5.

    PubMed  CAS  Google Scholar 

  • Reymond, A., Meroni, G., Fantozzi, A., Merla, G., Cairo, S., Luzi, L., Riganelli, D., Zanaria, E., Messali, S., Cainarca, S., Guffanti, A., Minucci, S., Pelicci, P. G. and Ballabio, A. 2001. The tripartite motif family identifies cell compartments. Embo J. 20(9): 2140–51.

    PubMed  CAS  Google Scholar 

  • Rhodes, D. A., de Bono, B. and Trowsdale, J. 2005. Relationship between SPRY and B30.2 protein domains. Evolution of a component of immune defence? Immunology. 116(4): 411–7.

    CAS  Google Scholar 

  • Ribeiro, I. P., Menezes, A. N., Moreira, M. A., Bonvicino, C. R., Seuanez, H. N. and Soares, M. A. 2005. Evolution of cyclophilin A and TRIMCyp retrotransposition in New World primates. J Virol. 79(23): 14998–5003.

    PubMed  CAS  Google Scholar 

  • Rogozin, I. B., Basu, M. K., Jordan, I. K., Pavlov, Y. I. and Koonin, E. V. 2005. APOBEC4, a new member of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases predicted by computational analysis. Cell Cycle. 4(9): 1281–5.

    PubMed  CAS  Google Scholar 

  • Rose, K. M., Marin, M., Kozak, S. L. and Kabat, D. 2004a. The viral infectivity factor (Vif) of HIV-1 unveiled. Trends Mol Med. 10(6): 291–7.

    PubMed  CAS  Google Scholar 

  • Rose, K. M., Marin, M., Kozak, S. L. and Kabat, D. 2004b. Transcriptional regulation of APOBEC3G, a cytidine deaminase that hypermutates human immunodeficiency virus. J Biol Chem. 279(40): 41744–9.

    PubMed  CAS  Google Scholar 

  • Rosler, C., Kock, J., Kann, M., Malim, M. H., Blum, H. E., Baumert, T. F. and von Weizsacker, F. 2005. APOBEC-mediated interference with hepadnavirus production. Hepatology. 42(2): 301–9.

    PubMed  Google Scholar 

  • Saenz, D. T., Teo, W., Olsen, J. C. and Poeschla, E. M. 2005. Restriction of feline immunodeficiency virus by Ref1, Lv1, and primate TRIM5alpha proteins. J Virol. 79(24): 15175–88.

    PubMed  CAS  Google Scholar 

  • Sakuma, R., Noser, J. A., Ohmine, S. and Ikeda, Y. 2007a. Inhibition of HIV-1 replication by simian restriction factors, TRIM5alpha and APOBEC3G. Gene Ther. 14(2): 185–9.

    PubMed  CAS  Google Scholar 

  • Sakuma, R., Noser, J. A., Ohmine, S. and Ikeda, Y. 2007b. Rhesus monkey TRIM5alpha restricts HIV-1 production through rapid degradation of viral Gag polyproteins. Nat Med. 13(5): 631–5.

    PubMed  CAS  Google Scholar 

  • Santa-Marta, M., da Silva, F. A., Fonseca, A. M. and Goncalves, J. 2005. HIV-1 Vif can directly inhibit apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G-mediated cytidine deamination by using a single amino acid interaction and without protein degradation. J Biol Chem. 280(10): 8765–75.

    PubMed  CAS  Google Scholar 

  • Sarkis, P. T., Ying, S., Xu, R. and Yu, X. F. 2006. STAT1-independent cell type-specific regulation of antiviral APOBEC3G by IFN-alpha. J Immunol. 177(7): 4530–40.

    PubMed  CAS  Google Scholar 

  • Saurin, A. J., Borden, K. L., Boddy, M. N. and Freemont, P. S. 1996. Does this have a familiar RING? Trends Biochem Sci. 21(6): 208–14.

    PubMed  CAS  Google Scholar 

  • Sawyer, S. L., Emerman, M. and Malik, H. S. 2004. Ancient adaptive evolution of the primate antiviral DNA-editing enzyme APOBEC3G. PLoS Biol. 2(9): E275.

    PubMed  Google Scholar 

  • Sawyer, S. L., Wu, L. I., Emerman, M. and Malik, H. S. 2005. Positive selection of primate TRIM5alpha identifies a critical species-specific retroviral restriction domain. Proc Natl Acad Sci USA. 102(8): 2832–7.

