Skip to main content

Herpesvirus Genome Replication

  • Chapter
  • First Online:
Viral Genome Replication

The Herpesviridae are a large family of enveloped, double-stranded DNA viruses that are responsible for many human and veterinary diseases. Herpesviruses can infect mammals, birds, and reptiles, and so far, eight distinct family members have been found which infect humans including herpes simplex virus type 1 (HSV-1) and herpes simplex virus type 2 (HSV-2), Epstein–Barr virus (EBV), cytomegalovirus (HCMV), varicella-zoster virus (VZV), human herpesvirus 6 (HHV-6), human herpesvirus 7 (HHV-7), and Kaposi’s sarcoma herpesvirus (KSHV). All members of the family are capable of both lytic and latent infections although they differ greatly in tissue tropism and in many aspects of their interactions with their hosts. These viruses share many aspects of virion structure (they all are T = 16), genomic organization, mechanisms of DNA replication and life cycle. Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) are the most extensively studied of all the herpesviruses, in part because they are most amenable to genetic and biochemical approaches. This chapter will focus primarily on herpes simplex virus type 1 (HSV-1); however, other human herpesviruses will be discussed when their replication strategy differs in significant detail from simplex viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anders, D. G., and L. A. McCue. 1996. The human cytomegalovirus genes and proteins required for DNA synthesis. Intervirology 39: 378–388.

    PubMed  CAS  Google Scholar 

  • Arana, M. E., B. Haq, N. Tanguy Le Gac, and P. E. Boehmer. 2001. Modulation of the herpes simplex virus type-1 UL9 DNA helicase by its cognate single-strand DNA-binding protein, icp8. J Biol Chem 276: 6840–6845.

    Article  PubMed  CAS  Google Scholar 

  • Baines, J., and S. K. Weller. 2004. Cleavage and packaging of herpes simplex virus 1 DNA. In: C. Catalano (ed.) Virus packaging No. in press. Landes Bioscience, Georgetown.

    Google Scholar 

  • Biswas, N., and S. K. Weller. 1999. A mutation in the c-terminal putative zn2+ finger motif of UL52 severely affects the biochemical activities of the hsv-1 helicase-primase subcomplex. J Biol Chem 274: 8068–8076.

    Article  PubMed  CAS  Google Scholar 

  • Biswas, N., and S. K. Weller. 2001. The UL5 and UL52 subunits of the herpes simplex virus type 1 helicase-primase subcomplex exhibit a complex interdependence for DNA binding. J Biol Chem 276: 17610–17619.

    Article  PubMed  CAS  Google Scholar 

  • Blumel, J., S. Graper, and B. Matz. 2000. Structure of simian virus 40 DNA replicated by herpes simplex virus type 1. Virology 276: 445–454.

    Article  PubMed  CAS  Google Scholar 

  • Blumel, J., and B. Matz. 1995. Thermosensitive UL9 gene function is required for early stages of herpes simplex virus type 1 DNA synthesis. J Gen Virol 76 (Pt 12): 3119–3124.

    Article  PubMed  Google Scholar 

  • Boehmer, P. E. 1998. The herpes simplex virus type-1 single-strand DNA-binding protein, ICP8, increases the processivity of the UL9 protein DNA helicase. J Biol Chem 273: 2676–2683.

    Article  PubMed  CAS  Google Scholar 

  • Boutell, C., A. Orr, and R. D. Everett. 2003. Pml residue lysine 160 is required for the degradation of pml induced by herpes simplex virus type 1 regulatory protein ICP0. J Virol 77: 8686–8694.

    Article  PubMed  Google Scholar 

  • Boutell, C., S. Sadis, and R. D. Everett. 2002. Herpes simplex virus type 1 immediate-early protein ICP0 and is isolated ring finger domain act as ubiquitin e3 ligases in vitro. J Virol 76: 841–850.

    Article  PubMed  CAS  Google Scholar 

  • Burch, A. D., and S. K. Weller. 2004. Nuclear sequestration of cellular chaperone and proteasomal machinery during herpes simplex virus type 1 infection. J Virol 78: 7175–7185.

    Article  PubMed  CAS  Google Scholar 

  • Burkham, J., D. M. Coen, and S. K. Weller. 1998. Nd10 protein pml is recruited to herpes simplex virus type 1 prereplicative sites and replication compartments in the presence of viral DNA polymerase. J Virol 72: 10100–10107.

    PubMed  CAS  Google Scholar 

  • Carmichael, E. P., M. J. Kosovsky, and S. K. Weller. 1988. Isolation and characterization of herpes simplex virus type 1 host range mutants defective in viral DNA synthesis. J Virol 62: 91–99.

    PubMed  CAS  Google Scholar 

  • Carrington-Lawrence, S. D., and S. K. Weller. 2003. Recruitment of polymerase to herpes simplex virus type 1 replication foci in cells expressing mutant primase (UL52) proteins. J Virol 77: 4237–4247.

    Article  PubMed  CAS  Google Scholar 

  • Chabaud, S. et al. 2003. The R1 subunit of herpes simplex virus ribonucleotide reductase has chaperone-like activity similar to hsp27. FEBS Lett 545: 213–218.

    Article  PubMed  CAS  Google Scholar 

  • Challberg, M. 1996. Herpesvirus DNA replication. In: M. DePamphilis (ed.) DNA replication in eukaryotic cells. p 721–750. Cold Spring Harbor Press, Cold Spring Harbor.

    Google Scholar 

  • Chattopadhyay, S., Y. Chen, and S. K. Weller. 2006. The two helicases of herpes simplex virus type 1 (HSV-1). Front Biosci 11: 2213–2223.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y., S. D. Carrington-Lawrence, P. Bai, and S. K. Weller. 2005. Mutations in the putative zinc-binding motif of UL52 demonstrate a complex interdependence between the UL5 and UL52 subunits of the human herpes simplex virus type 1 helicase/primase complex. J Virol 79: 9088–9096.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y., C. M. Livingston, S. D. Carrington-Lawrence, P. Bai, and S. K. Weller. 2007. A mutation in the human herpes simplex virus type 1 UL52 zinc finger motif results in defective primase activity but can recruit viral polymerase and support viral replication efficiently. J Virol 81: 8742–8751.

    Article  PubMed  CAS  Google Scholar 

  • Dellaire, G., and D. P. Bazett-Jones. 2004. Pml nuclear bodies: Dynamic sensors of DNA damage and cellular stress. Bioessays 26: 963–977.

    Article  PubMed  CAS  Google Scholar 

  • Dellaire, G., and D. P. Bazett-Jones. 2007. Beyond repair foci: Subnuclear domains and the cellular response to DNA damage. Cell Cycle 6: 1864–1872.

    Article  PubMed  CAS  Google Scholar 

  • Dracheva, S., E. V. Koonin, and J. J. Crute. 1995. Identification of the primase active site of the herpes simplex virus type 1 helicase-primase. J Biol Chem 270: 14148–14153.

    Article  PubMed  CAS  Google Scholar 

  • Eom, C. Y., W. D. Heo, M. L. Craske, T. Meyer, and I. R. Lehman. 2004. The neural f-box protein nfb42 mediates the nuclear export of the herpes simplex virus type 1 replication initiator protein (UL9 protein) after viral infection. Proc Natl Acad Sci USA 101: 4036–4040.

    Article  PubMed  CAS  Google Scholar 

  • Eom, C. Y., and I. R. Lehman. 2003. Replication-initiator protein (UL9) of the herpes simplex virus 1 binds nfb42 and is degraded via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 100: 9803–9807.

    Article  PubMed  CAS  Google Scholar 

  • Everett, R. D. 2006. Interactions between DNA viruses, ND10 and the DNA damage response. Cell Microbiol 8: 365–374.

    Article  PubMed  CAS  Google Scholar 

  • Everett, R. D., and J. Murray. 2005. ND10 components relocate to sites associated with herpes simplex virus type 1 nucleoprotein complexes during virus infection. J Virol 79: 5078–5089.

    Article  PubMed  CAS  Google Scholar 

  • Everett, R. D., J. Murray, A. Orr, and C. M. Preston. 2007. Herpes simplex virus type 1 genomes are associated with ND10 nuclear sub-structures in quiescently infected human fibroblasts. J Virol. 81: 10991–11004.

    Google Scholar 

  • Everett, R. D., G. Sourvinos, C. Leiper, J. B. Clements, and A. Orr. 2004. Formation of nuclear foci of the herpes simplex virus type 1 regulatory protein ICP4 at early times of infection: Localization, dynamics, recruitment of ICP27, and evidence for the de novo induction of ND10-like complexes. J Virol 78: 1903–1917.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Capetillo, O. et al. 2003. H2ax is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev Cell 4: 497–508.

    Article  PubMed  CAS  Google Scholar 

  • Graves-Woodward, K. L., J. Gottlieb, M. D. Challberg, and S. K. Weller. 1997. Biochemical analyses of mutations in the hsv-1 helicase-primase that alter ATP hydrolysis, DNA unwinding, and coupling between hydrolysis and unwinding. J Biol Chem 272: 4623–4630.