    PubMed  CAS  Google Scholar 

  • Sawyer, S. L., Wu, L. I., Akey, J. M., Emerman, M. and Malik, H. S. 2006. High-frequency persistence of an impaired allele of the retroviral defense gene TRIM5alpha in humans. Curr Biol. 16(1): 95–100.

    PubMed  CAS  Google Scholar 

  • Sayah, D. M. and Luban, J. 2004. Selection for loss of Ref1 activity in human cells releases human immunodeficiency virus type 1 from cyclophilin A dependence during infection. J Virol. 78(21): 12066–70.

    PubMed  CAS  Google Scholar 

  • Sayah, D. M., Sokolskaja, E., Berthoux, L. and Luban, J. 2004. Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nature. 430(6999): 569–73.

    PubMed  CAS  Google Scholar 

  • Schafer, A., Bogerd, H. P. and Cullen, B. R. 2004. Specific packaging of APOBEC3G into HIV-1 virions is mediated by the nucleocapsid domain of the gag polyprotein precursor. Virology. 328(2): 163–8.

    PubMed  Google Scholar 

  • Schaller, T., Hue, S. and Towers, G. J. 2007. An active TRIM5 protein in rabbits indicates a common antiviral ancestor for mammalian TRIM5 proteins. J Virol. 81(21): 11713–21.

    PubMed  CAS  Google Scholar 

  • Schmitz, C., Marchant, D., Neil, S. J., Aubin, K., Reuter, S., Dittmar, M. T. and McKnight, A. 2004. Lv2, a novel postentry restriction, is mediated by both capsid and envelope. J Virol. 78(4): 2006–16.

    PubMed  CAS  Google Scholar 

  • Schrofelbauer, B., Chen, D. and Landau, N. R. 2004. A single amino acid of APOBEC3G controls its species-specific interaction with virion infectivity factor (Vif). Proc Natl Acad Sci USA. 101(11): 3927–32.

    PubMed  Google Scholar 

  • Schumacher, A. J., Nissley, D. V. and Harris, R. S. 2005. APOBEC3G hypermutates genomic DNA and inhibits Ty1 retrotransposition in yeast. Proc Natl Acad Sci USA. 102(28): 9854–9.

    PubMed  CAS  Google Scholar 

  • Schumacher, A. J., Hache, G., Macduff, D. A., Brown, W. L. and Harris, R. S. 2008. The DNA deaminase activity of human APOBEC3G is required for Ty1, MusD, and human immunodeficiency virus type 1 restriction. J Virol. 82(6): 2652–60.

    PubMed  CAS  Google Scholar 

  • Sebastian, S. and Luban, J. 2005. TRIM5alpha selectively binds a restriction-sensitive retroviral capsid. Retrovirology. 2: 40.

    PubMed  Google Scholar 

  • Seppen, J. 2004. Unedited inhibition of HBV replication by APOBEC3G. J Hepatol. 41(6): 1068–9.

    PubMed  Google Scholar 

  • Serhan, F., Jourdan, N., Saleun, S., Moullier, P. and Duisit, G. 2002. Characterization of producer cell-dependent restriction of murine leukemia virus replication. J Virol. 76(13): 6609–17.

    PubMed  CAS  Google Scholar 

  • Sheehy, A. M., Gaddis, N. C., Choi, J. D. and Malim, M. H. 2002. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature. 418(6898): 646–50.

    PubMed  CAS  Google Scholar 

  • Sheehy, A. M., Gaddis, N. C. and Malim, M. H. 2003. The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat Med. 9(11): 1404–7.

    PubMed  CAS  Google Scholar 

  • Shibata, R., Sakai, H., Kawamura, M., Tokunaga, K. and Adachi, A. 1995. Early replication block of human immunodeficiency virus type 1 in monkey cells. J Gen Virol. 76(11): 2723–30.

    PubMed  CAS  Google Scholar 

  • Shindo, K., Takaori-Kondo, A., Kobayashi, M., Abudu, A., Fukunaga, K. and Uchiyama, T. 2003. The enzymatic activity of CEM15/Apobec-3G is essential for the regulation of the infectivity of HIV-1 virion but not a sole determinant of its antiviral activity. J Biol Chem. 278(45):44412–6.

    PubMed  CAS  Google Scholar 

  • Si, Z., Vandegraaff, N., O’Huigin, C., Song, B., Yuan, W., Xu, C., Perron, M., Li, X., Marasco, W. A., Engelman, A., Dean, M. and Sodroski, J. 2006. Evolution of a cytoplasmic tripartite motif (TRIM) protein in cows that restricts retroviral infection. Proc Natl Acad Sci USA. 103(19): 7454–9.