    Article  PubMed  CAS  Google Scholar 

  • Graves-Woodward, K. L., and S. K. Weller. 1996. Replacement of gly815 in helicase motif v alters the single-stranded DNA-dependent ATPase activity of the herpes simplex virus type 1 helicase-primase. J Biol Chem 271: 13629–13635.

    Article  PubMed  CAS  Google Scholar 

  • Hamatake, R. K., M. Bifano, W. W. Hurlburt, and D. J. Tenney. 1997. A functional interaction of ICP8, the herpes simplex virus single-stranded DNA-binding protein, and the helicase-primase complex that is dependent on the presence of the UL8 subunit. J Gen Virol 78 (Pt 4): 857–865.

    PubMed  CAS  Google Scholar 

  • Hayward, G. S., R. J. Jacob, S. C. Wadsworth, and B. Roizman. 1975. Anatomy of herpes simplex virus DNA: Evidence for four populations of molecules that differ in the relative orientations of their long and short components. Proc Natl Acad Sci USA 72: 4243–4247.

    Article  PubMed  CAS  Google Scholar 

  • Huang, L. et al. 1999. The enzymological basis for resistance of herpesvirus DNA polymerase mutants to acyclovir: Relationship to the structure of alpha-like DNA polymerases. Proc Natl Acad Sci USA 96: 447–452.

    Article  PubMed  CAS  Google Scholar 

  • Igarashi, K., R. Fawl, R. J. Roller, and B. Roizman. 1993. Construction and properties of a recombinant herpes simplex virus 1 lacking both s-component origins of DNA synthesis. J Virol 67: 2123–2132.

    PubMed  CAS  Google Scholar 

  • Jackson, S. A., and N. A. DeLuca. 2003. Relationship of herpes simplex virus genome configuration to productive and persistent infections. Proc Natl Acad Sci USA 100: 7871–7876.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, C., Y. T. Hwang, J. C. Randell, D. M. Coen, and C. B. Hwang. 2007. Mutations that decrease DNA binding of the processivity factor of the herpes simplex virus DNA polymerase reduce viral yield, alter the kinetics of viral DNA replication, and decrease the fidelity of DNA replication. J Virol 81: 3495–3502.

    Article  PubMed  CAS  Google Scholar 

  • Klinedinst, D. K., and M. D. Challberg. 1994. Helicase-primase complex of herpes simplex virus type 1: A mutation in the UL52 subunit abolishes primase activity. J Virol 68: 3693–3701.

    PubMed  CAS  Google Scholar 

  • Knipe, D. M. 1989. The role of viral and cellular nuclear proteins in herpes simplex virus replication. Adv Virus Res 37: 85–123.

    Article  PubMed  CAS  Google Scholar 

  • Lamberti, C., and S. K. Weller. 1996. The herpes simplex virus type 1 UL6 protein is essential for cleavage and packaging but not for genomic inversion. Virology 226: 403–407.

    Article  PubMed  CAS  Google Scholar 

  • Langelier, Y. et al. 2002. The R1 subunit of herpes simplex virus ribonucleotide reductase protects cells against apoptosis at, or upstream of, caspase-8 activation. J Gen Virol 83: 2779–2789.

    PubMed  CAS  Google Scholar 

  • Lee, S. S., Q. Dong, T. S. Wang, and I. R. Lehman. 1995. Interaction of herpes simplex virus 1 origin-binding protein with DNA polymerase alpha. Proc Natl Acad Sci USA 92: 7882–7886.

    Article  PubMed  CAS  Google Scholar 

  • Livingston, C. M., N. Deluca, D. E. Wilkinson, and S. K. Weller. 2008. The formation of foci of ICP8, the single strand DNA binding protein of HSV-1, requires the oligomerization of ICP4. J. Virol. 82: 6324–6336.

    Google Scholar 

  • Liu, S. et al. 2006. Crystal structure of the herpes simplex virus 1 DNA polymerase. J Biol Chem 281: 18193–18200.

    Article  PubMed  CAS  Google Scholar 

  • Malik, A. K., and S. K. Weller. 1996. Use of transdominant mutants of the origin-binding protein (UL9) of herpes simplex virus type 1 to define functional domains. J Virol 70: 7859–7866.

    PubMed  CAS  Google Scholar 

  • Mapelli, M., S. Panjikar, and P. A. Tucker. 2005. The crystal structure of the herpes simplex virus 1 ssdna-binding protein suggests the structural basis for flexible, cooperative single-stranded DNA binding. J Biol Chem 280: 2990–2997.

    Article  PubMed  CAS  Google Scholar 

  • Marintcheva, B., and S. K. Weller. 2001a. A tale of two hsv-1 helicases: Roles of phage and animal virus helicases in DNA replication and recombination. Prog Nucleic Acid Res Mol Biol 70: 77–118.

    Article  PubMed  CAS  Google Scholar 

  • Marintcheva, B., and S. K. Weller. 2001b. Residues within the conserved helicase motifs of UL9, the origin-binding protein of herpes simplex virus-1, are essential for helicase activity but not for dimerization or origin binding activity. J Biol Chem 276: 6605–6615.

    Article  PubMed  CAS  Google Scholar 

  • Marintcheva, B., and S. K. Weller. 2003a. Existence of transdominant and potentiating mutants of UL9, the herpes simplex virus type 1 origin-binding protein, suggests that levels of UL9 protein may be regulated during infection. J Virol 77: 9639–9651.

    Article  PubMed  CAS  Google Scholar 

  • Marintcheva, B., and S. K. Weller. 2003b. Helicase motif Ia is involved in single-strand DNA-binding and helicase activities of the herpes simplex virus type 1 origin-binding protein, UL9. J Virol 77: 2477–2488.

    Article  PubMed  CAS  Google Scholar 

  • McNamee, E. E., T. J. Taylor, and D. M. Knipe. 2000. A dominant-negative herpesvirus protein inhibits intranuclear targeting of viral proteins: Effects on DNA replication and late gene expression. J Virol 74: 10122–10131.

    Article  PubMed  CAS  Google Scholar 

  • Ojala, P. M., B. Sodeik, M. W. Ebersold, U. Kutay, and A. Helenius. 2000. Herpes simplex virus type 1 entry into host cells: Reconstitution of capsid binding and uncoating at the nuclear pore complex in vitro. Mol Cell Biol 20: 4922–4931.

    Article  PubMed  CAS  Google Scholar 

  • Perkins, D., E. F. Pereira, M. Gober, P. J. Yarowsky, and L. Aurelian. 2002. The herpes simplex virus type 2 R1 protein kinase (ICP10 pk) blocks apoptosis in hippocampal neurons, involving activation of the mek/mapk survival pathway. J Virol 76: 1435–1449.

    Article  PubMed  CAS  Google Scholar 

  • Poffenberger, K. L., and B. Roizman. 1985. A noninverting genome of a viable herpes simplex virus 1: Presence of head-to-tail linkages in packaged genomes and requirements for circularization after infection. J Virol 53: 587–595.

    PubMed  CAS  Google Scholar 

  • Polvino-Bodnar, M., P. K. Orberg, and P. A. Schaffer. 1987. Herpes simplex virus type 1 oril is not required for virus replication or for the establishment and reactivation of latent infection in mice. J Virol 61: 3528–3535.

    PubMed  CAS  Google Scholar 

  • Randell, J. C., and D. M. Coen. 2001. Linear diffusion on DNA despite high-affinity binding by a DNA polymerase processivity factor. Mol Cell 8: 911–920.

    CAS  Google Scholar 

  • Randell, J. C., and D. M. Coen. 2004. The herpes simplex virus processivity factor, UL42, binds DNA as a monomer. J Mol Biol 335: 409–413.

    Article  PubMed  CAS  Google Scholar 

  • Reuven, N. B., S. Antoku, and S. K. Weller. 2004a. The UL12.5 gene product of herpes simplex virus type 1 exhibits nuclease and strand exchange activities but does not localize to the nucleus. J Virol 78: 4599–4608.

    Article  PubMed  CAS  Google Scholar 

  • Reuven, N. B., A. E. Staire, R. S. Myers, and S. K. Weller. 2003. The herpes simplex virus type 1 alkaline nuclease and single-stranded DNA binding protein mediate strand exchange in vitro. J Virol 77: 7425–7433.

    Article  PubMed  CAS  Google Scholar 

  • Reuven, N. B., and S. K. Weller. 2005. Herpes simplex virus type 1 single-strand DNA binding protein ICP8 enhances the nuclease activity of the UL12 alkaline nuclease by increasing its processivity. J Virol 79: 9356–9358.

    Article  PubMed  CAS  Google Scholar 

  • Reuven, N. B., S. Willcox, J. D. Griffith, and S. K. Weller. 2004b. Catalysis of strand exchange by the hsv-1 UL12 and ICP8 proteins: Potent ICP8 recombinase activity is revealed upon resection of dsdna substrate by nuclease. J Mol Biol 342: 57–71.