    PubMed  CAS  Google Scholar 

  • Simon, J. H. and Malim, M. H. 1996. The human immunodeficiency virus type 1 Vif protein modulates the postpenetration stability of viral nucleoprotein complexes. J Virol. 70(8): 5297–305.

    PubMed  CAS  Google Scholar 

  • Simon, J. H., Gaddis, N. C., Fouchier, R. A. and Malim, M. H. 1998. Evidence for a newly discovered cellular anti-HIV-1 phenotype. Nat Med. 4(12): 1397–400.

    PubMed  CAS  Google Scholar 

  • Simon, V., Zennou, V., Murray, D., Huang, Y., Ho, D. D. and Bieniasz, P. D. 2005. Natural Variation in Vif: Differential Impact on APOBEC3G/3F and a Potential Role in HIV-1 Diversification. PLoS Pathog. 1(1): e6.

    PubMed  Google Scholar 

  • Sokolskaja, E., Sayah, D. M. and Luban, J. 2004. Target cell cyclophilin A modulates human immunodeficiency virus type 1 infectivity. J Virol. 78(23): 12800–8.

    PubMed  CAS  Google Scholar 

  • Sokolskaja, E., Berthoux, L. and Luban, J. 2006. Cyclophilin A and TRIM5alpha independently regulate human immunodeficiency virus type 1 infectivity in human cells. J Virol. 80(6): 2855–62.

    PubMed  CAS  Google Scholar 

  • Song, B., Javanbakht, H., Perron, M., Park, D. H., Stremlau, M. and Sodroski, J. 2005a. Retrovirus restriction by TRIM5alpha variants from Old World and New World primates. J Virol. 79(7): 3930–7.

    PubMed  CAS  Google Scholar 

  • Song, B., Gold, B., O’Huigin, C., Javanbakht, H., Li, X., Stremlau, M., Winkler, C., Dean, M. and Sodroski, J. 2005b. The B30.2(SPRY) domain of the retroviral restriction factor TRIM5alpha exhibits lineage-specific length and sequence variation in primates. J Virol. 79(10): 6111–21.

    PubMed  CAS  Google Scholar 

  • Song, B., Diaz-Griffero, F., Park, D. H., Rogers, T., Stremlau, M. and Sodroski, J. 2005c. TRIM5alpha association with cytoplasmic bodies is not required for antiretroviral activity. Virology. 343(2): 201–11.

    PubMed  CAS  Google Scholar 

  • Speelmon, E. C., Livingston-Rosanoff, D., Li, S. S., Vu, Q., Bui, J., Geraghty, D. E., Zhao, L. P. and McElrath, M. J. 2006. Genetic association of the antiviral restriction factor TRIM5alpha with human immunodeficiency virus type 1 infection. J Virol. 80(5): 2463–71.

    PubMed  CAS  Google Scholar 

  • Stenglein, M. D. and Harris, R. S. 2006. APOBEC3B and APOBEC3F inhibit L1 retrotransposition by a DNA deamination-independent mechanism. J Biol Chem. 281(25): 16837–41.

    PubMed  CAS  Google Scholar 

  • Stevenson, M., Stanwick, T. L., Dempsey, M. P. and Lamonica, C. A. 1990. HIV-1 replication is controlled at the level of T cell activation and proviral integration. Embo J. 9(5): 1551–60.

    PubMed  CAS  Google Scholar 

  • Stopak, K., de Noronha, C., Yonemoto, W. and Greene, W. C. 2003. HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability. Mol Cell. 12(3): 591–601.

    PubMed  CAS  Google Scholar 

  • Stopak, K. S., Chiu, Y. L., Kropp, J., Grant, R. M. and Greene, W. C. 2007. Distinct patterns of cytokine regulation of APOBEC3G expression and activity in primary lymphocytes, macrophages, and dendritic cells. J Biol Chem. 282(6): 3539–46.

    PubMed  CAS  Google Scholar 

  • Strebel, K., Daugherty, D., Clouse, K., Cohen, D., Folks, T. and Martin, M. A. 1987. The HIV 'A' (sor) gene product is essential for virus infectivity. Nature. 328(6132): 728–30.

    PubMed  CAS  Google Scholar 

  • Stremlau, M., Owens, C. M., Perron, M. J., Kiessling, M., Autissier, P. and Sodroski, J. 2004. The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature. 427(6977): 848–53.