    Article  PubMed  CAS  Google Scholar 

  • Schildgen, O., S. Graper, J. Blumel, and B. Matz. 2005. Genome replication and progeny virion production of herpes simplex virus type 1 mutants with temperature-sensitive lesions in the origin-binding protein. J Virol 79: 7273–7278.

    Article  PubMed  CAS  Google Scholar 

  • Severini, A., D. G. Scraba, and D. L. J. Tyrrel. 1996. Branched structures in the intracellular DNA of herpes simplex virus type 1. J. Virol. 70: 3169–3175.

    PubMed  CAS  Google Scholar 

  • Sodeik, B., M. W. Ebersold, and A. Helenius. 1997. Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus. J Cell Biol 136: 1007–1021.

    Article  PubMed  CAS  Google Scholar 

  • Spear, P. G. 2004. Herpes simplex virus: Receptors and ligands for cell entry. Cell Microbiol 6: 401–410.

    Article  PubMed  CAS  Google Scholar 

  • Strang, B. L., and N. D. Stow. 2005. Circularization of the herpes simplex virus type 1 genome upon lytic infection. J Virol 79: 12487–12494.

    Article  PubMed  CAS  Google Scholar 

  • Tavalai, N., P. Papior, S. Rechter, M. Leis, and T. Stamminger. 2006. Evidence for a role of the cellular ND10 protein pml in mediating intrinsic immunity against human cytomegalovirus infections. J Virol 80: 8006–8018.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, T. J., and D. M. Knipe. 2003. C-terminal region of herpes simplex virus ICP8 protein needed for intranuclear localization. Virology 309: 219–231.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, T. J., and D. M. Knipe. 2004. Proteomics of herpes simplex virus replication compartments: Association of cellular DNA replication, repair, recombination, and chromatin remodeling proteins with ICP8. J Virol 78: 5856–5866.

    Article  PubMed  CAS  Google Scholar 

  • Turner, J. M. 2007. Meiotic sex chromosome inactivation. Development 134: 1823–1831.

    Article  PubMed  CAS  Google Scholar 

  • Turner, J. M. et al. 2005. Silencing of unsynapsed meiotic chromosomes in the mouse. Nat Genet 37: 41–47.

    PubMed  CAS  Google Scholar 

  • Walsh, D., and I. Mohr. 2006. Assembly of an active translation initiation factor complex by a viral protein. Genes Dev 20: 461–472.

    Article  PubMed  CAS  Google Scholar 

  • Weisshart, K., C. S. Chow, and D. M. Coen. 1999. Herpes simplex virus processivity factor UL42 imparts increased DNA-binding specificity to the viral DNA polymerase and decreased dissociation from primer-template without reducing the elongation rate. J Virol 73: 55–66.

    PubMed  CAS  Google Scholar 

  • Weller, S. K., and D. M. Coen. 2006. Herpes simplex virus. In: M. L. DePamphilis (ed.) DNA replication and human disease. p 663–686. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Wilkinson, D. E., and S. K. Weller. 2003. The role of DNA recombination in herpes simplex virus DNA replication. IUBMB Life 55: 451–458.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson, D. E., and S. K. Weller. 2004. Recruitment of cellular recombination and repair proteins to sites of herpes simplex virus type 1 DNA replication is dependent on the composition of viral proteins within prereplicative sites and correlates with the induction of the DNA damage response. J Virol 78: 4783–4796.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson, D. E., and S. K. Weller. 2006. Herpes simplex virus type I disrupts the atr-dependent DNA-damage response during lytic infection. J Cell Sci 119: 2695–2703.

    Article  PubMed  CAS  Google Scholar 

  • Yates, J. L. 1996. Epstein-Barr virus DNA replication. In: M. L. DePamphilis (ed.) DNA replication in eukaryotic cells. p 751–773. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  • Zhu, L. A., and S. K. Weller. 1992. The six conserved helicase motifs of the UL5 gene product, a component of the herpes simplex virus type 1 helicase-primase, are essential for its function. J Virol 66: 469–479.

    PubMed  CAS  Google Scholar 

  • Zuccola, H. J., D. J. Filman, D. M. Coen, and J. M. Hogle. 2000. The crystal structure of an unusual processivity factor, herpes simplex virus UL42, bound to the c terminus of its cognate polymerase. Mol Cell 5: 267–278.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra K. Weller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Weller, S.K. (2009). Herpesvirus Genome Replication. In: Raney, K., Gotte, M., Cameron, C. (eds) Viral Genome Replication. Springer, Boston, MA. https://doi.org/10.1007/b135974_13

Download citation

Publish with us

Policies and ethics