    PubMed  CAS  Google Scholar 

  • Stremlau, M., Perron, M., Welikala, S. and Sodroski, J. 2005. Species-specific variation in the B30.2(SPRY) domain of TRIM5alpha determines the potency of human immunodeficiency virus restriction. J Virol. 79(5): 3139–45.

    PubMed  CAS  Google Scholar 

  • Stremlau, M., Song, B., Javanbakht, H., Perron, M. and Sodroski, J. 2006a. Cyclophilin A: an auxiliary but not necessary cofactor for TRIM5alpha restriction of HIV-1. Virology. 351(1): 112–20.

    PubMed  CAS  Google Scholar 

  • Stremlau, M., Perron, M., Lee, M., Li, Y., Song, B., Javanbakht, H., Diaz-Griffero, F., Anderson, D. J., Sundquist, W. I. and Sodroski, J. 2006b. Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5alpha restriction factor. Proc Natl Acad Sci USA. 103(14): 5514–9.

    PubMed  CAS  Google Scholar 

  • Suspene, R., Guetard, D., Henry, M., Sommer, P., Wain-Hobson, S. and Vartanian, J. P. 2005. Extensive editing of both hepatitis B virus DNA strands by APOBEC3 cytidine deaminases in vitro and in vivo. Proc Natl Acad Sci USA. 102(23): 8321–6.

    PubMed  CAS  Google Scholar 

  • Suzuki, S. 1975. FV-4: a new gene affecting the splenomegaly induction by Friend leukemia virus. Jpn J Exp Med. 45(6): 473–8.

    PubMed  CAS  Google Scholar 

  • Svarovskaia, E. S., Xu, H., Mbisa, J. L., Barr, R., Gorelick, R. J., Ono, A., Freed, E. O., Hu, W. S. and Pathak, V. K. 2004. Human apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G) is incorporated into HIV-1 virions through interactions with viral and nonviral RNAs. J Biol Chem. 279(34): 35822–8.

    PubMed  CAS  Google Scholar 

  • Tanaka, Y., Marusawa, H., Seno, H., Matsumoto, Y., Ueda, Y., Kodama, Y., Endo, Y., Yamauchi, J., Matsumoto, T., Takaori-Kondo, A., Ikai, I. and Chiba, T. 2006. Anti-viral protein APOBEC3G is induced by interferon-alpha stimulation in human hepatocytes. Biochem Biophys Res Commun. 341(2): 314–9.

    PubMed  CAS  Google Scholar 

  • Taylor, M. W., Grosse, W. M., Schaley, J. E., Sanda, C., Wu, X., Chien, S. C., Smith, F., Wu, T. G., Stephens, M., Ferris, M. W., McClintick, J. N., Jerome, R. E. and Edenberg, H. J. 2004. Global effect of PEG-IFN-alpha and ribavirin on gene expression in PBMC in vitro. J Interferon Cytokine Res. 24(2): 107–18.

    PubMed  CAS  Google Scholar 

  • Thali, M., Bukovsky, A., Kondo, E., Rosenwirth, B., Walsh, C. T., Sodroski, J. and Gottlinger, H. G. 1994. Functional association of cyclophilin A with HIV-1 virions. Nature. 372(6504): 363–5.

    PubMed  CAS  Google Scholar 

  • Tock, M. R. and Dryden, D. T. 2005. The biology of restriction and anti-restriction. Curr Opin Microbiol. 8(4): 466–72.

    PubMed  CAS  Google Scholar 

  • Towers, G., Bock, M., Martin, S., Takeuchi, Y., Stoye, J. P. and Danos, O. 2000. A conserved mechanism of retrovirus restriction in mammals. Proc Natl Acad Sci USA. 97(22):12295–9.

    PubMed  CAS  Google Scholar 

  • Towers, G., Collins, M. and Takeuchi, Y. 2002. Abrogation of Ref1 retrovirus restriction in human cells. J Virol. 76(5): 2548–50.

    PubMed  CAS  Google Scholar 

  • Towers, G. J. 2007. The control of viral infection by tripartite motif proteins and cyclophilin A. Retrovirology. 4: 40.

    PubMed  Google Scholar 

  • Turelli, P., Mangeat, B., Jost, S., Vianin, S. and Trono, D. 2004. Inhibition of hepatitis B virus replication by APOBEC3G. Science. 303(5665): 1829.

    PubMed  Google Scholar 

  • Victoria, J. G. and Robinson, W. E., Jr. 2005. Disruption of the putative splice acceptor site for SIV(mac239)Vif reveals tight control of SIV splicing and impaired replication in Vif non-permissive cells. Virology. 338(2): 281–91.

    PubMed  CAS  Google Scholar 

  • Vigano, A., Saresella, M., Schenal, M., Erba, P., Piacentini, L., Tornaghi, R., Naddeo, V., Giacomet, V., Borelli, M., Trabattoni, D. and Clerici, M. 2007. Immune activation and normal levels of endogenous antivirals are seen in healthy adolescents born of HIV-infected mothers. Aids. 21(2): 245–8.

    PubMed  Google Scholar 

  • Virgen, C. A., Kratovac, Z., Bieniasz, P. D. and Hatziioannou, T. 2008. Independent genesis of chimeric TRIM5-cyclophilin proteins in two primate species. Proc Natl Acad Sci USA. 105(9): 3563–8.

    PubMed  CAS  Google Scholar 

  • von Schwedler, U., Song, J., Aiken, C. and Trono, D. 1993. Vif is crucial for human immunodeficiency virus type 1 proviral DNA synthesis in infected cells. J Virol. 67(8): 4945–55.

    Google Scholar 

  • Wedekind, J. E., Dance, G. S., Sowden, M. P. and Smith, H. C. 2003. Messenger RNA editing in mammals: new members of the APOBEC family seeking roles in the family business. Trends Genet. 19(4): 207–16.

    PubMed  CAS  Google Scholar 

  • Wichroski, M. J., Ichiyama, K. and Rana, T. M. 2005. Analysis of HIV-1 viral infectivity factor-mediated proteasome-dependent depletion of APOBEC3G: correlating function and subcellular localization. J Biol Chem. 280(9): 8387–96.

    PubMed  CAS  Google Scholar 

  • Wichroski, M. J., Robb, G. B. and Rana, T. M. 2006. Human retroviral host restriction factors APOBEC3G and APOBEC3F localize to mRNA processing bodies. PLoS Pathog. 2(5): e41.

    PubMed  Google Scholar 

  • Wiegand, H. L., Doehle, B. P., Bogerd, H. P. and Cullen, B. R. 2004. A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV-1 and HIV-2 Vif proteins. Embo J. 23(12): 2451–8.

    PubMed  CAS  Google Scholar 

  • Wilson, S. J., Webb, B. L., Ylinen, L. M., Verschoor, E., Heeney, J. L. and Towers, G. J. 2008. Independent evolution of an antiviral TRIMCyp in rhesus macaques. Proc Natl Acad Sci USA. 105(9): 3557–62.

    PubMed  CAS  Google Scholar 

  • Woo, J. S., Imm, J. H., Min, C. K., Kim, K. J., Cha, S. S. and Oh, B. H. 2006. Structural and functional insights into the B30.2/SPRY domain. Embo J. 25(6): 1353–63.

    PubMed  CAS  Google Scholar 

  • Wu, X., Anderson, J. L., Campbell, E. M., Joseph, A. M. and Hope, T. J. 2006. Proteasome inhibitors uncouple rhesus TRIM5alpha restriction of HIV-1 reverse transcription and infection. Proc Natl Acad Sci USA. 103(19): 7465–70.

    PubMed  CAS  Google Scholar 

  • Xu, L., Yang, L., Moitra, P. K., Hashimoto, K., Rallabhandi, P., Kaul, S., Meroni, G., Jensen, J. P., Weissman, A. M. and D’Arpa, P. 2003. BTBD1 and BTBD2 colocalize to cytoplasmic bodies with the RBCC/tripartite motif protein, TRIM5delta. Exp Cell Res. 288(1):84–93.

    PubMed  CAS  Google Scholar 

  • Xu, H., Svarovskaia, E. S., Barr, R., Zhang, Y., Khan, M. A., Strebel, K. and Pathak, V. K. 2004. A single amino acid substitution in human APOBEC3G antiretroviral enzyme confers resistance to HIV-1 virion infectivity factor-induced depletion. Proc Natl Acad Sci USA. 101(15): 5652–7.

    PubMed  CAS  Google Scholar 

  • Yang, W. K., Kiggans, J. O., Yang, D. M., Ou, C. Y., Tennant, R. W., Brown, A. and Bassin, R. H. 1980. Synthesis and circularization of N- and B-tropic retroviral DNA Fv-1 permissive and restrictive mouse cells. Proc Natl Acad Sci USA. 77(5): 2994–8.

    PubMed  CAS  Google Scholar 

  • Yap, M. W., Nisole, S., Lynch, C. and Stoye, J. P. 2004. Trim5alpha protein restricts both HIV-1 and murine leukemia virus. Proc Natl Acad Sci USA. 101(29): 10786–91.

    PubMed  CAS  Google Scholar 

  • Yap, M. W., Nisole, S. and Stoye, J. P. 2005. A single amino acid change in the SPRY domain of human Trim5alpha leads to HIV-1 restriction. Curr Biol. 15(1): 73–8.

    PubMed  CAS  Google Scholar 

  • Yap, M. W., Dodding, M. P. and Stoye, J. P. 2006. Trim-cyclophilin A fusion proteins can restrict human immunodeficiency virus type 1 infection at two distinct phases in the viral life cycle. J Virol. 80(8): 4061–7.

    PubMed  CAS  Google Scholar 

  • Ying, S., Zhang, X., Sarkis, P. T., Xu, R. and Yu, X. 2007. Cell-specific Regulation of APOBEC3F by Interferons. Acta Biochim Biophys Sin (Shanghai). 39(4): 297–304.

    CAS  Google Scholar 

  • Ylinen, L. M., Keckesova, Z., Wilson, S. J., Ranasinghe, S. and Towers, G. J. 2005. Differential restriction of human immunodeficiency virus type 2 and simian immunodeficiency virus SIVmac by TRIM5alpha alleles. J Virol. 79(18): 11580–7.

    PubMed  CAS  Google Scholar 

  • Ylinen, L. M., Keckesova, Z., Webb, B. L., Gifford, R. J., Smith, T. P. and Towers, G. J. 2006. Isolation of an active Lv1 gene from cattle indicates that tripartite motif protein-mediated innate immunity to retroviral infection is widespread among mammals. J Virol. 80(15): 7332–8.

    PubMed  CAS  Google Scholar 

  • Yu, X., Yu, Y., Liu, B., Luo, K., Kong, W., Mao, P. and Yu, X. F. 2003. Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science. 302(5647): 1056–60.

    PubMed  CAS  Google Scholar 

  • Zack, J. A., Arrigo, S. J., Weitsman, S. R., Go, A. S., Haislip, A. and Chen, I. S. 1990. HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell. 61(2): 213–22.

    PubMed  CAS  Google Scholar 

  • Zennou, V., Perez-Caballero, D., Gottlinger, H. and Bieniasz, P. D. 2004. APOBEC3G incorporation into human immunodeficiency virus type 1 particles. J Virol. 78(21): 12058–61.

    PubMed  CAS  Google Scholar 

  • Zhang, H., Yang, B., Pomerantz, R. J., Zhang, C., Arunachalam, S. C. and Gao, L. 2003. The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature. 424(6944): 94–8.

    PubMed  CAS  Google Scholar 

  • Zhang, J. and Webb, D. M. 2004. Rapid evolution of primate antiviral enzyme APOBEC3G. Hum Mol Genet. 13(16): 1785–91.

    PubMed  CAS  Google Scholar 

  • Zhang, F., Hatziioannou, T., Perez-Caballero, D., Derse, D. and Bieniasz, P. D. 2006. Antiretroviral potential of human tripartite motif-5 and related proteins. Virology. 353(2): 396–409.

    PubMed  CAS  Google Scholar 

  • Zheng, Y. H., Irwin, D., Kurosu, T., Tokunaga, K., Sata, T. and Peterlin, B. M. 2004. Human APOBEC3F is another host factor that blocks human immunodeficiency virus type 1 replication. J Virol. 78(11): 6073–6.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank N. Somia, L. Mansky, M. Huseby, and several laboratory members for thoughtful comments. Studies in the authors’ laboratory are supported by grants from the National Institutes of Health (AI064046 and GM080437), the Medica Foundation (Minnesota Partnership for Biotechnology and Medical Genomics) and the University of Minnesota (Leukemia Research Fund and Cancer Center Brainstorm Program), and the Cancer Biology Training Grant (CA009138).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Stenglein, M.D., Schumacher, A.J., LaRue, R.S., Harris, R.S. (2009). Host Factors that Restrict Retrovirus Replication. In: Raney, K., Gotte, M., Cameron, C. (eds) Viral Genome Replication. Springer, Boston, MA. https://doi.org/10.1007/b135974_15

Download citation

Publish with us

Policies and ethics